1
|
Zhao Z, Liu S, Jiang S, Zhang D, Sha Z. Diversity and Potential Metabolic Characteristics of Culturable Copiotrophic Bacteria That Can Grow on Low-Nutrient Medium in Zhenbei Seamount in the South China Sea. MICROBIAL ECOLOGY 2024; 87:157. [PMID: 39708139 DOI: 10.1007/s00248-024-02475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Oligotrophs are predominant in nutrient-poor environments, but copiotrophic bacteria may tolerate conditions of low energy and can also survive and thrive in these nutrient-limited conditions. In the present study, we isolated 648 strains using a dilution plating method after enrichment for low-nutrient conditions. We collected 150 seawater samples at 21 stations in different parts of the water column at the Zhenbei Seamount in the South China Sea. The 648 isolated copiotrophic strains that could grow on low-nutrient medium were in 21 genera and 42 species. A total of 99.4% (644/648) of the bacteria were in the phylum Pseudomonadota, with 73.3% (472/644) in the class Gammaproteobacteria and 26.7% (172/644) in the class Alphaproteobacteria. Among the 42 representative isolates, Pseudoalteromonas arabiensis, Roseibium aggregatum, and Vibrio neocaledonicus were present in all layers of seawater and at almost all of the stations. Almost half of these species (20/42) contained genes that performed nitrate reduction, with confirmation by nitrate reduction testing. These isolates also contained genes that functioned in sulfur metabolism, including sulfate reduction, thiosulfate oxidation, thiosulfate disproportionation, and dimethylsulfoniopropionate degradation. GH23, CBM50, GT4, GT2, and GT51 were the main carbohydrate-active enzymes (CAZymes), and these five enzymes were present in all or almost all of the isolated strains. The most abundant classes of CAZymes were those associated with the degradation of chitin, starch, and cellulose. Collectively, our study of marine copiotrophic bacteria capable of growing on low-nutrient medium demonstrated the diversity of these species and their potential metabolic characteristics.
Collapse
Affiliation(s)
- Zhangqi Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Sizhen Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shan Jiang
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dechao Zhang
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhongli Sha
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
2
|
Govindan R, Gnanasekaran C, Govindan R, Muthuchamy M, Quero F, Jothi A, Chelliah CK, Arunachalam A, Viswanathan MR, Natesan M, Kadaikunnan S, Li WJ. Anti-quorum Sensing and Anti-biofilm Effect of Nocardiopsis synnemataformans RMN 4 (MN061002) Compound 2,6-Di-tert-butyl, 1,4-Benzoquinone Against Biofilm-Producing Bacteria. Appl Biochem Biotechnol 2024; 196:3914-3948. [PMID: 37792174 DOI: 10.1007/s12010-023-04738-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
In this study, the anti-biofilm compound of 2,6-Di-tert-butyl, 1,4-benzoquinone was purified from Nocardiopsis synnemataformans (N. synnemataformans) RMN 4 (MN061002). To confirm the compound, various spectroscopy analyses were done including ultraviolet (UV) spectrometer, Fourier transform infrared spectroscopy (FTIR), analytical high-performance liquid chromatography (HPLC), preparative HPLC, gas chromatography-mass spectroscopy (GC-MS), liquid chromatography-mass spectroscopy (LC-MS), and 2D nuclear magnetic resonance (NMR). Furthermore, the purified compound was shown 94% inhibition against biofilm-producing Proteus mirabilis (P. mirabilis) (MN396686) at 70 µg/mL concentrations. Furthermore, the metabolic activity, exopolysaccharide damage, and hydrophobicity degradation results of identified compound exhibited excellent inhibition at 100 µg/mL concentration. Furthermore, the confocal laser scanning electron microscope (CLSM) and scanning electron microscope (SEM) results were shown with intracellular damages and architectural changes in bacteria. Consecutively, the in vivo toxicity effect of the compound against Artemia franciscana (A. franciscana) was shown to have a low mortality rate at 100 µg/mL. Finally, the molecular docking interaction between the quorum sensing (QS) genes and identified compound clearly suggested that the identified compound 2,6-Di-tert-butyl, 1,4-benzoquinone has anti-quorum sensing and anti-biofilm activities against P. mirabilis (MN396686).
Collapse
Affiliation(s)
- Rajivgandhi Govindan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Facultad de CienciasFísicas y Matemáticas, Universidad de Chile, Biotecnología y MaterialesAvenida Beauchef 851, 8370456, Santiago, Chile
| | - Chackaravarthi Gnanasekaran
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ramachandran Govindan
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| | - Maruthupandy Muthuchamy
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Facultad de CienciasFísicas y Matemáticas, Universidad de Chile, Biotecnología y MaterialesAvenida Beauchef 851, 8370456, Santiago, Chile
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-Dearo 550 Beon-Gil, Saha-Gu, Busan, 49315, South Korea
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Facultad de CienciasFísicas y Matemáticas, Universidad de Chile, Biotecnología y MaterialesAvenida Beauchef 851, 8370456, Santiago, Chile
| | - Arunachalam Jothi
- School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu, Tanjore, India, 401
| | - Chenthis Knaisha Chelliah
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Tamil Nadu, Kumaracoil, Kanyakumari, 629180, India
| | - Arulraj Arunachalam
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Macul, Santiago, Chile
| | - Mangalaraja Ramalinga Viswanathan
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Región Metropolitana, Diag. Las Torres 2640, 7941169, Peñalolén, Santiago, Chile
| | - Manoharan Natesan
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
3
|
Yao H, Liu S, Liu T, Ren D, Yang Q, Zhou Z, Mao J. Screening of marine sediment-derived microorganisms and their bioactive metabolites: a review. World J Microbiol Biotechnol 2023; 39:172. [PMID: 37115432 DOI: 10.1007/s11274-023-03621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Marine sediments are one of the largest habitats on Earth, and their unique ecology, such as high salinity, high pressure, and hypoxia, may activate certain silent genes in marine microbes, resulting in microbes, enzymes, active products, and specific metabolic pathways that can adapt to these specific ecological environments. Marine sediment-derived microorganisms and their bioactive metabolites are of great significance and have potential commercial development prospects for food, pharmaceutical, chemical industries, agriculture, environmental protection and human nutrition and health. In recent years, although there have been numerous scientific reports surrounding marine sediment-derived microorganisms and their bioactive metabolites, a comprehensive review of their research progress is lacking. This paper presents the development and renewal of traditional culture-dependent and omics analysis techniques and their application to the screening of marine sediment-derived microorganisms producing bioactive substances. It also highlights recent research advances in the last five years surrounding the types, functional properties and potential applications of bioactive metabolites produced by marine sediment-derived microorganisms. These bioactive metabolites mainly include antibiotics, enzymes, enzyme inhibitors, sugars, proteins, peptides, and some other small molecule metabolites. In addition, the review ends with concluding remarks on the challenges and future directions for marine sediment-derived microorganisms and their bioactive metabolites. The review report not only helps to deepen the understanding of marine sediment-derived microorganisms and their bioactive metabolites, but also provides some useful information for the exploitation and utilization of marine microbial resources and the mining of new compounds with potential functional properties.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
4
|
Ribeiro I, Antunes JT, Alexandrino DAM, Tomasino MP, Almeida E, Hilário A, Urbatzka R, Leão PN, Mucha AP, Carvalho MF. Actinobacteria from Arctic and Atlantic deep-sea sediments-Biodiversity and bioactive potential. Front Microbiol 2023; 14:1158441. [PMID: 37065153 PMCID: PMC10100589 DOI: 10.3389/fmicb.2023.1158441] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
The deep-sea covers over 70% of the Earth's surface and harbors predominantly uncharacterized bacterial communities. Actinobacteria are the major prokaryotic source of bioactive natural products that find their way into drug discovery programs, and the deep-sea is a promising source of biotechnologically relevant actinobacteria. Previous studies on actinobacteria in deep-sea sediments were either regionally restricted or did not combine a community characterization with the analysis of their bioactive potential. Here we characterized the actinobacterial communities of upper layers of deep-sea sediments from the Arctic and the Atlantic (Azores and Madeira) ocean basins, employing 16S rRNA metabarcoding, and studied the biosynthetic potential of cultivable actinobacteria retrieved from those samples. Metabarcoding analysis showed that the actinobacterial composition varied between the sampled regions, with higher abundance in the Arctic samples but higher diversity in the Atlantic ones. Twenty actinobacterial genera were detected using metabarcoding, as a culture-independent method, while culture-dependent methods only allowed the identification of nine genera. Isolation of actinobacteria resulted on the retrieval of 44 isolates, mainly associated with Brachybacterium, Microbacterium, and Brevibacterium genera. Some of these isolates were only identified on a specific sampled region. Chemical extracts of the actinobacterial isolates were subsequently screened for their antimicrobial, anticancer and anti-inflammatory activities. Extracts from two Streptomyces strains demonstrated activity against Candida albicans. Additionally, eight extracts (obtained from Brachybacterium, Brevibacterium, Microbacterium, Rhodococcus, and Streptomyces isolates) showed significant activity against at least one of the tested cancer cell lines (HepG2 and T-47D). Furthermore, 15 actinobacterial extracts showed anti-inflammatory potential in the RAW 264.4 cell model assay, with no concomitant cytotoxic response. Dereplication and molecular networking analysis of the bioactive actinobacterial extracts showed the presence of some metabolites associated with known natural products, but one of the analyzed clusters did not show any match with the natural products described as responsible for these bioactivities. Overall, we were able to recover taxonomically diverse actinobacteria with different bioactivities from the studied deep-sea samples. The conjugation of culture-dependent and -independent methods allows a better understanding of the actinobacterial diversity of deep-sea environments, which is important for the optimization of approaches to obtain novel chemically-rich isolates.
Collapse
Affiliation(s)
- Inês Ribeiro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- *Correspondence: Inês Ribeiro,
| | - Jorge T. Antunes
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Diogo A. M. Alexandrino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Environmental Health, School of Health, Polytechnic of Porto, Porto, Portugal
| | - Maria Paola Tomasino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Eduarda Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, FCUP - Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Ana Hilário
- Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ralph Urbatzka
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Pedro N. Leão
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Ana P. Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, FCUP - Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Maria F. Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Marine Actinobacteria a New Source of Antibacterial Metabolites to Treat Acne Vulgaris Disease—A Systematic Literature Review. Antibiotics (Basel) 2022; 11:antibiotics11070965. [PMID: 35884220 PMCID: PMC9311749 DOI: 10.3390/antibiotics11070965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Acne vulgaris is a multifactorial disease that remains under-explored; up to date it is known that the bacterium Cutibacterium acnes is involved in the disease occurrence, also associated with a microbial dysbiosis. Antibiotics have become a mainstay treatment generating the emergence of antibiotic-resistant bacteria. In addition, there are some reported side effects of alternative treatments, which indicate the need to investigate a different therapeutic approach. Natural products continue to be an excellent option, especially those extracted from actinobacteria, which represent a prominent source of metabolites with a wide range of biological activities, particularly the marine actinobacteria, which have been less studied than their terrestrial counterparts. Therefore, this systematic review aimed to identify and evaluate the potential anti-infective activity of metabolites isolated from marine actinobacteria strains against bacteria related to the development of acne vulgaris disease. It was found that there is a variety of compounds with anti-infective activity against Staphylococcus aureus and Staphylococcus epidermidis, bacteria closely related to acne vulgaris development; nevertheless, there is no report of a compound with antibacterial activity or quorum-sensing inhibition toward C. acnes, which is a surprising result. Since two of the most widely used antibiotics for the treatment of acne targeting C. acnes were obtained from actinobacteria of the genus Streptomyces, this demonstrates a great opportunity to pursue further studies in this field, considering the potential of marine actinobacteria to produce new anti-infective compounds.
Collapse
|
6
|
Sedeek AM, Ismail MM, Elsayed TR, Ramadan MA. Recent methods for discovering novel bioactive metabolites, specifically antimicrobial agents, from marine-associated microorganisms. Lett Appl Microbiol 2022; 75:511-525. [PMID: 35485872 DOI: 10.1111/lam.13728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
Marine microorganisms are a promising source for novel natural compounds with many medical and biotechnological applications. Here we demonstrate limitations and recent strategies for investigating the marine microbial community for novel bioactive metabolites, specifically those of antimicrobial potential. These strategies include culture-dependent methods such as modifying the standard culture media, including changing the gelling agent, dissolving vehicle, media supplementation, and preparation to access a broader range of bacterial diversity from marine samples. Furthermore, we discuss strategies like in situ cultivation, dilution-to-extinction cultivation, and long-term incubation. We are presenting recent applications of culture-independent methods such as genome mining, proteomics profiling, and the application of metagenomics as a novel strategy for structure confirmation in the discovery of the marine microorganism for novel antimicrobial metabolites. We present this review as a simple guide and a helpful resource for those who seek to enter the challenging field of applied marine microbiology.
Collapse
Affiliation(s)
- Abdelrahman M Sedeek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismaillia, 41522, Egypt
| | - Maha M Ismail
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Tarek R Elsayed
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Egypt, Giza, 12613, Egypt
| | - Mohamed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
7
|
Bano N, Siddiqui S, Amir M, Zia Q, Banawas S, Iqbal D, Roohi. Bioprospecting of the novel isolate Microbacterium proteolyticum LA2(R) from the rhizosphere of Rauwolfia serpentina. Saudi J Biol Sci 2022; 29:1858-1868. [PMID: 35280579 PMCID: PMC8913384 DOI: 10.1016/j.sjbs.2021.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/02/2022] Open
Abstract
The study aimed to assess the proficiency of secondary metabolites (SMs) synthesized by actinobacteria isolated from the rhizospheric soil of Rauwolfia serpentina for its antimicrobial and anti-biofilm activity. After morphological and biochemical identification of actinobacteria, primary and secondary screening was done for specific metabolite production. The secondary metabolites were then tested for their antioxidant, antibacterial, and antibiofilm potential. Out of 29 bacterial colonies isolated, only one emerged as a novel isolate, Microbacterium LA2(R). Partial 16S rRNA gene sequence of the isolate LA2(R) was deposited in NCBI GenBank with accession number MN560041. The highest antioxidant capacity of the methanolic extract the novel isolate was found to be 474.183 µL AAE/mL and 319.037 µL AAE/mL by DPPH assay and ABTS assay respectively; three folds higher than the control. These results were further supported by the high total phenolic (194.95 gallic acid equivalents/mL) and flavonoid contents (332.79 µL quercetin equivalents/mL) of the methanolic extract. GC–MS analysis revealed the abundance of antibacterial compounds; where, n-Hexadecanoic acid was found to be the major compound present with a peak of 14 min retention time (RT) and 95% similarity index. MIC value of the metabolite was noted to be around 132.28 ± 84.48 μg/mL. The IC50 value was found to be 74.37, 71.33, 66.28 and 84.48 μg/mL against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, and Salmonella abony, respectively. Treatment with IC50 of the extract decreased the biofilm formation up to 70%–80% against pathogenic strains viz. Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Salmonella abony. These significant activities of Microbacterium sp. LA2(R) suggests that it could be utilized for antibiotic production for human welfare and in various important industrial applications.
Collapse
|
8
|
Qiu Z, Wu Y, Lan K, Wang S, Yu H, Wang Y, Wang C, Cao S. Cytotoxic compounds from marine actinomycetes: Sources, Structures and Bioactivity. ACTA MATERIA MEDICA 2022; 1:445-475. [PMID: 36588746 PMCID: PMC9802659 DOI: 10.15212/amm-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Marine actinomycetes produce a substantial number of natural products with cytotoxic activity. The strains of actinomycetes were isolated from different sources like fishes, coral, sponges, seaweeds, mangroves, sediments etc. These cytotoxic compounds can be categorized briefly into four classes: polyketides, non-ribosomal peptides and hybrids, isoprenoids and hybrids, and others, among which majority are polyketides (146). Twenty two out of the 254 compounds showed potent cytotoxicity with IC50 values at ng/mL or nM level. This review highlights the sources, structures and antitumor activity of 254 natural products isolated from marine actinomycetes, which were new when they were reported from 1989 to 2020.
Collapse
Affiliation(s)
- Ziyan Qiu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yinshuang Wu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Kunyan Lan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Shiyi Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Huilin Yu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yufei Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China,Correspondence: (C.W.); (S.C.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA,Correspondence: (C.W.); (S.C.)
| |
Collapse
|
9
|
Govindan R, Govindan R, Vijayan R, Quero F, Muthuchamy M, Alharbi NS, Kadaikunnan S, Natesan M, Li W. Anti-ESBL derivatives of marine endophytic Streptomyces xiamenensis GRG 5 (KY457709) against ESBLs producing bacteria. NEW J CHEM 2022. [DOI: 10.1039/d2nj00988a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emerging threat of extended spectrum beta lactamases (ESBLs) producing gram negative bacteria still remains an important worldwide concern. Due to insufficient drug choice and treatment failure of existing drugs,...
Collapse
|
10
|
Song F, Yang N, Khalil ZG, Salim AA, Han J, Bernhardt PV, Lin R, Xu X, Capon RJ. Bhimamycin J, a Rare Benzo[f]isoindole-dione Alkaloid from the Marine-Derived Actinomycete Streptomyces sp. MS180069. Chem Biodivers 2021; 18:e2100674. [PMID: 34609053 DOI: 10.1002/cbdv.202100674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022]
Abstract
Chemical investigation on a Streptomyces sp. strain MS180069 isolated from a sediment sample collected from the South China Sea, yielded the new benzo[f]isoindole-dione alkaloid, bhimamycin J (1). The structure was determined by extensive spectroscopic analysis, including HRMS, 1D, 2D NMR, and X-ray diffraction techniques. A molecular docking study revealed 1 as a new molecular motif that binds with human angiotensin converting enzyme2 (ACE2), recently described as the cell surface receptor responsible for uptake of 2019-CoV-2. Using enzyme assays we confirm that 1 inhibits human ACE2 79.7 % at 25 μg/mL.
Collapse
Affiliation(s)
- Fuhang Song
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Na Yang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Angela A Salim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiahui Han
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, P. R. China
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rui Lin
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, P. R. China
| | - Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, P. R. China
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
11
|
Davies-Bolorunduro O, Osuolale O, Saibu S, Adeleye I, Aminah N. Bioprospecting marine actinomycetes for antileishmanial drugs: current perspectives and future prospects. Heliyon 2021; 7:e07710. [PMID: 34409179 PMCID: PMC8361068 DOI: 10.1016/j.heliyon.2021.e07710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
Revived analysis interests in natural products in the hope of discovering new and novel antileishmanial drug leads have been driven partially by the increasing incidence of drug resistance. However, the search for novel chemotherapeutics to combat drug resistance had previously concentrated on the terrestrial environment. As a result, the marine environment was often overlooked. For example, actinomycetes are an immensely important group of bacteria for antibiotic production, producing two-thirds of the known antibiotics. However, these bacteria have been isolated primarily from terrestrial sources. Consequently, there have been revived efforts to discover new compounds from uncharted or uncommon environments like the marine ecosystem. Isolation, purification and structure elucidation of target compounds from complex metabolic extract are major challenges in natural products chemistry. As a result, marine-derived natural products from actinomycetes that have antileishmanial bioactivity potentials have been understudied. This review highlights metagenomic and bioassay approaches which could help streamline the drug discovery process thereby greatly reducing time and cost of dereplication to identify suitable antileishmanial drug candidates.
Collapse
Affiliation(s)
- O.F. Davies-Bolorunduro
- Microbiology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
- Postdoc Fellow Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - O. Osuolale
- Applied Environmental Metagenomics and Infectious Diseases Research Group (AEMIDR), Department of Biological Sciences, Elizade University, Ilara Mokin, Nigeria
| | - S. Saibu
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| | - I.A. Adeleye
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| | - N.S. Aminah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C UNAIR, Jl. Mulyorejo, Surabaya, 60115, Indonesia
- Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga, Indonesia
| |
Collapse
|
12
|
Sabido EM, Tenebro CP, Trono DJVL, Vicera CVB, Leonida SFL, Maybay JJWB, Reyes-Salarda R, Amago DS, Aguadera AMV, Octaviano MC, Saludes JP, Dalisay DS. Insights into the Variation in Bioactivities of Closely Related Streptomyces Strains from Marine Sediments of the Visayan Sea against ESKAPE and Ovarian Cancer. Mar Drugs 2021; 19:md19080441. [PMID: 34436280 PMCID: PMC8399204 DOI: 10.3390/md19080441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
Marine sediments host diverse actinomycetes that serve as a source of new natural products to combat infectious diseases and cancer. Here, we report the biodiversity, bioactivities against ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) and ovarian cancer, and metabolites variation among culturable actinomycetes isolated from the marine sediments of Visayan Sea, Philippines. We identified 15 Streptomyces species based on a 16S rRNA gene sequence analysis. The crude extracts of 10 Streptomyces species have inhibited the growth of ESKAPE pathogens with minimum inhibitory concentration (MIC) values ranging from 0.312 mg/mL to 20 mg/mL depending on the strain and pathogens targeted. Additionally, ten crude extracts have antiproliferative activity against A2780 human ovarian carcinoma at 2 mg/mL. To highlight, we observed that four phylogenetically identical Streptomyces albogriseolus strains demonstrated variation in antibiotic and anticancer activities. These strains harbored type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes in their genomes, implying that their bioactivity is independent of the polymerase chain reaction (PCR)-detected bio-synthetic gene clusters (BGCs) in this study. Metabolite profiling revealed that the taxonomically identical strains produced core and strain-specific metabolites. Thus, the chemical diversity among these strains influences the variation observed in their biological activities. This study expanded our knowledge on the potential of marine-derived Streptomyces residing from the unexplored regions of the Visayan Sea as a source of small molecules against ESKAPE pathogens and cancer. It also highlights that Streptomyces species strains produce unique strain-specific secondary metabolites; thus, offering new chemical space for natural product discovery.
Collapse
Affiliation(s)
- Edna M. Sabido
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
| | - Dana Joanne Von L. Trono
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
| | - Carmela Vannette B. Vicera
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
| | - Sheeny Fane L. Leonida
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Jose Jeffrey Wayne B. Maybay
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Rikka Reyes-Salarda
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
| | - Diana S. Amago
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Angelica Marie V. Aguadera
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - May C. Octaviano
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Jonel P. Saludes
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
- Tuklas Lunas Development Center, University of San Agustin, Iloilo City 5000, Philippines
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (PCHRD), Bicutan, Taguig City 1631, Philippines
- Correspondence: (J.P.S.); (D.S.D.); Tel.: +63-33-503-6887 (J.P.S.); +63-33-501-0350 (D.S.D.)
| | - Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
- Tuklas Lunas Development Center, University of San Agustin, Iloilo City 5000, Philippines
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (PCHRD), Bicutan, Taguig City 1631, Philippines
- Correspondence: (J.P.S.); (D.S.D.); Tel.: +63-33-503-6887 (J.P.S.); +63-33-501-0350 (D.S.D.)
| |
Collapse
|
13
|
Al-shaibani MM, Radin Mohamed RMS, Sidik NM, Enshasy HAE, Al-Gheethi A, Noman E, Al-Mekhlafi NA, Zin NM. Biodiversity of Secondary Metabolites Compounds Isolated from Phylum Actinobacteria and Its Therapeutic Applications. Molecules 2021; 26:molecules26154504. [PMID: 34361657 PMCID: PMC8347454 DOI: 10.3390/molecules26154504] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/08/2022] Open
Abstract
The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities' well-being.
Collapse
Affiliation(s)
- Muhanna Mohammed Al-shaibani
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia;
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Radin Maya Saphira Radin Mohamed
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia;
- Correspondence: (R.M.S.R.M.); (N.M.S.); (A.A.-G.)
| | - Nik Marzuki Sidik
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
- Correspondence: (R.M.S.R.M.); (N.M.S.); (A.A.-G.)
| | - Hesham Ali El Enshasy
- Institute of Bioproducts Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia;
- City of Scientific Research and Technology Applications (SRTA), 21934 New Burg Al Arab, Alexandria, Egypt
| | - Adel Al-Gheethi
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia;
- Correspondence: (R.M.S.R.M.); (N.M.S.); (A.A.-G.)
| | - Efaq Noman
- Applied Microbiology Department, Faculty of Applied Sciences, Taiz University, Taiz 6803, Yemen;
| | - Nabil Ali Al-Mekhlafi
- Atta-ur-Rahman Institute for Natural Product Discovery, UiTM, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia;
- Biochemical Technology Program, Department of Chemistry Faculty of Applied Science, Thamar University, Thamar P.O. Box 87246, Yemen
| | - Noraziah Mohamad Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
14
|
Chen L, Wang Z, Du S, Wang G. Antimicrobial Activity and Functional Genes of Actinobacteria from Coastal Wetland. Curr Microbiol 2021; 78:3058-3067. [PMID: 34156543 DOI: 10.1007/s00284-021-02560-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/28/2021] [Indexed: 11/28/2022]
Abstract
Isolation of culturable actinobacteria from coastal wetlands and screening of their potential biological activities are important for the development of new marine natural products. We collected and isolated 109 actinobacteria from the Sanggou Bay and the Swan Lake wetlands, in the coast of Weihai, China. Of the 109 isolates, 104 had antimicrobial activity against at least one indicator strain. The 35 strains with the strongest inhibitory effects were chosen for the screening of the biosynthesis gene clusters of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS). Four strains with the PKS gene, six strains with the NRPS gene, and three strains with both genes were detected. Eight of the 13 strains with PKS or NRPS genes belong to the genera Streptomyces, and other strains belonged to genus Micromonospora, Nocardiopsis, Rhodococcus, Saccharomonospora, and Staphylococcus. Our results reveal that the culturable actinobacteria isolated from coastal wetlands showed broad-spectrum antimicrobial activities, and some strains with antimicrobial activities possessed PKS and NRPS genes. Thus, culturable actinobacteria from coastal wetlands may contain potential new bioactive substances.
Collapse
Affiliation(s)
- Lei Chen
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Ziwei Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Shuang Du
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Guangyu Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China.
| |
Collapse
|
15
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
16
|
Asha K, Bhadury P. Myceligenerans indicum sp. nov., an actinobacterium isolated from mangrove sediment of Sundarbans, India. Arch Microbiol 2021; 203:1577-1585. [PMID: 33399896 DOI: 10.1007/s00203-020-02150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022]
Abstract
A new actinobacterial species of the genus Myceligenerans has been isolated from the intertidal sediment of Indian Sundarbans mangrove ecosystem. The isolate has been characterized based on polyphasic approaches. The isolate exhibit well-developed substrate mycelia along with the presence of cocci- and rod-shaped elements. The organism can grow across a wide range of temperature, salinity, and pH as well as on different carbon sources. Phylogenetic analyses based on 16S rRNA showed that this isolate is closely related to Myceligenerans salitolerans XHU 5031 (99% identity; 100% coverage). Presence of ketosynthase domain representing polyketide synthases in the isolate provides evidence of its potential ability to produce secondary metabolites. Multigene phylogeny based on atpD and rpoB gene sequences confirmed it as a new species within the family Promicromonosporaceae (Phylum Actinobacteria). The DNA G + C content of the isolate has been determined as 72 mol%. The peptidoglycan type was A4α and the whole-cell hydrolysates contained glucose, galactose, and mannose. The polar lipids were represented by diphosphatidylglycerol, one unknown phospholipid and one unknown glycolipid. Major fatty acids present in the isolate are anteiso-C15, iso-C15, iso-C16, and anteiso-C17. Whole-genome sequence indicates the size of genome is ~ 5 Mbp. GGDC (%), orthoANIu (%), and AAI of I2 genome indicated 28.9%, 77.44% and 0.859 identity with the genome of Myceligenerans xiligouense strain DSM 15,700. The isolate I2 has been proposed as a new species, Myceligenerans indicum sp. nov. The genome sequence has been deposited to GenBank/ENA/DDBJ under the accession number JABBYC000000000.
Collapse
Affiliation(s)
- Kannan Asha
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Punyasloke Bhadury
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India. .,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India.
| |
Collapse
|
17
|
Marine Sediment-Derived Streptomyces Strain Produces Angucycline Antibiotics against Multidrug-Resistant Staphylococcus aureus Harboring SCCmec Type 1 Gene. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Philippine archipelago is geographically positioned in the tropics with rich areas of marine biodiversity. Its marine sediments harbor actinomycetes that exhibit antibacterial activity. Screening of actinomycetes isolated from marine sediments collected near the coast of Islas de Gigantes, Iloilo showed one isolate that exhibited high activity against the multidrug-resistant Staphylococcus aureus (MRSA) strain carrying the Staphylococcal Cassette Chromosome mec (SCCmec) type 1 gene, a biomarker for drug resistance. The isolate was identified as Streptomyces sp. strain DSD011 based on its 16s rRNA and protein-coding genes (atpD, recA, rpoB, and trpB) sequences, and was found to be a new species of salt-tolerant marine Streptomyces. Further, the strain harbors both non-ribosomal peptide synthetase (NRPS) and type II polyketide synthase (PKS) in its genome. The targeted chromatographic isolation and chemical investigations by Liquid Chromatography Mass Spectrometry-Time of Flight (LCMS-TOF), tandem mass spectrometry (MS/MS), and Global Natural Product Social molecular networking (GNPS) of the antibiotics produced by the strain afforded the two polycyclic aromatic polyketide angucycline glycosides, fridamycin A (1) and fridamycin D (2), which are products of type II PKS biosynthesis. Compounds 1 and 2 displayed antibacterial activity against MRSA with minimum inhibitory concentration (MIC) of 500 μg/mL and 62.5 μg/mL, respectively. These results suggest that the underexplored marine sediments near the coast of Islas de Gigantes, Iloilo offer access to undiscovered Streptomyces species that are invaluable sources of antibiotic leads.
Collapse
|
18
|
Antimicrobial and Antioxidant Effects of a Forest Actinobacterium V 002 as New Producer of Spectinabilin, Undecylprodigiosin and Metacycloprodigiosin. Curr Microbiol 2020; 77:2575-2583. [PMID: 32372105 DOI: 10.1007/s00284-020-02007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
The aim of the study is the research and identification of a Streptomyces strain as a new producer of spectinabilin, undecylprodigiosin and metacycloprodigiosin. Among 54 actinomycete isolates isolated from El-Ogbane forest soils in Algeria, only one isolate, designated V002, was selected for its ability to produce prodigiosins. The selected strain was analysed for its ability to produce three different secondary metabolites as well as their biological activities. V002 belongs to the Streptomyces genus and has significant antimicrobial and antioxidant activities. The taxonomic position of V002 by 16S rRNA sequence analysis showed a similarity of 99.93% with Streptomyces lasiicapitis DSM 103124T and 98.96% with Streptomyces spectabilis DSM 40512T. Fractionation of crude secondary metabolites produced by the strain using HPLC-MS revealed the presence of spectinabilin, undecylprodigiosin and metacycloprodigiosin, which demonstrated significant activity. Strain V002 is considered a new producer of spectinabilin, undecylprodigiosin and metacycloprodigiosin with significant antimicrobial and antioxidant activity.
Collapse
|
19
|
Paderog MJV, Suarez AFL, Sabido EM, Low ZJ, Saludes JP, Dalisay DS. Anthracycline Shunt Metabolites From Philippine Marine Sediment-Derived Streptomyces Destroy Cell Membrane Integrity of Multidrug-Resistant Staphylococcus aureus. Front Microbiol 2020; 11:743. [PMID: 32390983 PMCID: PMC7193051 DOI: 10.3389/fmicb.2020.00743] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
The rise of antibiotic resistance (ABR) and the drying up of the pipeline for the development of new antibiotics demands an urgent search for new antibiotic leads. While the majority of clinically available antibiotics were discovered from terrestrial Streptomyces, related species from marine sediments as a source of antibiotics remain underexplored. Here, we utilized culture-dependent isolation of thirty-five marine sediment-derived actinobacterial isolates followed by a screening of their antibacterial activity against multidrug-resistant S. aureus ATCC BAA-44. Our results revealed that the crude extract of Streptomyces griseorubens strain DSD069 isolated from marine sediments collected in Romblon, Philippines displays the highest antibacterial activity, with 96.4% growth inhibition. The S. aureus ATCC BAA-44 cells treated with crude extract of Streptomyces griseorubens strain DSD069 showed cell membrane damage as demonstrated by (a) leakage and loss of vital cell constituents, including DNA and proteins, (b) irregular shrinkage of cells, and (c) increase membrane permeability. The antibiotic compounds were identified as Bisanhydroaklavinone and 1-Hydroxybisanhydroaklavinone with MIC value of 6.25 μg/mL and 50.00 μg/mL, respectively. Bisanhydroaklavinone and 1-Hydroxybisanhydroaklavinone are shunt metabolites in the biosynthesis of anticancer anthracycline derivatives namely doxorubicin, daunorubicin, and cinerubins. It is rare, however, that shunt metabolites are accumulated during fermentation of marine sediment-derived Streptomyces strain without genetic modification. Thus, our study provides evidence that natural bacterial strain can produce Bisanhydroaklavinone and 1-Hydroxybisanhydroaklavinone as antibiotic leads to combat ABR.
Collapse
Affiliation(s)
- Melissa June V Paderog
- Department of Pharmacy, College of Health and Allied Medical Professions, University of San Agustin, Iloilo City, Philippines.,Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City, Philippines
| | - Angelica Faith L Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines
| | - Edna M Sabido
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines
| | | | - Jonel P Saludes
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines.,Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines.,Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig, Philippines
| | - Doralyn S Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City, Philippines.,Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig, Philippines.,Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines
| |
Collapse
|
20
|
Isolation, plant growth-promoting traits, antagonistic effects on clinical and plant pathogenic organisms and identification of actinomycetes from olive rhizosphere. Microb Pathog 2020; 143:104134. [PMID: 32169494 DOI: 10.1016/j.micpath.2020.104134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/25/2020] [Accepted: 03/06/2020] [Indexed: 11/23/2022]
Abstract
Soil actinomycetes are a highly common group of bacteria and frequently studied as having secondary metabolites in the potential of producing the most preferred antagonistic content. Considering the continuous variation in soil structure, there is a potential for encountering different organisms. Almost all of antibiotic contents are produced by these bacteria and their importance increase. In this study, eleven different actinomycetes strain were isolated from the rhizosphere of olive trees investigated for their plant growth-promoting (PGP) traits including ammonia production, indole-3-acetic acid production, phosphate solubilization, and siderophore production with antagonistic activities against a set of pathogenic bacteria, fungi, and yeasts. All actinomycetes were identified according to 16S rRNA regions were recognized in four different Streptomyces species but according to fatty acid analysis, there would be at least six different organisms. The potential for antagonistic and plant growth-promoting traits of olive tree rhizosphere actinomycetes were a promising tool for agricultural applications and clinical antibiotic resistance. Differentiation of organisms with the antagonism of pathogenic activities and PGP features could be a definitive method for future studies.
Collapse
|
21
|
Yang C, Qian R, Xu Y, Yi J, Gu Y, Liu X, Yu H, Jiao B, Lu X, Zhang W. Marine Actinomycetes-derived Natural Products. Curr Top Med Chem 2020; 19:2868-2918. [PMID: 31724505 DOI: 10.2174/1568026619666191114102359] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
Abstract
Actinomycetes is an abundant resource for discovering a large number of lead compounds, which play an important role in microbial drug discovery. Compared to terrestrial microorganisms, marine actinomycetes have unique metabolic pathways because of their special living environment, which has the potential to produce a variety of bioactive substances. In this paper, secondary metabolites isolated from marine actinomycetes are reviewed (2013-2018), most of which exhibited cytotoxic, antibacterial, and antiviral biological activities.
Collapse
Affiliation(s)
- Chengfang Yang
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Rui Qian
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Yao Xu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Junxi Yi
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Yiwen Gu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Xiaoyu Liu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Haobing Yu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Binghua Jiao
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Xiaoling Lu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, Australia.,Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, Australia
| |
Collapse
|
22
|
Siddharth S, Rai V R. Isolation and characterization of bioactive compounds with antibacterial, antioxidant and enzyme inhibitory activities from marine-derived rare actinobacteria, Nocardiopsis sp. SCA21. Microb Pathog 2019; 137:103775. [PMID: 31600541 DOI: 10.1016/j.micpath.2019.103775] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 10/04/2019] [Indexed: 01/20/2023]
Abstract
A rare actinobacteria strain designated SCA21, producing bioactive metabolites was isolated from marine sediment of Havelock Island, Andaman and Nicobar Islands, India. Analysis of 16S rRNA sequences suggested that the strain SCA21 belonged to the genus Nocardiopsis. Chemical investigation of the fermentation broth led to the isolation of two pure bioactive compounds (1-2). Compound 1: 4-bromophenol, a bromophenol derivative; Compound 2: Bis (2-ethylhexyl) phthalate, a phthalate ester. The structure of compound 1 and 2 were elucidated by the detailed analysis of FT-IR, HR-ESI-MS, 1D and 2D NMR, along with literature data analysis. The isolated metabolites were evaluated for enzyme inhibition activity against α-glucosidase and α-amylase, free radical scavenging activity against DPPH and ABTS radicals, metal chelating and antibacterial activity against clinical pathogens. 1 and 2 exhibited remarkable enzyme inhibitory activities against α-glucosidase. However, Compound 2 was found less active against α-amylase. They showed significant free radical scavenging activity against DPPH and ABTS radicals. In addition, except the strain Salmonella typhi ATCC 25241 and Listeria cytogens ATCC 13932, 1 and 2 showed broad spectrum inhibitory activity against MRSA ATCC NR-46171, MRSA ATCC-46071, Klebsiella pneumonia ATCC 13883, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 12600. In conclusion, to best of our knowledge these findings are the first report of isolation of 4-bromophenol and Bis (2-ethylhexyl) phthalate from genus Nocardiopsis, thus suggesting that rare actinomycetes are promising source of therapeutically important bioactive metabolites.
Collapse
Affiliation(s)
- Saket Siddharth
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, 570006, India.
| | - Ravishankar Rai V
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, 570006, India.
| |
Collapse
|
23
|
Peela S, Girijashankar V, Ponamgi SPD, Mandali N, Nagaraju GP. Novel tetracycline SBR-22 is a functional moiety deviation and bioactive against multidrug resistant strains. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Metagenomics Approaches in Discovery and Development of New Bioactive Compounds from Marine Actinomycetes. Curr Microbiol 2019; 77:645-656. [PMID: 31069462 DOI: 10.1007/s00284-019-01698-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Marine actinomycetes are prolific sources of marine drug discovery system contributing for several bioactive compounds of biomedical prominence. Metagenomics, a culture-independent technique through its sequence- and function-based screening has led to the discovery and synthesis of numerous biologically significant compounds like polyketide synthase, Non-ribosomal peptide synthetase, antibiotics, and biocatalyst. While metagenomics offers different advantages over conventional sequencing techniques, they also have certain limitations including bias classification, non-availability of quality DNA samples, heterologous expression, and host selection. The assimilation of advanced amplification and screening methods such as φ29 DNA polymerase, Next-Generation Sequencing, Cosmids, and recent bioinformatics tools like automated genome mining, anti-SMASH have shown promising results to overcome these constrains. Consequently, functional genomics and bioinformatics along with synthetic biology will be crucial for the success of the metagenomic approach and indeed for exploring new possibilities among the microbial consortia for the future drug discovery process.
Collapse
|
25
|
Antioxidant and Neuroprotective Potential of the Brown Seaweed Bifurcaria bifurcata in an in vitro Parkinson's Disease Model. Mar Drugs 2019; 17:md17020085. [PMID: 30717087 PMCID: PMC6410415 DOI: 10.3390/md17020085] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/14/2023] Open
Abstract
Bifurcaria bifurcata is a marine brown seaweed mainly found on the Atlantic coast. Herein, we report the antioxidant and neuroprotective activities of seven fractions (F1⁻F7) obtained by normal phase chromatography from the B. bifurcata dichloromethane extract, as well as of its two major isolated diterpenes. Total phenolic content of fractions was determined by the Folin⁻Ciocalteu method, while antioxidant activity was evaluated by the DPPH, ORAC, and FRAP assays. Neuroprotective effects were evaluated in a neurotoxic model induced by 6-hydroxydopamine (6-OHDA) in a human neuroblastoma cell line (SH-SY5Y), while the mechanisms associated to neuroprotection were investigated by the determination of mitochondrial membrane potential, H₂O₂ production, Caspase-3 activity, and by observation of DNA fragmentation. Fractions F4 and F5 exhibited the best neuroprotective and antioxidant activities, respectively. F4 fraction prevented changes in mitochondrial potential, and induced a reduction of H₂O₂ levels production and an increase in cell viability, suggesting that it may contain multi-target compounds acting on different pathways. Hence, this fraction was subjected to purification steps, affording the known diterpenes eleganolone and eleganonal. Both compounds exhibited antioxidant potential, being interesting candidates for further neuroprotective studies.
Collapse
|
26
|
Ramachandran G, Rajivgandhi G, Maruthupandy M, Manoharan N. Extraction and partial purification of secondary metabolites from endophytic actinomycetes of marine green algae Caulerpa racemosa against multi drug resistant uropathogens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Bauermeister A, Velasco-Alzate K, Dias T, Macedo H, Ferreira EG, Jimenez PC, Lotufo TMC, Lopes NP, Gaudêncio SP, Costa-Lotufo LV. Metabolomic Fingerprinting of Salinispora From Atlantic Oceanic Islands. Front Microbiol 2018; 9:3021. [PMID: 30619120 PMCID: PMC6297358 DOI: 10.3389/fmicb.2018.03021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/22/2018] [Indexed: 11/13/2022] Open
Abstract
Salinispora (Micromonosporaceae) is an obligate marine bacterium genus consisting of three species that share over 99% 16S rRNA identity. The genome and biosynthetic pathways of the members of this genus have been widely investigated due to their production of species-specific metabolites. However, despite the species’ high genetic similarity, site-specific secondary metabolic gene clusters have been found in Salinispora strains collected at different locations. Therefore, exploring the metabolic expression of Salinispora recovered from different sites may furnish insights into their environmental adaptation or their chemical communication and, further, may lead to the discovery of new natural products. We describe the first occurrence of Salinispora strains in sediments from the Saint Peter and Saint Paul Archipelago (a collection of islets in Brazil) in the Atlantic Ocean, and we investigate the metabolic profiles of these strains by employing mass-spectrometry-based metabolomic approaches, including molecular networking from the Global Natural Products Social Molecular Networking platform. Furthermore, we analyze data from Salinispora strains recovered from sediments from the Madeira Archipelago (Portugal, Macaronesia) in order to provide a wider metabolomic investigation of Salinispora strains from the Atlantic Oceanic islands. Overall, our study evidences a broader geographic influence on the secondary metabolism of Salinispora than was previously proposed. Still, some biosynthetic gene clusters, such as those corresponding to typical chemical signatures of S. arenicola, like saliniketals and rifamycins, are highly conserved among the assessed strains.
Collapse
Affiliation(s)
- Anelize Bauermeister
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Karen Velasco-Alzate
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago Dias
- UCIBIO-REQUIMTE, Departamento de Química, Laboratório de Biotecnologia Azul e Biomedicina, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Laboratório de Biotecnologia Azul e Biomedicina, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Helena Macedo
- UCIBIO-REQUIMTE, Departamento de Química, Laboratório de Biotecnologia Azul e Biomedicina, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Laboratório de Biotecnologia Azul e Biomedicina, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Elthon G Ferreira
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Paula C Jimenez
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Ciências do Mar, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tito M C Lotufo
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil
| | - Norberto P Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Susana P Gaudêncio
- UCIBIO-REQUIMTE, Departamento de Química, Laboratório de Biotecnologia Azul e Biomedicina, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Laboratório de Biotecnologia Azul e Biomedicina, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Letícia V Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Ibrahim AH, Desoukey SY, Fouad MA, Kamel MS, Gulder TAM, Abdelmohsen UR. Natural Product Potential of the Genus Nocardiopsis. Mar Drugs 2018; 16:md16050147. [PMID: 29710816 PMCID: PMC5983278 DOI: 10.3390/md16050147] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Actinomycetes are a relevant source of novel bioactive compounds. One of the pharmaceutically and biotechnologically important genera that attract natural products research is the genus Nocardiopsis, mainly for its ability to produce a wide variety of secondary metabolites accounting for its wide range of biological activities. This review covers the literature from January 2015 until February 2018 making a complete survey of all the compounds that were isolated from the genus Nocardiopsis, their biological activities, and natural sources, whenever applicable.
Collapse
Affiliation(s)
- Alyaa Hatem Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Samar Yehia Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Mostafa A Fouad
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Minia 61111, Egypt.
| | - Tobias A M Gulder
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Biosystems Chemistry, Technical University of Munich, Lichtenbergstraβe 4, 85748 Garching, Germany.
| | | |
Collapse
|