1
|
Lutter L, Kuzina A, Andreson H. Genotypic Stability of Lactic Acid Bacteria in Industrial Rye Bread Sourdoughs Assessed by ITS-PCR Analysis. Microorganisms 2024; 12:1872. [PMID: 39338546 PMCID: PMC11434513 DOI: 10.3390/microorganisms12091872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Sourdough bread production relies on metabolically active starters refreshed daily with flour and water. The stability of sourdough microbial strains is crucial for consistent bread quality. However, many bakeries lack information on the persistence of starter cultures in ongoing sourdough production. Consequently, there is growing interest in identifying microbial strains from regularly used sourdoughs that possess good functional properties and resist changes in the complex growth environment. This study aimed to evaluate the composition and stability of lactic acid bacteria (LAB) in industrial wheat (WS) and rye (RS) sourdoughs propagated over a long period. LAB isolates (n = 66) from both sourdoughs, sampled over four seasons, were identified using phenotypic methods and genotyped via ITS-PCR and ITS-PCR/TaqI restriction analysis. Eight LAB species were detected, with Lactiplantibacillus plantarum being the most dominant and stable. Nineteen distinct LAB genotypes were observed, highlighting significant diversity. The presence of identical LAB genotypes in both sourdoughs suggests microbial transfer through the environment and bakery workers. LAB in RS were found to be more stable than those in WS. These findings underscore the importance of monitoring microbial stability and diversity in industrial sourdough production to maintain consistent bread quality.
Collapse
Affiliation(s)
| | | | - Helena Andreson
- Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006 Tartu, Estonia; (L.L.)
| |
Collapse
|
2
|
Lv R, Gao X, Zhang C, Lian W, Quan X, Guo S, Chen X. Characteristics and Whole-Genome Analysis of Limosilactobacillus fermentum Phage LFP02. Foods 2023; 12:2716. [PMID: 37509808 PMCID: PMC10379269 DOI: 10.3390/foods12142716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Limosilactobacillus fermentum is a bacterium widely used in food production, medicine, and industrial fermentation. However, fermentation could fail due to phage contamination. L. fermentum bacteriophage LFP02 can be induced from L. fermentum IMAU 32579 using mitomycin C. To better understand the characteristics of this phage, its physiological and genomic characteristics were evaluated. The results showed that its optimal multiplicity of infection was 0.01, and the burst size was 148.03 ± 2.65 pfu/infective center. Compared to temperature, pH had a more obvious influence on phage viability, although its adsorption capacity was not affected by the divalent cations (Ca2+ and Mg2+) or chloramphenicol. Its genome size was 43,789 bp and the GC content was 46.06%, including 53 functional proteins. Compared to other L. fermentum phages, phage LFP02 had chromosome deletion, insertion, and inversion, which demonstrated that it was a novel phage. This study could expand the knowledge of the biological characteristics of L. fermentum bacteriophages and provide some theoretical basis for bacteriophage prevention during fermentation.
Collapse
Affiliation(s)
- Ruirui Lv
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xin Gao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Can Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Weiqi Lian
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xingyu Quan
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - She Guo
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xia Chen
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
|
4
|
Maske BL, de Melo Pereira GV, da Silva Vale A, Marques Souza DS, De Dea Lindner J, Soccol CR. Viruses in fermented foods: are they good or bad? Two sides of the same coin. Food Microbiol 2021; 98:103794. [PMID: 33875222 PMCID: PMC7992106 DOI: 10.1016/j.fm.2021.103794] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/21/2021] [Indexed: 12/23/2022]
Abstract
The emergence of Coronavirus disease 2019 as a global pandemic has increased popular concerns about diseases caused by viruses. Fermented foods containing high loads of viable fungi and bacteria are potential sources for virus contamination. The most common include viruses that infect bacteria (bacteriophage) and yeasts reported in fermented milks, sausages, vegetables, wine, sourdough, and cocoa beans. Recent molecular studies have also associated fermented foods as vehicles for pathogenic human viruses. Human noroviruses, rotavirus, and hepatitis virus have been identified in different fermented foods through multiple routes. No severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) virus or close members were found in fermented foods to date. However, the occurrence/persistence of other pathogenic viruses reveals a potential vulnerability of fermented foods to SARS-CoV-2 contamination. On the other side of the coin, some bacteriophages are being suggested for improving the fermentation process and food safety, as well as owing potential probiotic properties in modern fermented foods. This review will address the diversity and characteristics of viruses associated with fermented foods and what has been changed after a short introduction to the most common next-generation sequencing platforms. Also, the risk of SARS-CoV-2 transmission via fermented foods and preventive measures will be discussed.
Collapse
Affiliation(s)
- Bruna Leal Maske
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Alexander da Silva Vale
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Doris Sobral Marques Souza
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Applied Virology Laboratory, UFSC, Florianópolis, SC, Brazil
| | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
5
|
Rogalski E, Vogel RF, Ehrmann MA. Monitoring of Lactobacillus sanfranciscensis strains during wheat and rye sourdough fermentations by CRISPR locus length polymorphism PCR. Int J Food Microbiol 2019; 316:108475. [PMID: 31874326 DOI: 10.1016/j.ijfoodmicro.2019.108475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/05/2019] [Accepted: 12/07/2019] [Indexed: 12/26/2022]
Abstract
Lactobacillus (L.) sanfranciscensis is a competitive key species in sourdough fermentations. However, the principles involved in establishing the commonly observed phenomenon of strain dominance are unresolved. This has been studied little because the methods for fast and reliable differentiation of strains and their monitoring during fermentation are tedious and cannot be done with large numbers of isolates. In this contribution, we present a strain-specific, PCR-based typing method that uses length heterogeneities of the clustered regularly interspaced short palindromic repeats (CRISPR) loci as they occur in the genomes of different strains. In silico analysis of 21 genomes revealed 14 different CRISPR genotypes. We then designed a primer set to simultaneously detect different strains in a multiplex PCR assay designated CRISPR locus length polymorphism PCR (CLLP-PCR). The usefulness of this method was evaluated in lab-scale sourdough fermentations conducted with rye and wheat flours. First, the flour was mixed with water to a dough yield of 200. Then each dough was inoculated with four different L. sanfranciscensis strains (TMW 1.1150, TMW 1.392, TMW 1.2142, and TMW 1.2138) at levels of 109 cfu/g each. Sourdoughs were propagated at 28 °C for 5 days by back slopping 5% to the flour mass every 24 h. Samples were collected each day; DNA was isolated, and the presence of strains was detected qualitatively in the sourdoughs with PCR. L. sanfranciscensis TMW 1.392 became dominant as early as 2 days into the fermentation and remained the only detectable strain for the rest of the sampling period. CLLP-PCR proved to be useful in investigating the assertiveness of different strains of L. sanfranciscensis in sourdoughs. Therefore, CLLP-PCR may be used as a tool to investigate assertiveness of microorganisms in food fermentations at the strain level.
Collapse
Affiliation(s)
- Esther Rogalski
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany.
| |
Collapse
|
6
|
Ghosh K, Senevirathne A, Kang HS, Hyun WB, Kim JE, Kim KP. Complete Nucleotide Sequence Analysis of a Novel Bacillus subtilis-Infecting Bacteriophage BSP10 and Its Effect on Poly-Gamma-Glutamic Acid Degradation. Viruses 2018; 10:E240. [PMID: 29734701 PMCID: PMC5977233 DOI: 10.3390/v10050240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 01/21/2023] Open
Abstract
While the harmful effects of lactic acid bacterial bacteriophages in the dairy industry are well-established, the importance of Bacillus subtilis-infecting bacteriophages on soybean fermentation is poorly-studied. In this study, we isolated a B. subtilis-infecting bacteriophage BSP10 from Meju (a brick of dried fermented soybean) and further characterized it. This Myoviridae family bacteriophage exhibited a narrow host range against B. subtilis strains (17/52, 32.7%). The genome of bacteriophage BSP10 is 153,767 bp long with 236 open reading frames and 5 tRNAs. Comparative genomics (using dot plot, progressiveMauve alignment, heat-plot, and BLASTN) and phylogenetic analysis strongly suggest its incorporation as a new species in the Nit1virus genus. Furthermore, bacteriophage BSP10 was efficient in the growth inhibition of B. subtilis ATCC 15245 in liquid culture and in Cheonggukjang (a soybean fermented food) fermentation. Artificial contamination of as low as 10² PFU/g of bacteriophage BSP10 during Cheonggukjang fermentation significantly reduced bacterial numbers by up to 112 fold in comparison to the control (no bacteriophage). Moreover, for the first time, we experimentally proved that B. subtilis-infecting bacteriophage greatly enhanced poly-γ-glutamic acid degradation during soybean fermentation, which is likely to negatively affect the functionalities of Cheonggukjang.
Collapse
Affiliation(s)
- Kuntal Ghosh
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 561-756, Korea.
| | - Amal Senevirathne
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 561-756, Korea.
| | - Hai Seong Kang
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 561-756, Korea.
| | - Woo Bin Hyun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 561-756, Korea.
| | - Ji Eun Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 561-756, Korea.
| | - Kwang-Pyo Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 561-756, Korea.
| |
Collapse
|
7
|
Evolution of microbial community and chemical properties of a sourdough during the production of Colomba, an Italian sweet leavened baked product. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies. Front Microbiol 2017; 8:1829. [PMID: 29033905 PMCID: PMC5627019 DOI: 10.3389/fmicb.2017.01829] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods.
Collapse
Affiliation(s)
- Yu Cao
- UCD-Centre for Food Safety, Science Centre South, University College DublinDublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, Science Centre South, University College DublinDublin, Ireland
| | - Sinéad Proos
- Food for Health Ireland, Science Centre South, University College DublinDublin, Ireland
| | | | - Shabarinath Srikumar
- UCD-Centre for Food Safety, Science Centre South, University College DublinDublin, Ireland
| |
Collapse
|
9
|
Microbial Ecology and Process Technology of Sourdough Fermentation. ADVANCES IN APPLIED MICROBIOLOGY 2017; 100:49-160. [PMID: 28732554 DOI: 10.1016/bs.aambs.2017.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From a microbiological perspective, sourdough is to be considered as a specific and stressful ecosystem, harboring yeasts and lactic acid bacteria (LAB), that is used for the production of baked goods. With respect to the metabolic impact of the sourdough microbiota, acidification (LAB), flavor formation (LAB and yeasts), and leavening (yeasts and heterofermentative LAB species) are most noticeable. Three distinct types of sourdough fermentation processes can be discerned based on the inocula applied, namely backslopped ones (type 1), those initiated with starter cultures (type 2), and those initiated with a starter culture followed by backslopping (type 3). A sourdough-characteristic LAB species is Lactobacillus sanfranciscensis. A sourdough-characteristic yeast species is Candida humilis. Although it has been suggested that the microbiota of a specific sourdough may be influenced by its geographical origin, region specificity often seems to be an artefact resulting from interpretation of the research data, as those are dependent on sampling, isolation, and identification procedures. It is however clear that sourdough-adapted microorganisms are able to withstand stress conditions encountered during their growth. Based on the technological setup, type 0 (predoughs), type I (artisan bakery firm sourdoughs), type II (industrial liquid sourdoughs), and type III sourdoughs (industrial dried sourdoughs) can be distinguished. The production of all sourdoughs, independent of their classification, depends on several intrinsic and extrinsic factors. Both the flour (type, quality status, etc.) and the process parameters (fermentation temperature, pH and pH evolution, dough yield, water activity, oxygen tension, backslopping procedure and fermentation duration, etc.) determine the dynamics and outcome of (backslopped) sourdough fermentation processes.
Collapse
|
10
|
Gänzle M, Ripari V. Composition and function of sourdough microbiota: From ecological theory to bread quality. Int J Food Microbiol 2016; 239:19-25. [DOI: 10.1016/j.ijfoodmicro.2016.05.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022]
|
11
|
Genotypic diversity of Lactobacillus sanfranciscensis strains isolated from French organic sourdoughs. Int J Food Microbiol 2016; 226:13-9. [DOI: 10.1016/j.ijfoodmicro.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
|
12
|
Picozzi C, Meissner D, Chierici M, Ehrmann MA, Vigentini I, Foschino R, Vogel RF. Phage-mediated transfer of a dextranase gene in Lactobacillus sanfranciscensis and characterization of the enzyme. Int J Food Microbiol 2015; 202:48-53. [PMID: 25771219 DOI: 10.1016/j.ijfoodmicro.2015.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 12/22/2022]
Abstract
While phages of lactobacilli are extensively studied with respect to their structure and role in the dairy environment, knowledge about phages in bacteria residing in sourdough fermentation is limited. Based on the previous finding that the Lactobacillus sanfranciscensis phage EV3 carries a putative dextranase gene (dex), we have investigated the distribution of similar dex(+) phages in L. sanfranciscensis, the chance of gene transfer and the properties of the dextranase encoded by phage EV3. L. sanfranciscensis H2A (dex(-)), originally isolated from a wheat sourdough, expressed a Dex(+) phenotype upon infection with EV3. The dextranase gene was isolated from the transductant and heterologously expressed in Escherichia coli. The gene encoded a protein of 801 amino acids with a calculated molecular weight (Mw) of 89.09 kDa and a calculated pI of 5.62. Upon purification aided by a 6-His tag, enzyme kinetic parameters were determined. The Km value was 370 mM, and the Vmax was calculated in about 16 μmol of glucose released from dextran by 1 mg of enzyme in 1 min in a buffer solution at pH 5.0. The optimum conditions were 60 °C and pH 4.5. The enzyme retained its activity for >3h at 60 °C and exhibited only 40% activity at 30 °C; the highest homology of 72% was found to a dextranase gene from Lactobacillus fermentum phage φPYB5. Within 25 L. sanfransiscensis isolates tested, the strain 4B5 carried a similar prophage encoding a dextranase gene. Our data suggest a phage-mediated transfer of dextranase genes in the sourdough environment resulting in superinfection-resistant L. sanfranciscensis Dex(+) strains with a possible ecological advantage in dextran-containing sourdoughs.
Collapse
Affiliation(s)
- Claudia Picozzi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione, l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Daniel Meissner
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Margherita Chierici
- Dipartimento di Scienze per gli Alimenti, la Nutrizione, l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Ileana Vigentini
- Dipartimento di Scienze per gli Alimenti, la Nutrizione, l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Roberto Foschino
- Dipartimento di Scienze per gli Alimenti, la Nutrizione, l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany.
| |
Collapse
|
13
|
Minervini F, De Angelis M, Di Cagno R, Gobbetti M. Ecological parameters influencing microbial diversity and stability of traditional sourdough. Int J Food Microbiol 2014; 171:136-46. [DOI: 10.1016/j.ijfoodmicro.2013.11.021] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 11/30/2022]
|
14
|
Mahony J, van Sinderen D. Current taxonomy of phages infecting lactic acid bacteria. Front Microbiol 2014; 5:7. [PMID: 24478767 PMCID: PMC3900856 DOI: 10.3389/fmicb.2014.00007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/07/2014] [Indexed: 01/29/2023] Open
Abstract
Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp., and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species.
Collapse
Affiliation(s)
- Jennifer Mahony
- Department of Microbiology, University College Cork Cork, Ireland
| | - Douwe van Sinderen
- Department of Microbiology, University College Cork Cork, Ireland ; Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork Cork, Ireland
| |
Collapse
|
15
|
Ehrmann MA, Angelov A, Picozzi C, Foschino R, Vogel RF. The genome of the Lactobacillus sanfranciscensis temperate phage EV3. BMC Res Notes 2013; 6:514. [PMID: 24308641 PMCID: PMC4234937 DOI: 10.1186/1756-0500-6-514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/29/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Bacteriophages infection modulates microbial consortia and transduction is one of the most important mechanism involved in the bacterial evolution. However, phage contamination brings food fermentations to a halt causing economic setbacks. The number of phage genome sequences of lactic acid bacteria especially of lactobacilli is still limited. We analysed the genome of a temperate phage active on Lactobacillus sanfranciscensis, the predominant strain in type I sourdough fermentations. RESULTS Sequencing of the DNA of EV3 phage revealed a genome of 34,834 bp and a G + C content of 36.45%. Of the 43 open reading frames (ORFs) identified, all but eight shared homology with other phages of lactobacilli. A similar genomic organization and mosaic pattern of identities align EV3 with the closely related Lactobacillus vaginalis ATCC 49540 prophage. Four unknown ORFs that had no homologies in the databases or predicted functions were identified. Notably, EV3 encodes a putative dextranase. CONCLUSIONS EV3 is the first L. sanfranciscensis phage that has been completely sequenced so far.
Collapse
Affiliation(s)
- Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Str, 4, Freising 85354, Germany.
| | | | | | | | | |
Collapse
|
16
|
van Hijum SAFT, Vaughan EE, Vogel RF. Application of state-of-art sequencing technologies to indigenous food fermentations. Curr Opin Biotechnol 2013; 24:178-86. [DOI: 10.1016/j.copbio.2012.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 12/21/2022]
|
17
|
Picozzi C, Volponi G, Vigentini I, Grassi S, Foschino R. Assessment of transduction of Escherichia coli Stx2-encoding phage in dairy process conditions. Int J Food Microbiol 2011; 153:388-94. [PMID: 22197444 DOI: 10.1016/j.ijfoodmicro.2011.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 11/28/2022]
Abstract
In the environment, bacteriophages are regarded as natural vector for the transmission of Shiga-toxin genes among Shiga-toxin Escherichia coli strains. The possibility of transduction has been noticed in intestinal tract of various animals but experimental observations on this phenomenon in food processes are lacking. To investigate the transduction in milk at different temperature profiles and cell concentrations, an experimental plan including two different Stx(2)-phages (ϕGV2412 and ϕL34), induced respectively from E. coli O157:H7 181181/2 and E. coli O157:H7 EC34, and two recipient E. coli strains (CNCTC 6896, WG5) was performed. The donor strains were generated by lysogenization of CNCTC 6896 with ϕGV2412 and ϕL34 respectively. Spectinomycin resistance gene (aadA) was inserted into stx(2) operon in order to select transduced cells. Transductants were never observed at 4°C up to 24 h, whereas after a treatment at 37°C for 2 h and at 25°C for 22 h they were detected in 67% of the trials with a ratio of transduction varying from 1.13 10(-6) to 7.87 10(-8). A treatment at 48°C for 2 h followed by a second step at 25°C for 22 h showed an occurrence of transduction events in only 19% of cases with a ratio of transduction varying from 2.22 10(-7) to 2.67 10(-8). The generation of transductants and the spontaneous induction of phages in milk were not affected by initial or final concentration of the donor or recipient strains. The results show that transduction phenomenon occurs when the cells are metabolically active and it does not take place at low temperatures. Therefore, the maintenance of the chilling chain proved to be a main factor to prevent the spread of Stx-genes in dairy processes.
Collapse
Affiliation(s)
- Claudia Picozzi
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
18
|
Vogel RF, Pavlovic M, Ehrmann MA, Wiezer A, Liesegang H, Offschanka S, Voget S, Angelov A, Böcker G, Liebl W. Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb Cell Fact 2011; 10 Suppl 1:S6. [PMID: 21995419 PMCID: PMC3231932 DOI: 10.1186/1475-2859-10-s1-s6] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs. The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity.
Collapse
Affiliation(s)
- Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, 85350 Freising, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|