1
|
Patra M, Pandey AK, Dubey SK. Sludge amended soil induced multidrug and heavy metal resistance in endophytic Exiguobacterium sp. E21L: genomics evidences. World J Microbiol Biotechnol 2025; 41:114. [PMID: 40148599 DOI: 10.1007/s11274-025-04323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
The emergence of multidrug-resistant bacteria in agro-environments poses serious risks to public health and ecological balance. In this study, Exiguobacterium sp. E21L, an endophytic strain, was isolated from carrot leaves cultivated in soil amended with sewage treatment plant-derived sludge. The strain exhibited resistance to clinically relevant antibiotics, including beta-lactams, fluoroquinolones, aminoglycosides, and macrolides, with a high Multi-Antibiotic Resistance Index of 0.88. Whole-genome sequencing revealed a genome of 3.06 Mb, encoding 3894 protein-coding genes, including antimicrobial resistance genes (ARGs) such as blaNDM, ermF, tetW, and sul1, along with heavy metal resistance genes (HMRGs) like czcD, copB, and nikA. Genomic islands carrying ARGs and stress-related genes suggested potential horizontal gene transfer. The strain demonstrated robust biofilm formation, high cell hydrophobicity (> 80%), and significant auto-aggregation (90% at 48 h), correlating with genes associated with motility, quorum sensing, and stress adaptation. Notably, phenotypic assays confirmed survival under simulated gastrointestinal conditions, emphasizing its resilience in host-associated environments. Comparative genomics positioned Exiguobacterium sp. E21L near Exiguobacterium chiriqhucha RW-2, with a core genome of 2716 conserved genes. Functional annotations revealed genes involved in xenobiotic degradation, multidrug efflux pumps, and ABC-type transporters, indicating versatile resistance mechanisms and metabolic capabilities. The presence of ARGs, HMRGs, and MGEs (mobile genetic elements) highlights the potential role of Exiguobacterium sp. E21L as a reservoir for resistance determinants in agricultural ecosystems. These findings emphasized the need for stringent regulations on sludge-based fertilizers and advanced sludge treatment strategies to mitigate AMR risks in agro-environments.
Collapse
Affiliation(s)
- Mrinmoy Patra
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Yang D, Zhao L, Li Q, Huang L, Qin Y, Wang P, Zhu C, Yan Q. flgC gene is involved in the virulence regulation of Pseudomonas plecoglossicida and affects the immune response of Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108512. [PMID: 36587883 DOI: 10.1016/j.fsi.2022.108512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
As a pathogen of cultured teleosts, Pseudomonas plecoglossicida has caused significant economic losses. flgC plays an important role in encoding flagellar basal-body rod proteins. Our previous studies revealed the high expression of P. plecoglossicida flgC in infected Epinephelus coioides. To explore the role of flgC in the virulence of P. plecoglossicida and the immune response of E. coioides to the infection of P. plecoglossicida, flgC gene of P. plecoglossicida was knocked down by RNA interference (RNAi). The results showed that the flgC gene in all four mutants of P. plecoglossicida was significantly knocked down, and the mutant with the best knockdown efficiency of 94.3% was selected for subsequent studies. Compared with the NZBD9 strain of P. plecoglossicida, the flgC-RNAi strain showed a significantly decrease in chemotaxis, motility, adhesion, and biofilm formation. Furthermore, compared with the E. coioides infected with the NZBD9 strain, the infection of flgC-RNAi strain resulted in the infected E. coioides a 1.5-day delay in the time of first death and an 80% increase in survival rate, far fewer white nodules upon the spleen surfaces, and lower pathogen load in the spleens. RNAi of flgC significantly influenced the metabolome and transcriptome of the spleen in infected E. coioides. KEGG enrichment analysis exhibited that the Toll-like receptor signaling pathway was the most enriched immune pathway; the most significantly enriched metabolic pathways were associated with Linoleic acid metabolism, Choline metabolism in cancer, and Glycerophospholipid metabolism. Further combined analysis of transcriptome and metabolome indicated significant correlations among pantothenate and CoA biosynthesis, beta-alanine metabolism, lysosome metabolites, and related genes. These results suggested that flgC was a pathogenic gene of P. plecoglossicida; flgC was associated with the regulation of chemotaxis, motility, biofilm formation, and adhesion; flgC influenced the immune response of E. coioides to the infection of P. plecoglossicida.
Collapse
Affiliation(s)
- Dou Yang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Pan Wang
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd., Zhangzhou, Fujian, 363503, China
| | - Chuanzhong Zhu
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd., Zhangzhou, Fujian, 363503, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
3
|
Yin L, Cheng B, Tu J, Shao Y, Song X, Pan X, Qi K. YqeH contributes to avian pathogenic Escherichia coli pathogenicity by regulating motility, biofilm formation, and virulence. Vet Res 2022; 53:30. [PMID: 35436977 PMCID: PMC9014576 DOI: 10.1186/s13567-022-01049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a pathotype of extraintestinal pathogenic E. coli and one of the most serious infectious diseases of poultry. It not only causes great economic losses to the poultry industry, but also poses a serious threat to public health worldwide. Here, we examined the role of YqeH, a transcriptional regulator located at E. coli type III secretion system 2 (ETT2), in APEC pathogenesis. To investigate the effects of YqeH on APEC phenotype and virulence, we constructed a yqeH deletion mutant (APEC40-ΔyqeH) and a complemented strain (APEC40-CΔyqeH) of APEC40. Compared with the wild type (WT), the motility and biofilm formation of APEC40-ΔyqeH were significantly reduced. The yqeH mutant was highly attenuated in a chick infection model compared with WT, and showed severe defects in its adherence to and invasion of chicken embryo fibroblast DF-1 cells. However, the mechanisms underlying these phenomena were unclear. Therefore, we analyzed the transcriptional effects of the yqeH deletion to clarify the regulatory mechanisms of YqeH, and the role of YqeH in APEC virulence. The deletion of yqeH downregulated the transcript levels of several flagellum-, biofilm-, and virulence-related genes. Our results demonstrate that YqeH is involved in APEC pathogenesis, and the reduced virulence of APEC40-ΔyqeH may be related to its reduced motility and biofilm formation.
Collapse
|
4
|
Cao H, Xu H, Ning C, Xiang L, Ren Q, Zhang T, Zhang Y, Gao R. Multi-Omics Approach Reveals the Potential Core Vaccine Targets for the Emerging Foodborne Pathogen Campylobacter jejuni. Front Microbiol 2021; 12:665858. [PMID: 34248875 PMCID: PMC8265506 DOI: 10.3389/fmicb.2021.665858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in humans around the world. The emergence of bacterial resistance is becoming more serious; therefore, development of new vaccines is considered to be an alternative strategy against drug-resistant pathogen. In this study, we investigated the pangenome of 173 C. jejuni strains and analyzed the phylogenesis and the virulence factor genes. In order to acquire a high-quality pangenome, genomic relatedness was firstly performed with average nucleotide identity (ANI) analyses, and an open pangenome of 8,041 gene families was obtained with the correct taxonomy genomes. Subsequently, the virulence property of the core genome was analyzed and 145 core virulence factor (VF) genes were obtained. Upon functional genomics and immunological analyses, five core VF proteins with high antigenicity were selected as potential core vaccine targets for humans. Furthermore, functional annotations indicated that these proteins are involved in important molecular functions and biological processes, such as adhesion, regulation, and secretion. In addition, transcriptome analysis in human cells and pig intestinal loop proved that these vaccine target genes are important in the virulence of C. jejuni in different hosts. Comprehensive pangenome and relevant animal experiments will facilitate discovering the potential core vaccine targets with improved efficiency in reverse vaccinology. Likewise, this study provided some insights into the genetic polymorphism and phylogeny of C. jejuni and discovered potential vaccine candidates for humans. Prospective development of new vaccines using the targets will be an alternative to the use of antibiotics and prevent the development of multidrug-resistant C. jejuni in humans and even other animals.
Collapse
Affiliation(s)
- Hengchun Cao
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Hanxiao Xu
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Chunhui Ning
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Li Xiang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Qiufang Ren
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Tiantian Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, China
| |
Collapse
|
5
|
Wang Y, Wang Y, Liu B, Wang S, Li J, Gong S, Sun L, Yi L. pdh modulate virulence through reducing stress tolerance and biofilm formation of Streptococcus suis serotype 2. Virulence 2020; 10:588-599. [PMID: 31232165 PMCID: PMC6592368 DOI: 10.1080/21505594.2019.1631661] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis serotype 2 (S. suis 2) is a zoonotic pathogen. It causes meningitis, arthritis, pneumonia and sepsis in pigs, leading to extremely high mortality, which seriously affects public health and the development of the pig industry. Pyruvate dehydrogenase (PDH) is an important sugar metabolism enzyme that is widely present in microorganisms, mammals and higher plants. It catalyzes the irreversible oxidative decarboxylation of pyruvate to acetyl-CoA and reduces NAD+ to NADH. In this study, we found that the virulence of the S. suis ZY05719 sequence type 7 pdh deletion strain (Δpdh) was significantly lower than the wild-type strain (WT) in the mouse infection model. The distribution of viable bacteria in the blood and organs of mice infected with the Δpdh was significantly lower than those infected with WT. Bacterial survival rates were reduced in response to temperature stress, salt stress and oxidative stress. Additionally, compared to WT, the ability to adhere to and invade PK15 cells, biofilm formation and stress resistance of Δpdh were significantly reduced. Moreover, real-time PCR results showed that pdh deletion reduced the expression of multiple adhesion-related genes. However, there was no significant difference in the correlation biological analysis between the complemented strain (CΔpdh) and WT. Moreover, the survival rate of Δpdh in RAW264.7 macrophages was significantly lower than that of the WT strain. This study shows that PDH is involved in the pathogenesis of S. suis 2 and reduction in virulence of Δpdh may be related to the decreased ability to resist stress of the strain.
Collapse
Affiliation(s)
- Yang Wang
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China.,b Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang , Luoyang , China
| | - Yuxin Wang
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China
| | - Baobao Liu
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China
| | - Shaohui Wang
- c Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Shanghai , China
| | - Jinpeng Li
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China
| | - Shenglong Gong
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China
| | - Liyun Sun
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China.,b Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang , Luoyang , China
| | - Li Yi
- d College of Life Science , Luoyang Normal University , Luoyang , China
| |
Collapse
|
6
|
Zhang X, He L, Zhang C, Yu C, Yang Y, Jia Y, Cheng X, Li Y, Liao C, Li J, Yu Z, Du F. The impact of sseK2 deletion on Salmonella enterica serovar typhimurium virulence in vivo and in vitro. BMC Microbiol 2019; 19:182. [PMID: 31390974 PMCID: PMC6686396 DOI: 10.1186/s12866-019-1543-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
Background Salmonella enterica is regarded as a major public health threat worldwide. Salmonella secretes the novel translocated effector protein K2 (SseK2), but it is unclear whether this protein plays a significant role in Salmonella enterica Typhimurium virulence. Results A ΔsseK2 mutant of S. Typhimurium exhibited similar growth curves, adhesion and invasive ability compared with wild-type (WT) bacteria. However, deletion of sseK2 rendered Salmonella deficient in biofilm formation and the early proliferative capacity of the ΔsseK2 mutant was significantly lower than that of the WT strain. In vivo, the LD50 (median lethal dose) of the ΔsseK2 mutant strain was increased 1.62 × 103-fold compared with the WT strain. In addition, vaccinating mice with the ΔsseK2 mutant protected them against challenge with a lethal dose of the WT strain. The ability of the ΔsseK2 mutant strain to induce systemic infection was highly attenuated compared with the WT strain, and the bacterial load in the animals’ internal organs was lower when they were infected with the ΔsseK2 mutant strain than when they were infected with the WT strain. Conclusions We conclude that sseK2 is a virulence-associated gene that plays a vital role in Salmonella virulence. Electronic supplementary material The online version of this article (10.1186/s12866-019-1543-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaojie Zhang
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Lei He
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China. .,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China.
| | - Chunjie Zhang
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China. .,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China.
| | - Chuan Yu
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Yadong Yang
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Yanyan Jia
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Xiangchao Cheng
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China.,Luoyang Polytechnic, 6 Airport Road, Luoyang, 471023, Henan, China
| | - Yinju Li
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Chengshui Liao
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Jing Li
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Zuhua Yu
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Fuyu Du
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| |
Collapse
|
7
|
Geng S, Wang Y, Xue Y, Wang H, Cai Y, Zhang J, Barrow P, Pan Z, Jiao X. The SseL protein inhibits the intracellular NF-κB pathway to enhance the virulence of Salmonella Pullorum in a chicken model. Microb Pathog 2019; 129:1-6. [PMID: 30703474 DOI: 10.1016/j.micpath.2019.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
To persist in the host, Salmonella is known to facultatively parasitize cells to escape the immune response. Intracellular Salmonella enterica can replicate using effector proteins translocated across the Salmonella-containing vacuolar membrane via a type III secretion system (T3SS) encoded by Salmonella pathogenicity island-2 (SPI-2). One of these factors, Salmonella secreted factor L (SseL), is a deubiquitinase that contributes to the virulence of Salmonella Typhimurium in mice by inhibiting the cellular NF-κB inflammatory pathway. However, the nature of its effect on the NF-κB pathway is controversial, and little research has been performed in other animal models. In this study, the SseL of Salmonella Pullorum was studied, and chickens were used as an infection model. An sseL gene deletion strain, a complementation strain and a eukaryotic expression plasmid were used to clarify the means by which SseL regulates Salmonella virulence and the cellular inflammatory response. SseL significantly enhanced the virulence of Salmonella Pullorum in chickens and suppressed activation of the cellular NF-κB pathway, thus inhibiting cellular inflammatory cytokine expression.
Collapse
Affiliation(s)
- Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Yaonan Wang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Ying Xue
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Huqiang Wang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Yuan Cai
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jian Zhang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Wein T, Dagan T, Fraune S, Bosch TCG, Reusch TBH, Hülter NF. Carrying Capacity and Colonization Dynamics of Curvibacter in the Hydra Host Habitat. Front Microbiol 2018; 9:443. [PMID: 29593687 PMCID: PMC5861309 DOI: 10.3389/fmicb.2018.00443] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/26/2018] [Indexed: 01/29/2023] Open
Abstract
Most eukaryotic species are colonized by a microbial community – the microbiota – that is acquired during early life stages and is critical to host development and health. Much research has focused on the microbiota biodiversity during the host life, however, empirical data on the basic ecological principles that govern microbiota assembly is lacking. Here we quantify the contribution of colonizer order, arrival time and colonization history to microbiota assembly on a host. We established the freshwater polyp Hydra vulgaris and its dominant colonizer Curvibacter as a model system that enables the visualization and quantification of colonizer population size at the single cell resolution, in vivo, in real time. We estimate the carrying capacity of a single Hydra polyp as 2 × 105Curvibacter cells, which is robust among individuals and time. Colonization experiments reveal a clear priority effect of first colonizers that depends on arrival time and colonization history. First arriving colonizers achieve a numerical advantage over secondary colonizers within a short time lag of 24 h. Furthermore, colonizers primed for the Hydra habitat achieve a numerical advantage in the absence of a time lag. These results follow the theoretical expectations for any bacterial habitat with a finite carrying capacity. Thus, Hydra colonization and succession processes are largely determined by the habitat occupancy over time and Curvibacter colonization history. Our experiments provide empirical data on the basic steps of host-associated microbiota establishment – the colonization stage. The presented approach supplies a framework for studying habitat characteristics and colonization dynamics within the host–microbe setting.
Collapse
Affiliation(s)
- Tanita Wein
- Institute of Microbiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Tal Dagan
- Institute of Microbiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Sebastian Fraune
- Institute of Zoology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Thomas C G Bosch
- Institute of Zoology, Christian-Albrechts University of Kiel, Kiel, Germany
| | | | - Nils F Hülter
- Institute of Microbiology, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
9
|
Yang Y, Yu C, Ding K, Zhang C, Liao C, Jia Y, Li J, Cheng X. Role of the sseK1 gene in the pathogenicity of Salmonella enterica serovar enteritidis in vitro and in vivo. Microb Pathog 2018; 117:270-275. [PMID: 29458091 DOI: 10.1016/j.micpath.2018.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 11/20/2022]
Abstract
Salmonella enteritidis is a common food-borne pathogen associated with consumption of contaminated poultry meat and eggs, which frequently causes gastroenteritis in humans. Salmonella secreted effector K1 (SseK1), as a translocated and secreted protein has been identified to be essential for the virulence of Salmonella typhimurium in host cells. However, the role of the sseK1 gene in the pathogenicity of S. enteritidis remain unclear. In this study, a sseK1 deletion mutant of S. enteritidis was constructed and its biological characteristics were examined. It was found that the sseK1 deletion mutant did not affect the growth, adherence and invasion of Salmonella enteritidis when compared to the wild-type S. enteritidis. However, the mutant showed decreased formation of biofilm and significantly reduced intracellular survival of bacteria in activated mouse peritoneal macrophages, as well as showed reduced pathogenicity to a murine model by increasing the lethal dose 50% (LD50) value and decreasing the proliferation ratio of bacteria in vivo. Taken together, this study determined an important role for SseK1 in the pathogenicity of S. enteritidis in vitro and in vivo.
Collapse
Affiliation(s)
- Yadong Yang
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Chuan Yu
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Ke Ding
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Chunjie Zhang
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China.
| | - Chengshui Liao
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Yanyan Jia
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Jing Li
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Xiangchao Cheng
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| |
Collapse
|
10
|
Yin J, Xia J, Tao M, Xu L, Li Q, Geng S, Jiao X. Construction and characterization of a cigR deletion mutant of Salmonella enterica serovar Pullorum. Avian Pathol 2018; 45:569-75. [PMID: 27163262 DOI: 10.1080/03079457.2016.1187708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Salmonella enterica serovar Pullorum (S. Pullorum) is the causative agent of pullorum disease (PD) and results in severe economic losses to the poultry industry. As a Salmonella type III secretion system 2 (T3SS2) effector and predicted membrane protein, CigR is encoded by the cigR gene within Salmonella pathogenicity island 3 (SPI3). In order to research the influence of the cigR gene on S. Pullorum, a cigR mutant of S. Pullorum S06004 was constructed by the lambda Red recombination system, and then its characterization was analysed. Lack of cigR did not affect the growth and biochemical properties, but resulted in decreased biofilm formation. The mutant strain was stable with the deletion of the cigR gene. Macrophage infection assay and in vivo competition assay showed that the mutant strain increased the replication and/or survival ability in the HD11 cell line and in chickens compared to that of the parent strain, the median lethal dose (LD50) of the mutant strain was one-fifth of the parent strain for 2-day-old chickens when injected intramuscularly. These results demonstrate CigR plays roles in biofilm formation and pathogenicity of S. Pullorum, deletion of cigR can significantly decrease biofilm formation and significantly increase virulence.
Collapse
Affiliation(s)
- Junlei Yin
- a Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China
| | - Jie Xia
- a Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China
| | - Mingxin Tao
- a Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China
| | - Lijuan Xu
- a Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China
| | - Qiuchun Li
- a Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China
| | - Shizhong Geng
- a Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China
| | - Xinan Jiao
- a Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China
| |
Collapse
|
11
|
Abstract
Salmonella Enteritidis (SE) is the predominant cause of the food-borne salmonellosis in humans, in part because this serotype has the unique ability to contaminate chicken eggs without causing discernible illness in the infected birds. Attempts to develop effective vaccines and eradicate SE from chickens are undermined by significant limitations in our current understanding of the genetic basis of pathogenesis of SE in this reservoir host. In this chapter, we summarize the infection kinetics and provide an overview of the current understanding of genetic factors underlying SE infection in the chicken host. We also discuss the important knowledge gaps that, if addressed, will improve our understanding of the complex biology of SE in young chickens and in egg laying hens.
Collapse
|
12
|
Qin Y, Lin G, Chen W, Xu X, Yan Q. Flagellar motility is necessary for Aeromonas hydrophila adhesion. Microb Pathog 2016; 98:160-6. [PMID: 27432325 DOI: 10.1016/j.micpath.2016.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022]
Abstract
Adhesion to host surface or cells is the initial step in bacterial pathogenesis, and the adhesion mechanisms of the fish pathogenic bacteria Aeromonas hydrophila were investigated in this study. First, a mutagenesis library of A. hydrophila that contained 332 random insertion mutants was constructed via mini-Tn10 Km mutagenesis. Four mutants displayed the most attenuated adhesion. Sequence analysis revealed that the mini-Tn10 insertion sites in the four mutant strains were flgC(GenBank accession numbers KX261880), cytb4(GenBank accession numbers JN133621), rbsR(GenBank accession numbers KX261881) and flgE(GenBank accession numbers JQ974982). To further study the roles of flgC and flgE in the adhesion of A. hydrophila, some biological characteristics of the wild-type strain B11, the mutants M121 and M240, and the complemented strains C121 and C240 were investigated. The results showed that the mutation in flgC or flgE led to the flagellar motility of A. hydrophila significant reduction or abolishment. flgC was not necessary for flagellar biosynthesis but was necessary for the full motility of A. hydrophila, flgE was involved in both flagellar biosynthesis and motility. The flagellar motility is necessary for A. hydrophila to adhere to the host mucus, which suggests flagellar motility plays crucial roles in the early infection process of this bacterium.
Collapse
Affiliation(s)
- Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Guifang Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Wenbo Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China.
| |
Collapse
|
13
|
Bennett AM, Shippy DC, Eakley N, Okwumabua O, Fadl AA. Functional characterization of glucosamine-6-phosphate synthase (GlmS) in Salmonella enterica serovar Enteritidis. Arch Microbiol 2016; 198:541-9. [PMID: 27017337 DOI: 10.1007/s00203-016-1212-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/28/2016] [Accepted: 03/14/2016] [Indexed: 11/27/2022]
Abstract
Salmonella is a threat to public health due to consumption of contaminated food. Screening of a transposon library identified a unique mutant that was growth and host cell binding deficient. The objective of this study was to determine the functional role of glucosamine-6-phosphate synthase (GlmS) in the biology and pathogenesis of Salmonella. To examine this, we created a glmS mutant (ΔglmS) of Salmonella and examined the effect on cell envelope integrity, growth, metabolism, and pathogenesis. Our data indicated ΔglmS was defective in growth unless media were supplemented with D-glucosamine (D-GlcN). Examination of the bacterial cell envelope revealed that ΔglmS was highly sensitive to detergents, hydrophobic antibiotics, and bile salts compared to the wild type (WT). A release assay indicated that ΔglmS secreted higher amounts of β-lactamase than the WT in culture supernatant fractions. Furthermore, ΔglmS was attenuated in cell culture models of Salmonella infection. Taken together, this study determined an important role for GlmS in the pathogenesis and biology of Salmonella.
Collapse
Affiliation(s)
- Alexis M Bennett
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI, 53706, USA
| | - Daniel C Shippy
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI, 53706, USA
| | - Nicholas Eakley
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI, 53706, USA
| | - Ogi Okwumabua
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Amin A Fadl
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI, 53706, USA.
| |
Collapse
|
14
|
Chen S, Zhang C, Liao C, Li J, Yu C, Cheng X, Yu Z, Zhang M, Wang Y. Deletion of Invasion Protein B in Salmonella enterica Serovar Typhimurium Influences Bacterial Invasion and Virulence. Curr Microbiol 2015; 71:687-92. [PMID: 26341924 DOI: 10.1007/s00284-015-0903-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/25/2015] [Indexed: 11/30/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) has a wide host range and causes infections ranging from severe gastroenteritis to systemic infections in human, as well as causing typhoid-like disease in murine models of infection. S. Typhimurium translocates its effector proteins through the Salmonella pathogenicity island-I (SPI-I)-encoded T3SS-I needle complex. This study focuses on invasion protein B (SipB) of S. Typhimurium, which plays an active role in SPI-I invasion efficiency. To test our hypothesis, a sipB deletion mutant was constructed through double-crossover allelic using the suicide vector pRE112ΔsipB, and its biological characteristics were analyzed. The results showed that the SipB does not affect the growth of Salmonella, but the adherence, invasion, and virulence of the mutant were significantly decreased compared with wild-type S. Typhimurium (SL1344). This research indicates that SipB is an important virulence factor in the pathogenicity of S. Typhimurium.
Collapse
Affiliation(s)
- Songbiao Chen
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China.
| | - Chunjie Zhang
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China.
| | - Chengshui Liao
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Jing Li
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Chuan Yu
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Xiangchao Cheng
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Zuhua Yu
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Mingliang Zhang
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Yang Wang
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| |
Collapse
|
15
|
Characterization of SEN3800-associated virulence of Salmonella enterica serovar Enteritidis phage type 8. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-0898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
16
|
Role of StdA in adhesion of Salmonella enterica serovar Enteritidis phage type 8 to host intestinal epithelial cells. Gut Pathog 2013; 5:43. [PMID: 24367906 PMCID: PMC3877977 DOI: 10.1186/1757-4749-5-43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/21/2013] [Indexed: 12/31/2022] Open
Abstract
Background Salmonella is often implicated in foodborne outbreaks, and is a major public health concern in the United States and throughout the world. Salmonella enterica serovar Enteritidis (SE) infection in humans is often associated with the consumption of contaminated poultry products. Adhesion to epithelial cells in the intestinal mucosa is a major pathogenic mechanism of Salmonella in poultry. Transposon mutagenesis identified stdA as a potential adhesion mutant of SE. Therefore, we hypothesize StdA plays a significant role in adhesion of SE to the intestinal mucosa of poultry. Methods and results To test our hypothesis, we created a mutant of SE in which stdA was deleted. Growth and motility were assayed along with the in vitro and in vivo adhesion ability of the ∆stdA when compared to the wild-type SE strain. Our data showed a significant decrease in motility in ∆stdA when compared to the wild-type and complemented strain. A decrease in adhesion to intestinal epithelial cells as well as in the small intestine and cecum of poultry was observed in ∆stdA. Furthermore, the lack of adhesion correlated to a defect in invasion as shown by a cell culture model using intestinal epithelial cells and bacterial recovery from the livers and spleens of chickens. Conclusions These studies suggest StdA is a major contributor to the adhesion of Salmonella to the intestinal mucosa of poultry.
Collapse
|