1
|
Zoref-Lorenz A, Rocco J, Schwartz DM, Jordan M. Recognizing and Managing Secondary Hemophagocytic Lymphohistiocytosis in Adults: A Practical Clinical Guide. Hematol Oncol Clin North Am 2025; 39:577-596. [PMID: 40222878 DOI: 10.1016/j.hoc.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Secondary hemophagocytic lymphohistiocytosis (sHLH) is a life-threatening hyperinflammatory syndrome triggered by infections, malignancies, or rheumatologic conditions. Effective management requires identifying and treating the acute trigger while addressing underlying factors and calming the inflammatory response. Like sepsis, sHLH represents a cytokine storm resulting from diverse triggering events rather than a standalone diagnosis. This review synthesizes current literature and the authors' clinical experience to provide a comprehensive framework for diagnosing and managing sHLH, emphasizing the importance of tailored, trigger-specific interventions. Emerging diagnostic tools and therapeutic strategies and improved mechanistic understanding of sHLH hold promise for improving outcomes in this challenging condition.
Collapse
Affiliation(s)
- Adi Zoref-Lorenz
- Hematology Institute, Department of Medicine, Meir Medical Center, Tchernichovsky Street 59, Kfar Saba 4428164, Israel; Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Joseph Rocco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, NIH Clinical Center Building 10, Room 11B-17 10 Center Drive, Bethesda, MD 20892, USA. https://twitter.com/JMRocco5
| | - Daniella M Schwartz
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, 1551W Starzl Building, 200 Lothrop Street, Pittsburgh, PA 15213, USA. https://twitter.com/SchwartzLab9
| | - Michael Jordan
- Division of Immunobiology and Bone Marrow Transplant, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, ML 7038, Cincinnati, OH 45229-3039, USA. https://twitter.com/Mjordanlab
| |
Collapse
|
2
|
Liu JH, Liu KY, Zhao X, Zhou X, Jiang Y. Cardiovascular toxicities associated with chimeric antigen receptor T-cell therapy. Front Pharmacol 2025; 16:1578157. [PMID: 40406483 PMCID: PMC12094984 DOI: 10.3389/fphar.2025.1578157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/08/2025] [Indexed: 05/26/2025] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a groundbreaking immunotherapeutic approach, particularly for oncohematological patients who are refractory to conventional treatments. As clinical trials expand the applications of CAR T-cell therapy beyond hematologic malignancies, a critical understanding of its associated toxicities, particularly cardiovascular complications, becomes imperative. This review synthesizes current literature on the interplay between cytokine release syndrome (CRS) and cardiotoxicity related to CAR T-cell therapy, emphasizing the potential severity of these adverse events. While significant progress has been made in managing CRS, the cardiac manifestations-ranging from mild events to life-threatening complications-remain underreported in pivotal studies. We explore the incidence and nature of cardiotoxicity in real-world and clinical trial settings, identify risk factors contributing to cardiovascular events, and propose guidelines for pre-therapy evaluations, post-infusion monitoring, and management strategies. By highlighting the urgent need for heightened awareness and proactive care, this review aims to enhance patient safety and optimize outcomes in the evolving landscape of CAR T-cell therapy.
Collapse
Affiliation(s)
- Jia-Hui Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Kun-Yao Liu
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Xiang Zhao
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Xin Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun, China
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Yichuan Jiang
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Alibrahim MN, Gloghini A, Carbone A. Classic Hodgkin lymphoma: Pathobiological features that impact emerging therapies. Blood Rev 2025; 71:101271. [PMID: 39904647 DOI: 10.1016/j.blre.2025.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Classic Hodgkin lymphoma (cHL) is defined by distinctive Hodgkin Reed-Sternberg (HRS) cells, which are CD30+/CD15+ multinucleated tumor cells lacking typical B-cell markers. These cells comprise <5 % of tumor mass but orchestrate an extensive immunosuppressive tumor microenvironment (TME). Classic HL was curable with radiation therapy and multi-agent chemotherapy. Despite high cure rates, treatment-related toxicities remain significant. The goals of multimodality therapy are to achieve a cure while minimizing treatment-associated toxicity. Advances in molecular insights into HRS cells have led to transformative therapies, including checkpoint inhibitors, antibody-drug conjugates like brentuximab vedotin, which have shown remarkable efficacy, especially in relapsed or refractory disease. However, challenges persist due to the heterogeneity of cHL, driven by the complex biology of HRS cells and their surrounding tumor microenvironment. Novel approaches such as single-cell RNA sequencing and circulating tumor DNA profiling provide promising strategies to address these challenges. This review examines the origin, morphology, phenotype, and genetic profiles of HRS cells, highlighting key pathobiological features, including biomarkers and Epstein-Barr Virus involvement. It also explores the biological mechanisms underlying HRS cell survival and evaluates standard and emerging therapies, offering insights into the rationale for novel treatment strategies.
Collapse
Affiliation(s)
| | - Annunziata Gloghini
- Department of Avanced Pathology, Fondazione IRCCS, Istituto Nazionale dei Tumori Milano, Italy.
| | - Antonino Carbone
- Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
4
|
Nie J, Zhou L, Tian W, Liu X, Yang L, Yang X, Zhang Y, Wei S, Wang DW, Wei J. Deep insight into cytokine storm: from pathogenesis to treatment. Signal Transduct Target Ther 2025; 10:112. [PMID: 40234407 PMCID: PMC12000524 DOI: 10.1038/s41392-025-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
Cytokine storm (CS) is a severe systemic inflammatory syndrome characterized by the excessive activation of immune cells and a significant increase in circulating levels of cytokines. This pathological process is implicated in the development of life-threatening conditions such as fulminant myocarditis (FM), acute respiratory distress syndrome (ARDS), primary or secondary hemophagocytic lymphohistiocytosis (HLH), cytokine release syndrome (CRS) associated with chimeric antigen receptor-modified T (CAR-T) therapy, and grade III to IV acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. The significant involvement of the JAK-STAT pathway, Toll-like receptors, neutrophil extracellular traps, NLRP3 inflammasome, and other signaling pathways has been recognized in the pathogenesis of CS. Therapies targeting these pathways have been developed or are currently being investigated. While novel drugs have demonstrated promising therapeutic efficacy in mitigating CS, the overall mortality rate of CS resulting from underlying diseases remains high. In the clinical setting, the management of CS typically necessitates a multidisciplinary team strategy encompassing the removal of abnormal inflammatory or immune system activation, the preservation of vital organ function, the treatment of the underlying disease, and the provision of life supportive therapy. This review provides a comprehensive overview of the key signaling pathways and associated cytokines implicated in CS, elucidates the impact of dysregulated immune cell activation, and delineates the resultant organ injury associated with CS. In addition, we offer insights and current literature on the management of CS in cases of FM, ARDS, systemic inflammatory response syndrome, treatment-induced CRS, HLH, and other related conditions.
Collapse
Grants
- 82070217, 81873427 National Natural Science Foundation of China (National Science Foundation of China)
- 82100401 National Natural Science Foundation of China (National Science Foundation of China)
- 81772477, 81201848, 82473220 National Natural Science Foundation of China (National Science Foundation of China)
- 82330010,81630010,81790624 National Natural Science Foundation of China (National Science Foundation of China)
- National High Technology Research and Development Program of China, Grant number: 2021YFA1101500.
- The Hubei Provincial Natural Science Foundation (No.2024AFB050)
- Project of Shanxi Bethune Hospital, Grant Numbber: 2023xg02); Fundamental Research Program of Shanxi Province, Grant Numbber: 202303021211224
- The Key Scientific Research Project of COVID-19 Infection Emergency Treatment of Shanxi Bethune Hospital (2023xg01), 2023 COVID-19 Research Project of Shanxi Provincial Health Commission (No.2023XG001, No. 2023XG005), Four “Batches” Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province (2023XM003), Cancer special Fund research project of Shanxi Bethune Hospital (No. 2020-ZL04), and External Expert Workshop Fund Program of Shanxi Provincial Health Commission(Proteomics Shanxi studio for Huanghe professor)
- Fundamental Research Program of Shanxi Province(No.202303021221192); 2023 COVID-19 Emergency Project of Shanxi Health Commission (Nos.2023XG001,2023XG005)
Collapse
Affiliation(s)
- Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liping Yang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Arvanitis P, Tziotis A, Papadimatos S, Farmakiotis D. Pathogenesis, Diagnosis, and Management of Cytokine Release Syndrome in Patients with Cancer: Focus on Infectious Disease Considerations. Curr Oncol 2025; 32:198. [PMID: 40277755 PMCID: PMC12026323 DOI: 10.3390/curroncol32040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Cytokine Release Syndrome (CRS) is a hyperinflammatory state triggered by immune therapies like CAR T-cell therapy and bispecific T-cell engagers (BiTEs). Characterized by excessive cytokine release, CRS often mimics infectious and inflammatory conditions, complicating diagnosis and treatment. Immunosuppressive therapies used for CRS further elevate the risk of secondary infections. Methods: A systematic search of PubMed and EMBASE was conducted using terms related to "cytokine release syndrome", "cytokine storm", "infections", and "management". Studies were included if they described infectious complications, diagnostic mimics, or therapeutic approaches related to CRS. Results: Of 19,634 studies, 2572 abstracts were reviewed. Infections occurred in up to 23% of patients post-CAR T therapy and 24% post-BiTE therapy. Pathogens included gram-positive and gram-negative bacteria, herpesviruses (e.g., CMV, HSV), fungi (e.g., Candida, Aspergillus), and parasites (e.g., Toxoplasma gondii). CRS mimics also included non-infectious inflammatory syndromes. Differentiation remains challenging, but cytokine profiling and biomarkers (e.g., ferritin, CRP, sIL-2Rα) may aid in diagnosis. Treatments included tocilizumab, corticosteroids, and empiric antimicrobials. Prophylactic strategies were inconsistently reported. Conclusions: Effective CRS management requires early recognition, differentiation from infectious mimics, and collaboration between oncology and infectious disease (ID) specialists. A multidisciplinary, collaborative, and structured approach, including dedicated ID input and pre-treatment evaluation, is essential for optimizing CRS management and patient outcomes.
Collapse
Affiliation(s)
- Panos Arvanitis
- Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Andreas Tziotis
- Beth Israel Deaconess Medical Center Division of Gastroenterology, Boston, MA 02115, USA; (A.T.); (S.P.)
| | - Spyridon Papadimatos
- Beth Israel Deaconess Medical Center Division of Gastroenterology, Boston, MA 02115, USA; (A.T.); (S.P.)
| | - Dimitrios Farmakiotis
- Beth Israel Deaconess Medical Center Division of Infectious Diseases, Boston, MA 02115, USA
| |
Collapse
|
6
|
Buciuc AG, Tran S, Weber M, Padilla V, Rueda-Lara M, Espinel Z. Immune Effector Cell-Associated Neurotoxicity Syndrome After CAR T-Cell Therapy and Other Psychiatric Manifestations: A Review and Case Series. J Clin Med 2025; 14:1451. [PMID: 40094890 PMCID: PMC11900558 DOI: 10.3390/jcm14051451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Chimeric antigen receptor (CAR) T-cell therapy has transformed the treatment of hematologic malignancies, achieving durable remissions in cases refractory to standard therapies. A potentially life-threatening complication is immune effector cell-associated neurotoxicity syndrome (ICANS), which poses significant challenges to clinical management. ICANS encompasses a range of neuropsychiatric symptoms, including delirium, mood disorders, psychosis, seizures, and cerebral edema. The psychiatric dimensions of ICANS remain underreported, and their interplay with neurologic manifestations is poorly understood. This study reviews the psychiatric manifestations of ICANS and presents a case series illustrating its clinical complexity. Methods: A systematic literature search was conducted using PubMed and Google Scholar for studies published between 2020 and 2024. Search terms included "ICANS", "delirium", "CAR T-cell", "neurotoxicity", and "psychiatric". The inclusion criteria included studies published in English that focused on adult patients experiencing neuropsychiatric symptoms of ICANS. Two clinical cases of ICANS with prominent psychiatric features are presented. Results: The literature review found three relevant studies, which emphasized agitation, hypoactivity, and mood disturbances as often-overlooked psychiatric symptoms linked to ICANS. The case series highlights psychiatric manifestations, including delirium, irritability, and cognitive impairment. Recovery was supported through interventions such as corticosteroid tapering, antipsychotic treatment, and multidisciplinary care. Conclusions: ICANS is a multifaceted syndrome with significant neuropsychiatric sequelae that complicate its diagnosis and management. An enhanced recognition of its psychiatric dimensions and interdisciplinary approaches are critical to improving outcomes.
Collapse
Affiliation(s)
- Adela Georgiana Buciuc
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Jackson Health System, Miami, FL 33136, USA
| | - Sabrina Tran
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.T.); (M.W.); (V.P.); (M.R.-L.); (Z.E.)
| | - Mary Weber
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.T.); (M.W.); (V.P.); (M.R.-L.); (Z.E.)
| | - Vanessa Padilla
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.T.); (M.W.); (V.P.); (M.R.-L.); (Z.E.)
| | - Maria Rueda-Lara
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.T.); (M.W.); (V.P.); (M.R.-L.); (Z.E.)
| | - Zelde Espinel
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.T.); (M.W.); (V.P.); (M.R.-L.); (Z.E.)
| |
Collapse
|
7
|
Cai W, Lu Y, He H, Li J, Liu S, Geng H, Yang Q, Zeng L, Wu D, Li C. Efficacy of emapalumab in the management of anti‑CD19 chimeric antigen receptor T‑cell therapy‑associated cytokine release syndrome: A report of two cases. Oncol Lett 2025; 29:71. [PMID: 39628826 PMCID: PMC11612719 DOI: 10.3892/ol.2024.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 12/06/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an effective treatment for diffuse large B-cell lymphoma (DLBCL). However, it may activate the systemic immune system of the patient, resulting in cytokine release syndrome (CRS). Emapalumab is a human monoclonal antibody targeting interferon-γ, inhibiting its interaction with cell surface receptors and the subsequent activation of inflammatory pathways. The present report describes the cases of 2 patients with relapsed DLBCL treated with CAR T-cell therapy, in which the severe CRS associated with CAR T-cell therapy was attenuated without compromising antitumor efficacy after receiving emapalumab. Further prospective clinical trials are warranted to determine the role of emapalumab in CAR T-cell therapy.
Collapse
Affiliation(s)
- Wenzhi Cai
- National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Institute of Blood and Marrow Transplantation, Suzhou University Medical College, Suzhou, Jiangsu 215006, P.R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yutong Lu
- National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Institute of Blood and Marrow Transplantation, Suzhou University Medical College, Suzhou, Jiangsu 215006, P.R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haiju He
- National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Institute of Blood and Marrow Transplantation, Suzhou University Medical College, Suzhou, Jiangsu 215006, P.R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiaqi Li
- National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Institute of Blood and Marrow Transplantation, Suzhou University Medical College, Suzhou, Jiangsu 215006, P.R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Shuangzhu Liu
- National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Institute of Blood and Marrow Transplantation, Suzhou University Medical College, Suzhou, Jiangsu 215006, P.R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongzhi Geng
- National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qin Yang
- National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Liangyu Zeng
- National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Depei Wu
- National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Institute of Blood and Marrow Transplantation, Suzhou University Medical College, Suzhou, Jiangsu 215006, P.R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Caixia Li
- National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
8
|
Fleischer A, Kurth S, Duell J, Topp M, Strunz PP, Mersi J, Rasche L, Sanges C, Hudecek M, Einsele H, Maatouk I. Neuropsychiatric manifestations following chimeric antigen receptor T cell therapy for cancer: a systematic review of clinical outcomes and management strategies. J Immunother Cancer 2024; 12:e009174. [PMID: 39794934 PMCID: PMC11667355 DOI: 10.1136/jitc-2024-009174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/15/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has emerged as a transformative modality in the treatment of patients with cancer. However, it is increasingly evident that this therapeutic approach is not without its challenges. The unique nature of CAR-T cells as living drugs introduces a distinct set of side effects. As the application of CAR-T cell therapy expands to treat a broader range of diseases, it becomes increasingly important to devise effective strategies for handling the associated toxicities. Challenges in treating patients with CAR-T cells include addressing complications such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and cytopenias. This comprehensive review seeks to systematically identify, categorize and elucidate all previously described neurological and psychological side effects associated with CAR-T cell therapy, shedding light on the pertinent laboratory findings that underscore these phenomena. METHODS PubMed, Springer Link, and ScienceDirect were systematically searched for empirical studies on adult patients with cancer receiving CAR-T cell therapy for hemato-oncological malignancies. Quality assessment was conducted using Version 2 of the Cochrane risk-of-bias tool (RoB 2) for randomized trials and adherence to the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) checklist for observational studies. The synthesis of findings was conducted via a narrative approach, consolidating the diverse array of data into a coherent framework. RESULTS From an initial pool of 2,276 citations, 546 studies met the inclusion criteria, exhibiting a rich tapestry of heterogeneity in terms of study characteristics and patient samples. The incidence of neuropsychological symptoms varied notably across different CAR-T cell products and hematological malignancies. Among the most frequently reported neuropsychological symptoms were aphasia, attention deficits, impaired consciousness, and disorientation, alongside a constellation of other symptoms including confusion, cognitive impairment, memory loss, writing difficulties, fatigue, headache, agitation, tremor, seizures, and psychomotor retardation. Early intervention strategies, including corticosteroids and tocilizumab, have shown the potential to reduce the intensity of neuropsychological symptoms and prevent their progression to critical complications. CONCLUSION These insights underscore the imperative of extending neuropsychological assessments beyond the conventional Immune Effector Cell-Associated Encephalopathy score framework.
Collapse
Affiliation(s)
- Anna Fleischer
- Department of Internal Medicine II, University Hospital Wurzburg, Wurzburg, Germany
| | - Sophia Kurth
- Department of Internal Medicine II, University Hospital Wurzburg, Wurzburg, Germany
| | - Johannes Duell
- Department of Internal Medicine II, University Hospital Wurzburg, Wurzburg, Germany
| | - Max Topp
- Department of Internal Medicine II, University Hospital Wurzburg, Wurzburg, Germany
| | | | - Julia Mersi
- Department of Internal Medicine II, University Hospital Wurzburg, Wurzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Wurzburg, Wurzburg, Germany
| | - Carmen Sanges
- Department of Internal Medicine II, University Hospital Wurzburg, Wurzburg, Germany
| | - Michael Hudecek
- Department of Internal Medicine II, University Hospital Wurzburg, Wurzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wurzburg, Wurzburg, Germany
| | - Imad Maatouk
- Department of Internal Medicine II, University Hospital Wurzburg, Wurzburg, Germany
| |
Collapse
|
9
|
Druey KM, Arnaud L, Parikh SM. Systemic capillary leak syndrome. Nat Rev Dis Primers 2024; 10:86. [PMID: 39543164 DOI: 10.1038/s41572-024-00571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
The vascular endothelial barrier maintains intravascular volume and metabolic homeostasis. Although plasma fluids and proteins extravasate continuously from tissue microvasculature (capillaries, post-capillary venules), systemic vascular leakage increases in critical illness associated with sepsis, burns and trauma, among others, or in association with certain drugs or toxin exposures. Systemically dysregulated fluid homeostasis, which can lead to hypovolaemia, hypotensive shock and widespread tissue oedema, has been termed systemic capillary leak syndrome (SCLS) when overt secondary causes (for example, heart or liver failure) are excluded. In severe forms, SCLS is complicated by compartment syndrome in the extremities and multi-organ dysfunction syndrome due to shock and systemic hypoperfusion. The different forms of SCLS include idiopathic SCLS (ISCLS) and secondary SCLS (SSCLS), which can be triggered by several conditions, including certain infections and haematological malignancies. A subgroup of patients with ISCLS have monoclonal gammopathy-associated SCLS (also known as Clarkson disease), which is an ultra-rare and extreme form of ISCLS. ISCLS can be managed effectively with monthly prophylactic immunoglobulin therapy whereas SSCLS frequently does not recur once the underlying condition resolves or the offending agent is discontinued. Thus, differentiation between ISCLS, SSCLS and other causes of oedema is crucial for quick diagnosis and positive patient outcomes.
Collapse
Affiliation(s)
- Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Laurent Arnaud
- Department of Rheumatology, French National Reference Center for Autoimmune Diseases (RESO), INSERM UMR-S 1109, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Samir M Parikh
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Paranga TG, Mitu I, Pavel-Tanasa M, Rosu MF, Miftode IL, Constantinescu D, Obreja M, Plesca CE, Miftode E. Cytokine Storm in COVID-19: Exploring IL-6 Signaling and Cytokine-Microbiome Interactions as Emerging Therapeutic Approaches. Int J Mol Sci 2024; 25:11411. [PMID: 39518964 PMCID: PMC11547016 DOI: 10.3390/ijms252111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
IL-6 remains a key molecule of the cytokine storms characterizing COVID-19, exerting both proinflammatory and anti-inflammatory effects. Emerging research underscores the significance of IL-6 trans-signaling over classical signaling pathways, which has shifted the focus of therapeutic strategies. Additionally, the synergistic action of TNF-α and IFN-γ has been found to induce inflammatory cell death through PANoptosis, further amplifying the severity of cytokine storms. Long COVID-19 patients, as well as those with cytokine storms triggered by other conditions, exhibit distinct laboratory profiles, indicating the need for targeted approaches to diagnosis and management. Growing evidence also highlights the gut microbiota's crucial role in modulating the immune response during COVID-19 by affecting cytokine production, adding further complexity to the disease's immunological landscape. Targeted intervention strategies should focus on specific cytokine cutoffs, though accurate cytokine quantification remains a clinical challenge. Current treatment strategies are increasingly focused on inhibiting IL-6 trans-signaling, which offers promise for more precise therapeutic approaches to manage hyperinflammatory responses in COVID-19. In light of recent discoveries, this review summarizes key research findings on cytokine storms, particularly their role in COVID-19 and other inflammatory conditions. It explores emerging therapeutic strategies targeting cytokines like IL-6, TNF-α, and IFN-γ, while also addressing open questions, such as the need for better biomarkers to detect and manage cytokine storms. Additionally, the review highlights ongoing challenges in developing targeted treatments that mitigate hyperinflammation without compromising immune function, emphasizing the importance of continued research in this field.
Collapse
Affiliation(s)
- Tudorita Gabriela Paranga
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.G.P.); (I.-L.M.); (M.O.); (C.E.P.); (E.M.)
- St. Parascheva Clinical Hospital for Infectious Diseases, 700116 Iasi, Romania
| | - Ivona Mitu
- Department of Morpho-Functional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Mariana Pavel-Tanasa
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital, 700101 Iasi, Romania
| | - Manuel Florin Rosu
- St. Parascheva Clinical Hospital for Infectious Diseases, 700116 Iasi, Romania
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, University of Medicine and Pharmacy Grigore. T. Popa, 700115 Iasi, Romania
| | - Ionela-Larisa Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.G.P.); (I.-L.M.); (M.O.); (C.E.P.); (E.M.)
- St. Parascheva Clinical Hospital for Infectious Diseases, 700116 Iasi, Romania
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital, 700101 Iasi, Romania
| | - Maria Obreja
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.G.P.); (I.-L.M.); (M.O.); (C.E.P.); (E.M.)
- St. Parascheva Clinical Hospital for Infectious Diseases, 700116 Iasi, Romania
| | - Claudia Elena Plesca
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.G.P.); (I.-L.M.); (M.O.); (C.E.P.); (E.M.)
- St. Parascheva Clinical Hospital for Infectious Diseases, 700116 Iasi, Romania
| | - Egidia Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.G.P.); (I.-L.M.); (M.O.); (C.E.P.); (E.M.)
- St. Parascheva Clinical Hospital for Infectious Diseases, 700116 Iasi, Romania
| |
Collapse
|
11
|
Karmakar A, Kumar U, Prabhu S, Ravindran V, Nagaraju SP, Suryakanth VB, Prabhu MM, Karmakar S. Molecular profiling and therapeutic tailoring to address disease heterogeneity in systemic lupus erythematosus. Clin Exp Med 2024; 24:223. [PMID: 39294397 PMCID: PMC11410857 DOI: 10.1007/s10238-024-01484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic, heterogeneous, systemic autoimmune disease characterized by autoantibody production, complement activation, and immune complex deposition. SLE predominantly affects young, middle-aged, and child-bearing women with episodes of flare-up and remission, although it affects males at a much lower frequency (female: male; 7:1 to 15:1). Technological and molecular advancements have helped in patient stratification and improved patient prognosis, morbidity, and treatment regimens overall, impacting quality of life. Despite several attempts to comprehend the pathogenesis of SLE, knowledge about the precise molecular mechanisms underlying this disease is still lacking. The current treatment options for SLE are pragmatic and aim to develop composite biomarkers for daily practice, which necessitates the robust development of novel treatment strategies and drugs targeting specific responsive pathways. In this communication, we review and aim to explore emerging therapeutic modalities, including multiomics-based approaches, rational drug design, and CAR-T-cell-based immunotherapy, for the management of SLE.
Collapse
Affiliation(s)
- Abhibroto Karmakar
- Department of General Medicine, Kasturba Medical College, Manipal, Manipal Academy Higher Education, Manipal, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences New Delhi, New Delhi, India
| | - Smitha Prabhu
- Department of Dermatology, Kasturba Medical College, Manipal Academy Higher Education, Manipal, India
| | - Vinod Ravindran
- Department of General Medicine, Kasturba Medical College, Manipal, Manipal Academy Higher Education, Manipal, India
- Department of Rheumatology, Centre for Rheumatology, Kozhikode, Kerala, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College Manipal, Manipal Academy Higher Education, Manipal, India
| | - Varashree Bolar Suryakanth
- Department of Biochemistry, Kasturba Medical College Manipal, Manipal Academy Higher Education, Manipal, India
| | - Mukhyaprana M Prabhu
- Department of General Medicine, Kasturba Medical College, Manipal, Manipal Academy Higher Education, Manipal, India.
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, New Delhi, India.
| |
Collapse
|