1
|
Taoka M, Kuwana R, Murakami Y, Kashima A, Nobe Y, Uekita T, Takamatsu H, Ichimura T. The ionic liquid-assisted sample preparation method pTRUST allows sensitive proteome characterization of a variety of bacterial endospores to aid in the search for protein biomarkers. PLoS One 2025; 20:e0318186. [PMID: 39854521 PMCID: PMC11760639 DOI: 10.1371/journal.pone.0318186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
Bacterial endospores are ubiquitous and are responsible for various human infections. Recently, we reported that an ionic liquid (IL)-based sample preparation method (named pTRUST) facilitated highly efficient shotgun analysis of the Bacillus subtilis spore proteome in trace samples. In this study, we evaluated the efficiency and applicability of the pTRUST technology using three different spore preparations: one purified from the closely related subspecies B. subtilis natto and two from B. licheniformis and B. cereus. We showed that the pTRUST method allowed rapid solubilization and processing of all tested spore samples prepared for highly sensitive mass spectrometry (MS) analysis. Bioinformatics analysis using the BLAST program suggested that a set of 25 proteins commonly identified between the above three species and B. subtilis spores may be universal biomarkers among various bacterial species, including 43 spore-producing bacteria associated with industrial dairy processing environments and product spoilage. In contrast, the two identified proteins, D4FV94 in B. subtilis natto and Q737A2 in B. cereus, are likely species-specific biomarkers, because their orthologs are absent or rare in all organisms. The sensitivity and applicability of pTRUST, along with the putative protein biomarkers identified in this study, will facilitate a wide spectrum of spore research for biological and clinical applications.
Collapse
Affiliation(s)
- Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan
| | - Ritsuko Kuwana
- Faculty of Pharmaceutical Science, Setsunan University, Osaka, Japan
| | - Yoshinari Murakami
- Department of Applied Chemistry, National Defense Academy, Kanagawa, Japan
| | | | - Yuko Nobe
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, National Defense Academy, Kanagawa, Japan
| | - Hiromu Takamatsu
- Faculty of Pharmaceutical Science, Setsunan University, Osaka, Japan
| | - Tohru Ichimura
- Department of Applied Chemistry, National Defense Academy, Kanagawa, Japan
| |
Collapse
|
2
|
Taoka M, Kuwana R, Fukube T, Kashima A, Nobe Y, Uekita T, Ichimura T, Takamatsu H. Ionic liquid-assisted sample preparation mediates sensitive proteomic analysis of Bacillus subtilis spores. Sci Rep 2024; 14:17366. [PMID: 39075114 PMCID: PMC11286849 DOI: 10.1038/s41598-024-67010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
Endospore-forming bacteria are ubiquitous. Bacterial endospores are multilayered proteinaceous structures that protects the bacterial genome during stress conditions. They are also responsible for a wide range of critical clinical infections in humans. Precise analysis of spore-forming pathogens remains a major challenge in the field of proteomics because spore structures are highly resistant to conventional solubilizers and denaturing agents, such as sodium dodecyl sulfate and urea. We present an ionic liquid-assisted (i-soln) technique of sample preparation, called pTRUST, which enables shotgun analysis of Bacillus subtilis spores even when the starting materials are in the sub-microgram range. In proteomic analysis, this technique shows 50-2000-fold higher sensitivity than other conventional gel-based or gel-free methods (including one-pot sample processing). Using this technique, we identified 445 proteins with high confidence from trace amounts of highly pure spore preparations, including 52 of the 79 proteins (approximately 70%) previously demonstrated to be localized in spores in the SubtiWiki database and detected through direct protein analysis. Consequently, 393 additional proteins were identified as candidates for spore constitutive proteins. Twenty of these newly identified candidates were produced as green fluorescent protein fusion proteins, and each was evaluated for authenticity as a spore constituent using fluorescence microscopy analysis. The pTRUST method's sensitivity and reliability using the i-soln system, together with hitherto unreported proteins in spores, will enable an array of spore research for biological and clinical applications.
Collapse
Affiliation(s)
- Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| | - Ritsuko Kuwana
- Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| | - Tatsumi Fukube
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, 239-8686, Japan
| | - Akiko Kashima
- Carriere Reseau Co., Ltd., Kanagawa, 238-0011, Japan
| | - Yuko Nobe
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, 239-8686, Japan
| | - Tohru Ichimura
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, 239-8686, Japan.
| | - Hiromu Takamatsu
- Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| |
Collapse
|
3
|
Pinto CA, Mousakhani Ganjeh A, Barba FJ, Saraiva JA. Impact of pH and High-Pressure Pasteurization on the Germination and Development of Clostridium perfringens Spores under Hyperbaric Storage versus Refrigeration. Foods 2024; 13:1832. [PMID: 38928774 PMCID: PMC11202566 DOI: 10.3390/foods13121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to evaluate hyperbaric storage at room temperature (75-200 MPa, 30 days, 18-23 °C, HS/RT) on Clostridium perfringens spores in brain-heart infusion broth (BHI-broth) at pH 4.50, 6.00, and 7.50 and coconut water (pH 5.40). Both matrices were also pasteurized by high pressure processing (600 MPa, 3 min, 17 °C, HPP) to simulate commercial pasteurization followed by HS, in comparison with refrigeration (5 °C, RF). The results showed that, at AP/RT, spores' development occurred, except at pH 4.50 in BHI-broth, while for RF, no changes occurred along storage. Under HS, at pH 4.50, neither spore development nor inactivation occurred, while at pH 6.00/7.50, inactivation occurred (≈2.0 and 1.0 logs at 200 MPa, respectively). Coconut water at AP/RT faced an increase of 1.6 logs of C. perfringens spores after 15 days, while for RF, no spore development occurred, while the inactivation of spores under HS happened (≈3 logs at 200 MPa). HPP prior to HS seems to promote a subsequent inactivation of C. perfringens spores in BHI-broth at pH 4.50, which is less evident for other pHs. For HPP coconut water, the inactivation levels under HS were lower (≈2.0 logs at 200 MPa). The Weibull model well described the inactivation pattern observed. These results suggest that HS/RT can be simultaneously used as a tool to avoid C. perfringens spores' development, as well as for its inactivation, without the application of high temperatures that are required to inactivate these spores.
Collapse
Affiliation(s)
- Carlos A. Pinto
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.A.P.); (A.M.G.)
| | - Alireza Mousakhani Ganjeh
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.A.P.); (A.M.G.)
| | - Francisco J. Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain;
| | - Jorge A. Saraiva
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.A.P.); (A.M.G.)
| |
Collapse
|
4
|
Abstract
This study demonstrated the progress of macromolecular synthesis during Bacillus subtilis spore germination and outgrowth. The transcriptome analysis has additionally allowed us to trace gene expression during this transformation process. For the first time, the basic survival kit for spore-based life has been identified. In addition, in this analysis based on monitoring of protein levels in germinating and outgrowing spores, the transition from (ribo)nucleotide and amino acid biosynthesis to the restoration of all metabolic pathways can be clearly seen. The integrative multi-omics approach applied in this study thus has helped us to achieve a comprehensive overview of the molecular mechanisms at the basis of spore germination and outgrowth as well as to identify important knowledge gaps in need of further study. Bacillus subtilis spores can reactivate their metabolism through germination upon contact with germinants and can develop into vegetative cells upon outgrowth. However, the mechanisms at the basis of the molecular machinery that triggers the spore germination and outgrowth processes are still largely unclear. To gain further insights into these processes, the transcriptome and proteome changes occurring during the conversion of spores to vegetative cells were analyzed in the present study. For each time point sampled, the changes in the spore proteome were quantitatively monitored relative to the proteome of metabolically 15N-labeled vegetative cells. Of the quantified proteins, 60% are shared by vegetative cells and spores, indicating that the spores have a minimal protein set, sufficient to resume metabolism upon completion of germination. These shared proteins thus represent the most basic “survival kit” for spore-based life. We observed no significant change in the proteome or the transcriptome until the spore’s completion of germination. Our analysis identified 34 abundant mRNA transcripts in the dormant spores, 31 of which are rapidly degraded after germination. In outgrowing spores, we identified 3,152 differentially expressed genes and have demonstrated the differential expression of 322 proteins with our mass spectrometry analyses. Our data also showed that 173 proteins from dormant spores, including both proteins unique to spores and proteins shared with vegetative cells, were lost after completion of germination. The observed diverse timings of synthesis of different protein sets in spore outgrowth revealed a putative core strategy underlying the revival of ‘life’ from the B. subtilis spore. IMPORTANCE This study demonstrated the progress of macromolecular synthesis during Bacillus subtilis spore germination and outgrowth. The transcriptome analysis has additionally allowed us to trace gene expression during this transformation process. For the first time, the basic survival kit for spore-based life has been identified. In addition, in this analysis based on monitoring of protein levels in germinating and outgrowing spores, the transition from (ribo)nucleotide and amino acid biosynthesis to the restoration of all metabolic pathways can be clearly seen. The integrative multi-omics approach applied in this study thus has helped us to achieve a comprehensive overview of the molecular mechanisms at the basis of spore germination and outgrowth as well as to identify important knowledge gaps in need of further study.
Collapse
|
5
|
Sirec T, Benarroch JM, Buffard P, Garcia-Ojalvo J, Asally M. Electrical Polarization Enables Integrative Quality Control during Bacterial Differentiation into Spores. iScience 2019; 16:378-389. [PMID: 31226599 PMCID: PMC6586994 DOI: 10.1016/j.isci.2019.05.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/18/2018] [Accepted: 05/30/2019] [Indexed: 12/03/2022] Open
Abstract
Quality control of offspring is important for the survival of cells. However, the mechanisms by which quality of offspring cells may be checked while running genetic programs of cellular differentiation remain unclear. Here we investigated quality control during sporulating in Bacillus subtilis by combining single-cell time-lapse microscopy, molecular biology, and mathematical modeling. Our results revealed that the quality control via premature germination is coupled with the electrical polarization of outer membranes of developing forespores. The forespores that accumulate fewer cations on their surface are more likely to be aborted. This charge accumulation enables the projection of multi-dimensional information about the external environment and morphological development of the forespore into one-dimensional information of cation accumulation. We thus present a paradigm of cellular regulation by bacterial electrical signaling. Moreover, based on the insight we gain, we propose an electrophysiology-based approach of reducing the yield and quality of Bacillus endospores. Quality control during bacterial sporulation is coupled with cation accumulation Cation accumulation prevents premature germination Cation accumulation integrates information on morphological defects and environments Spores are less fit when sporulated with Thioflavin T
Collapse
Affiliation(s)
- Teja Sirec
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
| | - Jonatan M Benarroch
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK; Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK
| | - Pauline Buffard
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Munehiro Asally
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK; Warwick Integrative Synthetic Biology Centre, The University of Warwick, Coventry CV4 7AL, UK; Bio-electrical Engineering Innovation Hub, The University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
6
|
Membrane Proteomes and Ion Transporters in Bacillus anthracis and Bacillus subtilis Dormant and Germinating Spores. J Bacteriol 2019; 201:JB.00662-18. [PMID: 30602489 DOI: 10.1128/jb.00662-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Bacterial endospores produced by Bacillus and Clostridium species can remain dormant and highly resistant to environmental insults for long periods, but they can also rapidly germinate in response to a nutrient-rich environment. Multiple proteins involved in sensing and responding to nutrient germinants, initiating solute and water transport, and accomplishing spore wall degradation are associated with the membrane surrounding the spore core. In order to more fully catalog proteins that may be involved in spore germination, as well as to identify protein changes taking place during germination, unbiased proteomic analyses of membrane preparations isolated from dormant and germinated spores of Bacillus anthracis and Bacillus subtilis were undertaken. Membrane-associated proteins were fractionated by SDS-PAGE, gel slices were trypsin digested, and extracted peptides were fractionated by liquid chromatography and analyzed by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. More than 500 proteins were identified from each preparation. Bioinformatic methods were used to characterize proteins with regard to membrane association, cellular function, and conservation across species. Numerous proteins not previously known to be spore associated, 6 in B. subtilis and 68 in B. anthracis, were identified. Relative quantitation based on spectral counting indicated that the majority of spore membrane proteins decrease in abundance during the first 20 min of germination. The spore membranes contained several proteins thought to be involved in the transport of metal ions, a process that plays a major role in spore formation and germination. Analyses of mutant strains lacking these transport proteins implicated YloB in the accumulation of calcium within the developing forespore.IMPORTANCE Bacterial endospores can remain dormant and highly resistant to environmental insults for long periods but can also rapidly germinate in response to a nutrient-rich environment. The persistence and subsequent germination of spores contribute to their colonization of new environments and to the spread of certain diseases. Proteins of Bacillus subtilis and Bacillus anthracis were identified that are associated with the spore membrane, a position that can allow them to contribute to germination. A set of identified proteins that are predicted to carry out ion transport were examined for their contributions to spore formation, stability, and germination. Greater knowledge of spore formation and germination can contribute to the development of better decontamination strategies.
Collapse
|
7
|
Swarge BN, Roseboom W, Zheng L, Abhyankar WR, Brul S, de Koster CG, de Koning LJ. "One-Pot" Sample Processing Method for Proteome-Wide Analysis of Microbial Cells and Spores. Proteomics Clin Appl 2018; 12:e1700169. [PMID: 29484825 PMCID: PMC6174930 DOI: 10.1002/prca.201700169] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Indexed: 11/15/2022]
Abstract
PURPOSE Bacterial endospores, the transmissible forms of pathogenic bacilli and clostridia, are heterogeneous multilayered structures composed of proteins. These proteins protect the spores against a variety of stresses, thus helping spore survival, and assist in germination, by interacting with the environment to form vegetative cells. Owing to the complexity, insolubility, and dynamic nature of spore proteins, it has been difficult to obtain their comprehensive protein profiles. EXPERIMENTAL DESIGN The intact spores of Bacillus subtilis, Bacillus cereus, and Peptoclostridium difficile and their vegetative counterparts were disrupted by bead beating in 6 m urea under reductive conditions. The heterogeneous mixture was then double digested with LysC and trypsin. Next, the peptide mixture was pre-fractionated with zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) followed by reverse-phase LC-FT-MS analysis of the fractions. RESULTS "One-pot" method is a simple, robust method that yields identification of >1000 proteins with high confidence, across all spore layers from B. subtilis, B. cereus, and P. difficile. CONCLUSIONS AND MEDICAL RELEVANCE This method can be employed for proteome-wide analysis of non-spore-forming as well as spore-forming pathogens. Analysis of spore protein profile will help to understand the sporulation and germination processes and to distinguish immunogenic protein markers.
Collapse
Affiliation(s)
- Bhagyashree Nandakishor Swarge
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institutes of Life Sciences, University of Amsterdam, The Netherlands
| | - Winfried Roseboom
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
| | - Linli Zheng
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institutes of Life Sciences, University of Amsterdam, The Netherlands
| | - Wishwas R Abhyankar
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institutes of Life Sciences, University of Amsterdam, The Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institutes of Life Sciences, University of Amsterdam, The Netherlands
| | - Chris G de Koster
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
| | - Leo J de Koning
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Sporulation: how to survive on planet Earth (and beyond). Curr Genet 2017; 63:831-838. [PMID: 28421279 DOI: 10.1007/s00294-017-0694-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 02/07/2023]
Abstract
Sporulation is a strategy widely utilized by a wide variety of organisms to adapt to changes in their individual environmental niches and survive in time and/or space until they encounter conditions acceptable for vegetative growth. The spores produced by bacteria have been the subjects of extensive studies, and several systems such as Bacillus subtilis have provided ample opportunities to understand the molecular basis of spore biogenesis and germination. In contrast, the spores of other microbes, such as fungi, are relatively poorly understood. Studies of sporulation in model systems such as Saccharomyces cerevisiae and Aspergillus nidulans have established a basis for investigating eukaryotic spores, but very little is known at the molecular level about how spores function. This is especially true among the spores of human fungal pathogens such as the most common cause of fatal fungal disease, Cryptococcus neoformans. Recent proteomic studies are helping to determine the molecular mechanisms by which pathogenic fungal spores are formed, persist and germinate into actively growing agents of human disease.
Collapse
|
9
|
Zheng L, Abhyankar W, Ouwerling N, Dekker HL, van Veen H, van der Wel NN, Roseboom W, de Koning LJ, Brul S, de Koster CG. Bacillus subtilis Spore Inner Membrane Proteome. J Proteome Res 2016; 15:585-94. [PMID: 26731423 DOI: 10.1021/acs.jproteome.5b00976] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form. The spore inner membrane (IM) has been shown to play an essential role in triggering the initiation of germination. In this study, we isolated the IM of bacterial spores, in parallel with the isolation of the membrane of vegetative cells. With the use of GeLC-MS/MS, over 900 proteins were identified from the B. subtilis spore IM preparations. By bioinformatics-based membrane protein predictions, ca. one-third could be predicted to be membrane-localized. A large number of unique proteins as well as proteins common to the two membrane proteomes were identified. In addition to previously known IM proteins, a number of IM proteins were newly identified, at least some of which are likely to provide new insights into IM physiology, unveiling proteins putatively involved in spore germination machinery and hence putative germination inhibition targets.
Collapse
Affiliation(s)
| | | | | | | | - Henk van Veen
- Electron Microscopy Centre Amsterdam, Department of Cell Biology and Histology, Academic Medical Center , 1105 AZ Amsterdam, The Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Centre Amsterdam, Department of Cell Biology and Histology, Academic Medical Center , 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Uptake of and Resistance to the Antibiotic Berberine by Individual Dormant, Germinating and Outgrowing Bacillus Spores as Monitored by Laser Tweezers Raman Spectroscopy. PLoS One 2015; 10:e0144183. [PMID: 26636757 PMCID: PMC4670213 DOI: 10.1371/journal.pone.0144183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022] Open
Abstract
Berberine, an alkaloid originally extracted from the plant Coptis chinensis and other herb plants, has been used as a pharmacological substance for many years. The therapeutic effect of berberine has been attributed to its interaction with nucleic acids and blocking cell division. However, levels of berberine entering individual microbial cells minimal for growth inhibition and its effects on bacterial spores have not been determined. In this work the kinetics and levels of berberine accumulation by individual dormant and germinated spores were measured by laser tweezers Raman spectroscopy and differential interference and fluorescence microscopy, and effects of berberine on spore germination and outgrowth and spore and growing cell viability were determined. The major conclusions from this work are that: (1) colony formation from B. subtilis spores was blocked ~ 99% by 25 μg/mL berberine plus 20 μg/mL INF55 (a multidrug resistance pump inhibitor); (2) 200 μg/mL berberine had no effect on B. subtilis spore germination with L-valine, but spore outgrowth was completely blocked; (3) berberine levels accumulated in single spores germinating with ≥ 25 μg/mL berberine were > 10 mg/mL; (4) fluorescence microscopy showed that germinated spores accumulated high-levels of berberine primarily in the spore core, while dormant spores accumulated very low berberine levels primarily in spore coats; and (5) during germination, uptake of berberine began at the time of commitment (T1) and reached a maximum after the completion of CaDPA release (Trelease) and spore cortex lysis (Tlysis).
Collapse
|
11
|
Deatherage Kaiser BL, Wunschel DS, Sydor MA, Warner MG, Wahl KL, Hutchison JR. Improved proteomic analysis following trichloroacetic acid extraction of Bacillus anthracis spore proteins. J Microbiol Methods 2015; 118:18-24. [PMID: 26295278 DOI: 10.1016/j.mimet.2015.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 07/10/2015] [Accepted: 08/07/2015] [Indexed: 11/29/2022]
Abstract
Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Analysis of cellular proteins is dependent upon efficient extraction from bacterial samples, which can be challenging with increasing complexity and refractory characteristics. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrichment for certain classes of proteins. The method presented here is technically simple, does not require specialized equipment such as a mechanical disrupter, and is effective for protein extraction of the particularly challenging sample type of Bacillus anthracis Sterne spores. The ability of Trichloroacetic acid (TCA) extraction to isolate proteins from spores and enrich for spore-specific proteins was compared to the traditional mechanical disruption method of bead beating. TCA extraction improved the total average number of proteins identified within a sample as compared to bead beating (547 vs 495, respectively). Further, TCA extraction enriched for 270 spore proteins, including those typically identified by first isolating the spore coat and exosporium layers. Bead beating enriched for 156 spore proteins more typically identified from whole spore proteome analyses. The total average number of proteins identified was equal using TCA or bead beating for easily lysed samples, such as B. anthracis vegetative cells. As with all assays, supplemental methods such as implementation of an alternative preparation method may simplify sample preparation and provide additional insight to the protein biology of the organism being studied.
Collapse
Affiliation(s)
- Brooke L Deatherage Kaiser
- Chemical and Biological Signature Science Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - David S Wunschel
- Chemical and Biological Signature Science Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michael A Sydor
- Chemical and Biological Signature Science Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marvin G Warner
- Chemical and Biological Signature Science Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karen L Wahl
- Chemical and Biological Signature Science Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Janine R Hutchison
- Chemical and Biological Signature Science Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
12
|
Bardot C, Besse-Hoggan P, Carles L, Le Gall M, Clary G, Chafey P, Federici C, Broussard C, Batisson I. How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:198-208. [PMID: 25679981 DOI: 10.1016/j.envpol.2015.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/23/2014] [Accepted: 01/24/2015] [Indexed: 05/26/2023]
Abstract
Toxicity of pesticides towards microorganisms can have a major impact on ecosystem function. Nevertheless, some microorganisms are able to respond quickly to this stress by degrading these molecules. The edaphic Bacillus megaterium strain Mes11 can degrade the herbicide mesotrione. In order to gain insight into the cellular response involved, the intracellular proteome of Mes11 exposed to mesotrione was analyzed using the two-dimensional differential in-gel electrophoresis (2D-DIGE) approach coupled with mass spectrometry. The results showed an average of 1820 protein spots being detected. The gel profile analyses revealed 32 protein spots whose abundance is modified after treatment with mesotrione. Twenty spots could be identified, leading to 17 non redundant proteins, mainly involved in stress, metabolic and storage mechanisms. These findings clarify the pathways used by B. megaterium strain Mes11 to resist and adapt to the presence of mesotrione.
Collapse
Affiliation(s)
- Corinne Bardot
- Clermont Université, Université Blaise Pascal, LMGE, F-63000 Clermont-Ferrand, France; CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, F-63177 Aubière, France
| | - Pascale Besse-Hoggan
- Clermont Université, Université Blaise Pascal, ICCF, F-63000 Clermont Ferrand, France; CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, BP 80026, F-63171 Aubière Cedex, France
| | - Louis Carles
- Clermont Université, Université Blaise Pascal, LMGE, F-63000 Clermont-Ferrand, France; CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, F-63177 Aubière, France
| | - Morgane Le Gall
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Guilhem Clary
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Philippe Chafey
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christian Federici
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Cédric Broussard
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Batisson
- Clermont Université, Université Blaise Pascal, LMGE, F-63000 Clermont-Ferrand, France; CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, F-63177 Aubière, France.
| |
Collapse
|
13
|
Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 2012; 14:2870-90. [PMID: 22882546 PMCID: PMC3533761 DOI: 10.1111/j.1462-2920.2012.02841.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | |
Collapse
|