1
|
Zhu Q, Chen B, Zhang F, Zhang B, Guo Y, Pang M, Huang L, Wang T. Toxic and essential metals: metabolic interactions with the gut microbiota and health implications. Front Nutr 2024; 11:1448388. [PMID: 39135557 PMCID: PMC11317476 DOI: 10.3389/fnut.2024.1448388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Human exposure to heavy metals, which encompasses both essential and toxic varieties, is widespread. The intestine functions as a critical organ for absorption and metabolism of heavy metals. Gut microbiota plays a crucial role in heavy metal absorption, metabolism, and related processes. Toxic heavy metals (THMs), such as arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd), can cause damage to multiple organs even at low levels of exposure, and it is crucial to emphasize their potential high toxicity. Nevertheless, certain essential trace elements, including iron (Fe), copper (Cu), and manganese (Mn), play vital roles in the biochemical and physiological functions of organisms at low concentrations but can exert toxic effects on the gut microbiota at higher levels. Some potentially essential micronutrients, such as chromium (Cr), silicon (Si), and nickel (Ni), which were considered to be intermediate in terms of their essentiality and toxicity, had different effects on the gut microbiota and their metabolites. Bidirectional relationships between heavy metals and gut microbiota have been found. Heavy metal exposure disrupts gut microbiota and influences its metabolism and physiological functions, potentially contributing to metabolic and other disorders. Furthermore, gut microbiota influences the absorption and metabolism of heavy metals by serving as a physical barrier against heavy metal absorption and modulating the pH, oxidative balance, and concentrations of detoxification enzymes or proteins involved in heavy metal metabolism. The interactions between heavy metals and gut microbiota might be positive or negative according to different valence states, concentrations, and forms of the same heavy metal. This paper reviews the metabolic interactions of 10 common heavy metals with the gut microbiota and their health implications. This collated information could provide novel insights into the disruption of the intestinal microbiota caused by heavy metals as a potential contributing factor to human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianjiao Wang
- Department of Personnel Management, Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
2
|
Gu Y, Zheng S, Huang C, Cao X, Liu P, Zhuang Y, Li G, Hu G, Gao X, Guo X. Microbial colony sequencing combined with metabolomics revealed the effects of chronic hexavalent chromium and nickel combined exposure on intestinal inflammation in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169853. [PMID: 38218477 DOI: 10.1016/j.scitotenv.2023.169853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
The pollution and toxic effects of hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] have become worldwide public health issues. However, the potential detailed effects of chronic combined Cr(VI) and Ni exposure on colonic inflammation in mice have not been reported. In this study, 16S rDNA sequencing, metabolomics data analysis, qPCR and other related experimental techniques were used to comprehensively explore the mechanism of toxic damage and the inflammatory response of the colon in mice under the co-toxicity of chronic hexavalent chromium and nickel. The results showed that long-term exposure to Cr(VI) and/or Ni resulted in an imbalance of trace elements in the colon of mice with significant inflammatory infiltration of tissues. Moreover, Cr(VI) and/or Ni poisoning upregulated the expression levels of IL-6, IL-18, IL-1β, TNF-α, IFN-γ, JAK2 and STAT3 mRNA, and downregulated IL-10 mRNA, which was highly consistent with the trend in protein expression. Combined with multiomics analysis, Cr(VI) and/or Ni could change the α diversity and β diversity of the gut microbiota and induce significant differential changes in metabolites such as Pyroglu-Glu-Lys, Val-Asp-Arg, stearidonic acid, and 20-hydroxyarachidonic acid. They are also associated with disorders of important metabolic pathways such as lipid metabolism and amino acid metabolism. Correlation analysis revealed that there was a significant correlation between gut microbes and metabolites (P < 0.05). In summary, based on the advantages of comprehensive analysis of high-throughput sequencing sets, these results suggest that chronic exposure to Cr(VI) and Ni in combination can cause microbial flora imbalances, induce metabolic disorders, and subsequently cause colonic damage in mice. These data provide new insights into the toxicology and molecular mechanisms of Cr(VI) and Ni.
Collapse
Affiliation(s)
- Yueming Gu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuangyan Zheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xianhong Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
3
|
Tang J, Zhao H, Li K, Zhou H, Chen Q, Wang H, Li S, Xu J, Sun Y, Chang X. Intestinal microbiota promoted NiONPs-induced liver fibrosis via effecting serum metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115943. [PMID: 38194811 DOI: 10.1016/j.ecoenv.2024.115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Nickel oxide nanoparticles (NiONPs) are toxic heavy metal compounds that induce liver fibrosis and metabolic disorders. Current research shows that the intestinal microbiota regulates liver metabolism through the gut-liver axis. However, it is unclear whether NiONPs affect the intestinal microbiota and the relationship between microbiota and liver metabolic disorders. Therefore, in this study, we established liver fibrosis model by administering 0.015, 0.06 and 0.24 mg/mL NiONPs through tracheal instillation twice a week for 9 weeks in rats, then we collected serum and fecal sample for whole metabolomics and metagenomic sequencing. As the result of sequencing, we screened out seven metabolites (beta-D-glucuronide, methylmalonic acid, linoleic acid, phosphotidylcholine, lysophosphatidylinositol, docosapentaenoic acid and progesterone) that related to functional alterations (p < 0.05), and obtained a decrease of probiotics abundances (p < 0.05) as well as a variation of the microbiota enzyme activity (p < 0.05), indicating that NiONPs inhibited the proliferation of probiotics. As the result of correlation analysis, we found a positive correlation between differential metabolites and probiotics, such as lysophosphatidylinositol was positively correlated with Desulfuribacillus, Jeotgallibacillus and Rummeliibacillus (p < 0.05). We also found that differential metabolites had correlations with differential proteins and enzymes of intestinal microbiota, such as glucarate dehydratase, dihydroorotate dehydrogenase and acetyl-CoA carboxylase (p < 0.05). Finally, we screened six metabolic pathways with both differential intestinal microbiota enzymes and metabolites were involved, such as pentose and glucuronate interconversions, and linoleic acid metabolism. In vitro experiments showed that NiONPs increased the transcriptional expression of Col1A1 in LX-2 cells, while reducing the mRNA expression of serine/threonine activators, acetyl coenzyme carboxylase, and lysophosphatidylinositol synthase, and short chain fatty acid sodium butyrate can alleviate these variation trends. The results proved that the intestinal microbiota enzyme systems were associated with serum metabolites, suggesting that the disturbance of intestinal microbiota and reduction of probiotics promoted the occurrence and development of NiONPs-induced liver fibrosis by affecting metabolic pathways.
Collapse
Affiliation(s)
- Jiarong Tang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hongjun Zhao
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Haodong Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qingyang Chen
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sheng Li
- Pulmonary Hospital of Lanzhou, Public Health Department, Lanzhou 730000, China
| | - Jianguang Xu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Xuhong Chang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China.
| |
Collapse
|
4
|
Yang J, Feng P, Ling Z, Khan A, Wang X, Chen Y, Ali G, Fang Y, Salama ES, Wang X, Liu P, Li X. Nickel exposure induces gut microbiome disorder and serum uric acid elevation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121349. [PMID: 36870597 DOI: 10.1016/j.envpol.2023.121349] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Serum uric acid elevation has been found in long-term nickel (Ni) exposure occupational workers, but the mechanism is unclear. In this study, the relationship between Ni exposure and uric acid elevation was explored in a cohort of 109 participants composed of a Ni-exposed workers group and a control group. The results showed that Ni concentration (5.70 ± 3.21 μg/L) and uric acid level (355.95 ± 67.87 μmol/L) in the serum were increased in the exposure group with a significant positive correlation (r = 0.413, p < 0.0001). The composition of gut microbiota and metabolome revealed that the abundance of uric acid-lowering bacteria, such as Lactobacillus, Lachnospiraceae_Unclassfied and Blautia were reduced while pathogenic bacteria including Parabacteriadies and Escherichia-Shigella were enriched in Ni group, accompanied by impaired intestinal degradation of purines and upregulated biosynthesis of primary bile acids. Consistent with human results, the mice experiments showed that Ni treatment significantly promotes uric acid elevation and systemic inflammation. Lactobacillus and Blautia in gut microbiota were reduced and inflammation-related taxa Alistipes and Mycoplasma were enriched in the Ni treatment. In addition, LC-MS/MS metabolomic analysis indicated that purine nucleosides were accumulated in mice feces, which increased purine absorption and uric acid elevation in the serum. In summary, this study provides evidence that UA elevation was correlated with heavy metals exposure and highlighted the role of gut microbiota in intestinal purine catabolism and in the pathogenesis of heavy metal-induced hyperuricemia.
Collapse
Affiliation(s)
- Jinfeng Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Pengya Feng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Department of Children Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zhenmin Ling
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Aman Khan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Xing Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Yanli Chen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Gohar Ali
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Ximei Wang
- Jinchang Jujia Dairy Co., Ltd, Jinchang, Gansu Province, PR China
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| |
Collapse
|
5
|
Huang L, He F, Wu B. Mechanism of effects of nickel or nickel compounds on intestinal mucosal barrier. CHEMOSPHERE 2022; 305:135429. [PMID: 35760131 DOI: 10.1016/j.chemosphere.2022.135429] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
As an important metal in industry, national defense, and production, nickel widely exists in nature and is also a necessary trace element for human beings and animals. Nickel deficiency will affect the growth and development of animals, the contents of related active substances, enzymes and other essential elements in vivo. However, excessive nickel or longer nickel exposure can induce excessive free radicals (reactive oxygen species and reactive nitrogen) in the body, which can lead to a variety of cell damage, apoptosis and canceration, and ultimately pose negative effects on the health of the body. Among them, the intestinal tract, as the largest interface between the body and the external environment, greatly increases the contact probability between nickel or nickel compounds and the intestinal mucosal barrier, thus, the intestinal structure and function are also more vulnerable to nickel damage, leading to a series of related diseases such as enteritis. Therefore, this paper briefly analyzed the damage mechanism of nickel or its compounds to the intestinal tract from the perspective of four intestinal mucosal barriers: mechanical barrier, immune barrier, microbial barrier and chemical barrier, we hope to make a certain theoretical contribution to the further research and the prevention and treatment of nickel related diseases.
Collapse
Affiliation(s)
- Lijing Huang
- College of Life Sciences, China West Normal University, Nanchong, PR China
| | - Fang He
- College of Life Sciences, China West Normal University, Nanchong, PR China
| | - Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education PR China, Nanchong, PR China; College of Life Sciences, China West Normal University, Nanchong, PR China.
| |
Collapse
|
6
|
Bioactive compounds, antibiotics and heavy metals: effects on the intestinal structure and microbiome of monogastric animals – a non-systematic review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The intestinal structure and gut microbiota are essential for the animals‘ health. Chemical components taken with food provide the right environment for a specific microbiome which, together with its metabolites and the products of digestion, create an environment, which in turn is affects the population size of specific bacteria. Disturbances in the composition of the gut microbiota can be a reason for the malformation of guts, which has a decisive impact on the animal‘ health. This review aimed to analyse scientific literature, published over the past 20 years, concerning the effect of nutritional factors on gut health, determined by the intestinal structure and microbiota of monogastric animals. Several topics have been investigated: bioactive compounds (probiotics, prebiotics, organic acids, and herbal active substances), antibiotics and heavy metals (essentaial minerals and toxic heavy metals).
Collapse
|
7
|
Caioni G, Cimini A, Benedetti E. Food Contamination: An Unexplored Possible Link between Dietary Habits and Parkinson’s Disease. Nutrients 2022; 14:nu14071467. [PMID: 35406080 PMCID: PMC9003245 DOI: 10.3390/nu14071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Importance of a healthy lifestyle in maintaining the population’s well-being and health, especially in terms of balanced nutrition, is well known. Food choice of and dieting habits could impact disease management, which is especially true for Parkinson’s disease (PD). However, nowadays, it is not that simple to maintain a balance in nutrition, and the idea of a healthy diet tends to fade as the consequence of a western lifestyle. This should not only be dealt with in the context of food choice, but also from an environmental point of view. What we put into our bodies is strictly related to the quality of ecosystems we live in. For these reasons, attention should be directed to all the pollutants, which in many cases, we unknowingly ingest. It will be necessary to explore the interaction between food and environment, since human activity also influences the raw materials destined for consumption. This awareness can be achieved by means of an innovative scientific approach, which involves the use of new models, in order to overcome the traditional scientific investigations included in the study of Parkinson’s disease.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.C.)
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.C.)
- Correspondence: ; Tel.: +39-086-243-3267
| |
Collapse
|
8
|
Mori H, Hayashi S, Mori S, Ikegami T, Saito Y, Yamauchi A, Okamoto M, Hamasaki Y, Igawa K. A case of systemic nickel allergy with diarrhea-predominant irritable bowel syndrome in which nickel intake restriction and administration of a probiotic formulation were effective. Allergol Int 2021; 70:515-516. [PMID: 33853743 DOI: 10.1016/j.alit.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/18/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022] Open
|
9
|
Yang Y, Xia R, Zhang X, Wang X, Zhou Y, Wang H, Feng Y, Lv S, Ji S. Effects of Oral Exposure to Mn-Doped ZnS Quantum Dots on Intestinal Tract and Gut Microbiota in Mice. Front Physiol 2021; 12:657266. [PMID: 34295256 PMCID: PMC8290145 DOI: 10.3389/fphys.2021.657266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/27/2021] [Indexed: 11/14/2022] Open
Abstract
Mn-doped ZnS quantum dots (QDs) with excellent optical properties have been explored in a wide range of fields. Their potential adverse effects on biological systems and human health should be evaluated before biological application. In the present study, we investigated the effect of Mn-doped ZnS QDs on the intestinal tract and gut microbiota structures at 2 h and 14 days (d) after 14 d repeated oral exposure in mice. Flame atomic absorption spectrophotometry (FAAS), histopathological examination, and transmission electron microscopy (TEM) were used to assess the absorption and toxicity of Mn-doped ZnS QDs on the intestinal tract. The 16S rRNA gene sequencing was used to evaluate the gut microbial communities. Mn-doped ZnS QDs did not accumulate in the duodenum, jejunum, ileum, or colon. The Zn content of feces was not significantly higher than in the control group. No major histological changes were found in these tissues. The intestinal microvilli remained regular, but swelling of mitochondria and endoplasmic reticulum was detected by TEM at 14 d after the last gavage. A total of 2,712 operational taxonomic units (OTUs) were generated. Mn-doped ZnS QDs treatment did not significantly change the α-diversity of Richness, Chao1, Shannon, and Simpson indexes. According to principal component analysis (PCA), Mn-doped ZnS QDs had no effect on the overall structure of the gut microbiota. No significant change occurred at the phylum level, while three genera were downregulated at 2 h and seven changed at 14 d after the last gavage. Our findings revealed that Mn-doped ZnS QDs had a little stimulation of the intestinal tract and gut microbiota, and oral administration may be a safe route for biological application (such as bioimaging and drug delivery).
Collapse
Affiliation(s)
- Yanjie Yang
- Institute of Molecular Medicine, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ruixue Xia
- Institute of Molecular Medicine, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaomei Zhang
- Institute of Molecular Medicine, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xu Wang
- Institute of Molecular Medicine, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuchen Zhou
- Institute of Molecular Medicine, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Institute of Molecular Medicine, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yu Feng
- Institute of Molecular Medicine, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shaoping Ji
- Institute of Molecular Medicine, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
10
|
Wu Y, Chen Y, Li Q, Ye X, Guo X, Sun L, Zou J, Shen Y, Mao Y, Li C, Yang Y. Tetrahydrocurcumin alleviates allergic airway inflammation in asthmatic mice by modulating the gut microbiota. Food Funct 2021; 12:6830-6840. [PMID: 34116562 DOI: 10.1039/d1fo00194a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dietary factors can reshape the gut microbiota and consequently affect disease progression. We previously reported that tetrahydrocurcumin (THC), the major active metabolite of curcumin (Cur), could ameliorate allergic inflammation in asthmatic mice. Herein, we aimed to investigate whether THC or Cur exerts anti-inflammatory effects on allergic asthma via modulating gut microbiota. Ovalbumin (OVA)-induced asthmatic mice were treated with Cur or THC, and the gut microbiota profiles were analyzed by 16S rRNA sequencing. Fecal microbiota transplantation (FMT) from Cur- or THC-fed donor mice was administered to OVA-induced asthmatic mice. Nasal symptoms and inflammation patterns of lungs and colons were evaluated in control, OVA-induced and Cur-or THC-treated mice. Both Cur and THC treatment could alter the compositions of the gut microbiota in asthmatic mice, characterized by a significant decrease in the ratio of Firmicutes to Bacteroidetes; Cur or THC supplementation also reduced the relative abundances of pro-inflammatory bacteria, e.g., Proteobacteria, Intestinimonas, Unidentified-Ruminococcaceae, and Lachnospiraceae, in OVA-induced mice. The relative abundances of Unidentified-Ruminococcaceae, Romboutsia, Intestinimonas, Akkermansia, and Mucispirillum were positively associated with the levels of Th2-related factors in asthmatic mice upon Cur or THC treatment. Moreover, THC-FMT showed better preventive effects than Cur-FMT on the development of allergic inflammation in OVA-induced mice, resulting in a reduction in symptoms and Th2-mediated inflammation in both lung and colon tissues. The results reveal that Cur- or THC-mediated alleviation of airway allergic inflammation is dependent on gut microbiota modulation. THC-induced gut microbiota may have therapeutic potential for asthma treatment.
Collapse
Affiliation(s)
- Yinfan Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Guérin T, Massanyi P, Van Loveren H, Baert K, Gergelova P, Nielsen E. Update of the risk assessment of nickel in food and drinking water. EFSA J 2020; 18:e06268. [PMID: 33193868 PMCID: PMC7643711 DOI: 10.2903/j.efsa.2020.6268] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its previous Opinion on nickel in food and drinking water, taking into account new occurrence data, the updated benchmark dose (BMD) Guidance and newly available scientific information. More than 47,000 analytical results on the occurrence of nickel were used for calculating chronic and acute dietary exposure. An increased incidence of post-implantation loss in rats was identified as the critical effect for the risk characterisation of chronic oral exposure and a BMDL 10 of 1.3 mg Ni/kg body weight (bw) per day was selected as the reference point for the establishment of a tolerable daily intake (TDI) of 13 μg/kg bw. Eczematous flare-up reactions in the skin elicited in nickel-sensitised humans, a condition known as systemic contact dermatitis, was identified as the critical effect for the risk characterisation of acute oral exposure. A BMDL could not be derived, and therefore, the lowest-observed-adverse-effect-level of 4.3 μg Ni/kg bw was selected as the reference point. The margin of exposure (MOE) approach was applied and an MOE of 30 or higher was considered as being indicative of a low health concern. The mean lower bound (LB)/upper bound (UB) chronic dietary exposure was below or at the level of the TDI. The 95th percentile LB/UB chronic dietary exposure was below the TDI in adolescents and in all adult age groups, but generally exceeded the TDI in toddlers and in other children, as well as in infants in some surveys. This may raise a health concern in these young age groups. The MOE values for the mean UB acute dietary exposure and for the 95th percentile UB raises a health concern for nickel-sensitised individuals. The MOE values for an acute scenario regarding consumption of a glass of water on an empty stomach do not raise a health concern.
Collapse
|