1
|
Cai XL, Yao X, Zhang L, Chai YH, Liu X, Liu WW, Zhang RX, Fan YY, Xiao X. Dual-directional regulation of extracellular respiration in Shewanella oneidensis for intelligently treating multi-nuclide contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136371. [PMID: 39488975 DOI: 10.1016/j.jhazmat.2024.136371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Radionuclide contamination has become a global environmental concern due to the high mobility and toxicity of certain isotopes. Bioreduction mediated by electrochemically active bacteria (EAB) with unique extracellular electron transfer (EET) capability is recognized as a promising approach for nuclear waste treatment. However, it is difficult to achieve bidirectional regulation of EET pathway through traditional genetic manipulation, limiting the bioremediation application of EAB. Here, we designed and optimized a novel Esa quorum sensing (EQS) system for highly efficient gene expression and interleaved cellular functional output. By promoting dimethyl sulfoxide reductase at low cell density and increasing the synthesis of electron conductive complex and flavins at high cell density, the EQS system dynamically switched the extracellular respiratory pathway of Shewanella oneidensis MR-1 according to cell density. The engineered strain exhibited precise switching and substantial improvement in the extracellular remediation of multiple nuclides, sequentially increasing the reduction of iodine IO3- and uranium U(VI) by 2.51- and 2.05-fold compared with the control, respectively. Furthermore, a mobile bacterial biofilm material was fabricated for collecting uranium precipitates coupled with U(VI) reduction. This work clearly demonstrates that EQS system contributes to the bidirectional regulation of EET pathway in EAB, providing an effective and refined strategy for bioremediation of multi-nuclide contamination.
Collapse
Affiliation(s)
- Xin-Lu Cai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuan Yao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Li Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yu-Han Chai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuan Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Wen-Wen Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ruo-Xi Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
2
|
Ábrahám Á, Dér L, Csákvári E, Vizsnyiczai G, Pap I, Lukács R, Varga-Zsíros V, Nagy K, Galajda P. Single-cell level LasR-mediated quorum sensing response of Pseudomonas aeruginosa to pulses of signal molecules. Sci Rep 2024; 14:16181. [PMID: 39003361 PMCID: PMC11246452 DOI: 10.1038/s41598-024-66706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Quorum sensing (QS) is a communication form between bacteria via small signal molecules that enables global gene regulation as a function of cell density. We applied a microfluidic mother machine to study the kinetics of the QS response of Pseudomonas aeruginosa bacteria to additions and withdrawals of signal molecules. We traced the fast buildup and the subsequent considerably slower decay of a population-level and single-cell-level QS response. We applied a mathematical model to explain the results quantitatively. We found significant heterogeneity in QS on the single-cell level, which may result from variations in quorum-controlled gene expression and protein degradation. Heterogeneity correlates with cell lineage history, too. We used single-cell data to define and quantitatively characterize the population-level quorum state. We found that the population-level QS response is well-defined. The buildup of the quorum is fast upon signal molecule addition. At the same time, its decay is much slower following signal withdrawal, and the quorum may be maintained for several hours in the absence of the signal. Furthermore, the quorum sensing response of the population was largely repeatable in subsequent pulses of signal molecules.
Collapse
Affiliation(s)
- Ágnes Ábrahám
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Dóm Tér 9, Szeged, 6720, Hungary
| | - László Dér
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Eszter Csákvári
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd. for Applied Research, Derkovits Fasor 2., Szeged, 6726, Hungary
| | - Gaszton Vizsnyiczai
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Imre Pap
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Dóm Tér 9, Szeged, 6720, Hungary
| | - Rebeka Lukács
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Vanda Varga-Zsíros
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
- HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Krisztina Nagy
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary.
| | - Péter Galajda
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
3
|
Wang Z, Huang X, Jan M, Kong D, Wang W, Zhang X. Lon protease downregulates phenazine-1-carboxamide biosynthesis by degrading the quorum sensing signal synthase PhzI and exhibits negative feedback regulation of Lon itself in Pseudomonas chlororaphis HT66. Mol Microbiol 2021; 116:690-706. [PMID: 34097792 DOI: 10.1111/mmi.14764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
Pseudomonas chlororaphis HT66 exhibits strong antagonistic activity against various phytopathogenic fungi due to its main antibiotic phenazine-1-carboxamide (PCN). PCN gene cluster consists of phzABCDEFG, phzH, phzI, and phzR operons. phzABCDEFG transcription is activated by the PhzI/R quorum sensing system. Deletion of the lon gene encoding an ATP-dependent protease resulted in significant enhancement of PCN production in strain HT66. However, the regulatory pathway and mechanism of Lon on PCN biosynthesis remain unknown. Here, lon mutation was shown to significantly improve antimicrobial activity of strain HT66. The N-acyl-homoserine lactone synthase PhzI mediates the negative regulation of PCN biosynthesis and phzABCDEFG transcription by Lon. Western blot showed that PhzI protein abundance and stability were significantly enhanced by lon deletion. The in vitro degradation assay suggested that Lon could directly degrade PhzI protein. However, Lon with an amino acid replacement (S674 -A) could not degrade PhzI protein. Lon-recognized region was located within the first 50 amino acids of PhzI. In addition, Lon formed a new autoregulatory feedback circuit to modulate its own degradation by other potential proteases. In summary, we elucidated the Lon-regulated pathway mediated by PhzI during PCN biosynthesis and the molecular mechanism underlying the degradation of PhzI by Lon in P. chlororaphis HT66.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Malik Jan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Deyu Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Quorum sensing systems differentially regulate the production of phenazine-1-carboxylic acid in the rhizobacterium Pseudomonas aeruginosa PA1201. Sci Rep 2016; 6:30352. [PMID: 27456813 PMCID: PMC4960564 DOI: 10.1038/srep30352] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/04/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa strain PA1201 is a newly identified rhizobacterium that produces high levels of the secondary metabolite phenazine-1-carboxylic acid (PCA), the newly registered biopesticide Shenqinmycin. PCA production in liquid batch cultures utilizing a specialized PCA-promoting medium (PPM) typically occurs after the period of most rapid growth, and production is regulated in a quorum sensing (QS)-dependent manner. PA1201 contains two PCA biosynthetic gene clusters phz1 and phz2; both clusters contribute to PCA production, with phz2 making a greater contribution. PA1201 also contains a complete set of genes for four QS systems (LasI/LasR, RhlI/RhlR, PQS/MvfR, and IQS). By using several methods including gene deletion, the construction of promoter-lacZ fusion reporter strains, and RNA-Seq analysis, this study investigated the effects of the four QS systems on bacterial growth, QS signal production, the expression of phz1 and phz2, and PCA production. The possible mechanisms for the strain- and condition-dependent expression of phz1 and phz2 were discussed, and a schematic model was proposed. These findings provide a basis for further genetic engineering of the QS systems to improve PCA production.
Collapse
|
5
|
Yong YC, Wu XY, Sun JZ, Cao YX, Song H. Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: A review. CHEMOSPHERE 2015; 140:18-25. [PMID: 25455678 DOI: 10.1016/j.chemosphere.2014.10.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 07/13/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
Cell-cell communication that enables synchronized population behaviors in microbial communities dictates various biological processes. It is of great interest to unveil the underlying mechanisms of fine-tuning cell-cell communication to achieve environmental and energy applications. Pseudomonas is a ubiquitous microbe in environments that had wide applications in bioremediation and bioenergy generation. The quorum sensing (QS, a generic cell-cell communication mechanism) systems of Pseudomonas underlie the aromatics biodegradation, denitrification and electricity harvest. Here, we reviewed the recent progresses of the genetic strategies in engineering QS circuits to improve efficiency of wastewater treatment and the performance of microbial fuel cells.
Collapse
Affiliation(s)
- Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Xiang-Yang Wu
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Jian-Zhong Sun
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Ying-Xiu Cao
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; School of Chemical & Biomedical Engineering, and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637457, Singapore
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; School of Chemical & Biomedical Engineering, and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637457, Singapore.
| |
Collapse
|
6
|
[Networks involving quorum sensing, cyclic-di-GMP and nitric oxide on biofilm production in bacteria]. Rev Argent Microbiol 2014; 46:242-55. [PMID: 25444134 DOI: 10.1016/s0325-7541(14)70079-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/03/2014] [Indexed: 01/06/2023] Open
Abstract
Bacterial biofilms are ubiquitous in nature, and their flexibility is derived in part from a complex extracellular matrix that can be made-to-order to cope with environmental demand. Although common developmental stages leading to biofilm formation have been described, an in-depth knowledge of genetic and signaling is required to understand biofilm formation. Bacteria detect changes in population density by quorum sensing and particular environmental conditions, using signals such as cyclic di-GMP or nitric oxide. The significance of understanding these signaling pathways lies in that they control a broad variety of functions such as biofilm formation, and motility, providing benefits to bacteria as regards host colonization, defense against competitors, and adaptation to changing environments. Due to the importance of these features, we here review the signaling network and regulatory connections among quorum sensing, c-di-GMP and nitric oxide involving biofilm formation.
Collapse
|
7
|
Du X, Li Y, Zhou Q, Xu Y. Regulation of gene expression in Pseudomonas aeruginosa M18 by phenazine-1-carboxylic acid. Appl Microbiol Biotechnol 2014; 99:813-25. [PMID: 25304879 DOI: 10.1007/s00253-014-6101-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Phenazine-1-carboxylic acid (PCA), an environmentally compatible redox-active metabolite produced by Pseudomonas sp., has been found to effectively protect against various phytopathogens. The objective of this study was to discover whether PCA can also act as a signaling molecule that regulates gene expression in Pseudomonas aeruginosa M18. We constructed a series of PCA-producing mutant strains (high PCA, M18MSU1; low PCA, M18MS; and no PCA, M18MSP1P2) and analyzed their gene expression by using a custom microarray DNA chip. We found that the expression of PCA in both M18MSU1 and M18MS altered the expression of a total of 545 different genes; however, the higher level of PCA in M18MSU1 altered more genes (489) than did the lower level of PCA in M18MS (129). Of particular note, 73 of these genes were commonly regulated between the two mutants, indicating their importance in the downstream function of PCA. PCA molecules upregulated genes that function primarily in energy production, cell motility, secretion, and defense mechanisms and downregulated genes involved in transcription, translation, cell division, and gene expression in the prophage. We found that PCA worked to alter the expression of an efflux pump gene mexH through a SoxR-mediated mechanism; we further hypothesized that other pathways should also be affected by this interaction. Taken together, our results provide the first evidence of PCA-derived molecular responses at the transcriptional level. They also help to elucidate the future of genetically engineered P. aeruginosa strains for the production of PCA used in a number of applications.
Collapse
Affiliation(s)
- Xilin Du
- SKLMM, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | | | | | | |
Collapse
|
8
|
Grosso-Becerra MV, Santos-Medellín C, González-Valdez A, Méndez JL, Delgado G, Morales-Espinosa R, Servín-González L, Alcaraz LD, Soberón-Chávez G. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 2014; 15:318. [PMID: 24773920 PMCID: PMC4234422 DOI: 10.1186/1471-2164-15-318] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/24/2014] [Indexed: 12/28/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen with a high incidence of hospital infections that represents a threat to immune compromised patients. Genomic studies have shown that, in contrast to other pathogenic bacteria, clinical and environmental isolates do not show particular genomic differences. In addition, genetic variability of all the P. aeruginosa strains whose genomes have been sequenced is extremely low. This low genomic variability might be explained if clinical strains constitute a subpopulation of this bacterial species present in environments that are close to human populations, which preferentially produce virulence associated traits. Results In this work, we sequenced the genomes and performed phenotypic descriptions for four non-human P. aeruginosa isolates collected from a plant, the ocean, a water-spring, and from dolphin stomach. We show that the four strains are phenotypically diverse and that this is not reflected in genomic variability, since their genomes are almost identical. Furthermore, we performed a detailed comparative genomic analysis of the four strains studied in this work with the thirteen previously reported P. aeruginosa genomes by means of describing their core and pan-genomes. Conclusions Contrary to what has been described for other bacteria we have found that the P. aeruginosa core genome is constituted by a high proportion of genes and that its pan-genome is thus relatively small. Considering the high degree of genomic conservation between isolates of P. aeruginosa from diverse environments, including human tissues, some implications for the treatment of infections are discussed. This work also represents a methodological contribution for the genomic study of P. aeruginosa, since we provide a database of the comparison of all the proteins encoded by the seventeen strains analyzed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México.
| |
Collapse
|
9
|
Disruption of cell-to-cell signaling does not abolish the antagonism of Phaeobacter gallaeciensis toward the fish pathogen Vibrio anguillarum in algal systems. Appl Environ Microbiol 2013; 79:5414-7. [PMID: 23811510 DOI: 10.1128/aem.01436-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Quorum sensing (QS) regulates Phaeobacter gallaeciensis antagonism in broth systems; however, we demonstrate here that QS is not important for antagonism in algal cultures. QS mutants reduced Vibrio anguillarum to the same extent as the wild type. Consequently, a combination of probiotic Phaeobacter and QS inhibitors is a feasible strategy for aquaculture disease control.
Collapse
|
10
|
Kumar A, Munder A, Aravind R, Eapen SJ, Tümmler B, Raaijmakers JM. Friend or foe: genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environ Microbiol 2012; 15:764-79. [PMID: 23171326 DOI: 10.1111/1462-2920.12031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 01/02/2023]
Abstract
Endophytic Pseudomonas aeruginosa strain BP35 was originally isolated from black pepper grown in the rain forest in Kerala, India. Strain PaBP35 was shown to provide significant protection to black pepper against infections by Phytophthora capsici and Radopholus similis. For registration and implementation in disease management programmes, several traits of PaBP35 were investigated including its endophytic behaviour, biocontrol activity, phylogeny and toxicity to mammals. The results showed that PaBP35 efficiently colonized black pepper shoots and displayed a typical spatiotemporal pattern in its endophytic movement with concomitant suppression of Phytophthora rot. Confocal laser scanning microscopy revealed high populations of PaBP35::gfp2 inside tomato plantlets, supporting its endophytic behaviour in other plant species. Polyphasic approaches to genotype PaBP35, including BOX-PCR, recN sequence analysis, multilocus sequence typing and comparative genome hybridization analysis, revealed its uniqueness among P. aeruginosa strains representing clinical habitats. However, like other P. aeruginosa strains, PaBP35 exhibited resistance to antibiotics, grew at 25-41°C and produced rhamnolipids and phenazines. PaBP35 displayed strong type II secretion effectors-mediated cytotoxicity on mammalian A549 cells. Coupled with pathogenicity in a murine airway infection model, we conclude that this plant endophytic strain is as virulent as clinical P. aeruginosa strains. Safety issues related to the selection of plant endophytic bacteria for crop protection are discussed.
Collapse
Affiliation(s)
- A Kumar
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Genetic analysis of the upper phenylacetate catabolic pathway in the production of tropodithietic acid by Phaeobacter gallaeciensis. Appl Environ Microbiol 2012; 78:3539-51. [PMID: 22407685 DOI: 10.1128/aem.07657-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Production of the antibiotic tropodithietic acid (TDA) depends on the central phenylacetate catabolic pathway, specifically on the oxygenase PaaABCDE, which catalyzes epoxidation of phenylacetyl-coenzyme A (CoA). Our study was focused on genes of the upper part of this pathway leading to phenylacetyl-CoA as precursor for TDA. Phaeobacter gallaeciensis DSM 17395 encodes two genes with homology to phenylacetyl-CoA ligases (paaK1 and paaK2), which were shown to be essential for phenylacetate catabolism but not for TDA biosynthesis and phenylalanine degradation. Thus, in P. gallaeciensis another enzyme must produce phenylacetyl-CoA from phenylalanine. Using random transposon insertion mutagenesis of a paaK1-paaK2 double mutant we identified a gene (ior1) with similarity to iorA and iorB in archaea, encoding an indolepyruvate:ferredoxin oxidoreductase (IOR). The ior1 mutant was unable to grow on phenylalanine, and production of TDA was significantly reduced compared to the wild-type level (60%). Nuclear magnetic resonance (NMR) spectroscopic investigations using (13)C-labeled phenylalanine isotopomers demonstrated that phenylalanine is transformed into phenylacetyl-CoA by Ior1. Using quantitative real-time PCR, we could show that expression of ior1 depends on the adjacent regulator IorR. Growth on phenylalanine promotes production of TDA, induces expression of ior1 (27-fold) and paaK1 (61-fold), and regulates the production of TDA. Phylogenetic analysis showed that the aerobic type of IOR as found in many roseobacters is common within a number of different phylogenetic groups of aerobic bacteria such as Burkholderia, Cupriavidis, and Rhizobia, where it may also contribute to the degradation of phenylalanine.
Collapse
|
12
|
Yong YC, Zhong JJ. Impacts of quorum sensing on microbial metabolism and human health. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 131:25-61. [PMID: 22767136 DOI: 10.1007/10_2012_138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteria were considered to be lonely 'mutes' for hundreds of years. However, recently it was found that bacteria usually coordinate their behaviors at the population level by producing (speaking), sensing (listening), and responding to small signal molecules. This so-called quorum sensing (QS) regulation enables bacteria to live in a 'society' with cell-cell communication and controls many important bacterial behaviors. In this chapter, QS systems and their signal molecules for Gram-negative and Gram-positive bacteria are introduced. Most interestingly, QS regulates the important bacterial behaviors such as metabolism and pathogenesis. QS-regulated microbial metabolism includes antibiotic synthesis, pollutant biodegradation, and bioenergy production, which are very relevant to human health. QS is also well-known for its involvement in bacterial pathogenesis, such as iin nfections by Pseudomonas aeruginosa and Staphylococcus aureus. Novel disease diagnosis strategies and antimicrobial agents have also been developed based on QS regulation on bacterial infections. In addition, to meet the requirements for the detection/quantification of QS signaling molecules for research and application, different biosensors have been constructed, which will also be reviewed here. QS regulation is essential to bacterial survival and important to human health. A better understanding of QS could lead better control/manipulation of bacteria, thus making them more helpful to people.
Collapse
Affiliation(s)
- Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu Province, China
| | | |
Collapse
|
13
|
Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. J Bacteriol 2011; 193:6576-85. [PMID: 21949069 DOI: 10.1128/jb.05818-11] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The production of N-acyl homoserine lactones (AHLs) is widely distributed within the marine Roseobacter clade, and it was proposed that AHL-mediated quorum sensing (QS) is one of the most common cell-to-cell communication mechanisms in roseobacters. The traits regulated by AHL-mediated QS are yet not known for members of the Roseobacter clade, but production of the antibiotic tropodithietic acid (TDA) was supposed to be controlled by AHL-mediated QS in Phaeobacter spp. We describe here for the first time the functional role of luxR and luxI homologous genes of an organism of the Roseobacter clade, i.e., pgaR and pgaI in Phaeobacter gallaeciensis. Our results demonstrate that the AHL synthase gene pgaI is responsible for production of N-3-hydroxydecanoylhomoserine lactone (3OHC(10)-HSL). Insertion mutants of pgaI and pgaR are both deficient in TDA biosynthesis and the formation of a yellow-brown pigment when grown in liquid marine broth medium. This indicates that in P. gallaeciensis the production of both secondary metabolites is controlled by AHL-mediated QS. Quantitative real-time PCR showed that the transcription level of tdaA, which encodes an essential transcriptional regulator for TDA biosynthesis, decreased 28- and 51-fold in pgaI and pgaR genetic backgrounds, respectively. These results suggest that both the response regulator PgaR and the 3OHC(10)-HSL produced by PgaI induce expression of tdaA, which in turn positively regulates expression of the tda genes. Moreover, we confirmed that TDA can also act as autoinducer in P. gallaeciensis, as previously described for Silicibacter sp. strain TM1040, but only in the presence of the response regulator PgaR.
Collapse
|
14
|
Wu DQ, Ye J, Ou HY, Wei X, Huang X, He YW, Xu Y. Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics 2011; 12:438. [PMID: 21884571 PMCID: PMC3189399 DOI: 10.1186/1471-2164-12-438] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/31/2011] [Indexed: 12/31/2022] Open
Abstract
Background Our previously published reports have described an effective biocontrol agent named Pseudomonas sp. M18 as its 16S rDNA sequence and several regulator genes share homologous sequences with those of P. aeruginosa, but there are several unusual phenotypic features. This study aims to explore its strain specific genomic features and gene expression patterns at different temperatures. Results The complete M18 genome is composed of a single chromosome of 6,327,754 base pairs containing 5684 open reading frames. Seven genomic islands, including two novel prophages and five specific non-phage islands were identified besides the conserved P. aeruginosa core genome. Each prophage contains a putative chitinase coding gene, and the prophage II contains a capB gene encoding a putative cold stress protein. The non-phage genomic islands contain genes responsible for pyoluteorin biosynthesis, environmental substance degradation and type I and III restriction-modification systems. Compared with other P. aeruginosa strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18 genome may contribute to the relative genome stability. Although the M18 genome is most closely related to that of P. aeruginosa strain LESB58, the strain M18 is more susceptible to several antimicrobial agents and easier to be erased in a mouse acute lung infection model than the strain LESB58. The whole M18 transcriptomic analysis indicated that 10.6% of the expressed genes are temperature-dependent, with 22 genes up-regulated at 28°C in three non-phage genomic islands and one prophage but none at 37°C. Conclusions The P. aeruginosa strain M18 has evolved its specific genomic structures and temperature dependent expression patterns to meet the requirement of its fitness and competitiveness under selective pressures imposed on the strain in rhizosphere niche.
Collapse
Affiliation(s)
- Da-Qiang Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | | | | | | | | | | | | |
Collapse
|