1
|
Wang T, Luo L, Xiong Y, Wang C, Shao H, Wang M, Guo C. Characterization and genomic analysis of an oceanic cyanophage infecting marine Synechococcus reveal a novel genus. Front Microbiol 2023; 14:1231279. [PMID: 37601358 PMCID: PMC10436341 DOI: 10.3389/fmicb.2023.1231279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Cyanophages play a crucial role in the biogeochemical cycles of aquatic ecosystems by affecting the population dynamics and community structure of cyanobacteria. In this study, a novel cyanophage, Nanhaivirus ms29, that infects Synechococcus sp. MW02 was isolated from the ocean basin in the South China Sea. It was identified as a T4-like phage using transmission electron microscopy. Phylogenetic analysis demonstrated that this cyanophage is distinct from other known T4-like cyanophage, belonging to a novel genus named Nanhaivirus within the family Kyanoviridae, according to the most recent classification proposed by the International Committee on Taxonomy of Viruses (ICTV). The genome of this novel cyanophage is composed of 178,866 bp of double-stranded DNA with a G + C content of 42.5%. It contains 217 potential open reading frames (ORFs) and 6 tRNAs. As many as 30 auxiliary metabolic genes (AMGs) were identified in the genome, which related to photosynthesis, carbon metabolism, nutrient uptake and stress tolerance, possibly reflecting a genomic adaption to the oligotrophic environment. Read-mapping analysis showed that Nanhaivirus ms29 mainly distributed in temperate and tropical epipelagic waters. This study enriches of the virus gene database of cyanophages and provides valuable insights into the phylogeny of cyanophages and their interactions with their hosts.
Collapse
Affiliation(s)
- Tiancong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lin Luo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yao Xiong
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Chuxiao Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Ocean University of China, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Luo L, Ma X, Guo R, Jiang T, Wang T, Shao H, He H, Wang H, Liang Y, McMinn A, Guo C, Wang M. Characterization and genomic analysis of a novel Synechococcus phage S-H9-2 belonging to Bristolvirus genus isolated from the Yellow Sea. Virus Res 2023; 328:199072. [PMID: 36781075 DOI: 10.1016/j.virusres.2023.199072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Cyanophages are known to influence the population dynamics and community structure of cyanobacteria and thus play an important role in biogeochemical cycles in aquatic ecosystems. In this study, a novel Synechococcus phage S-H9-2 infecting Synechococcus sp. WH 8102 was isolated from the coastal water of the Yellow Sea. Synechococcus phage S-H9-2 contains a 187,320 bp genome of double-stranded DNA with a G + C content of 40.3%, 202 potential open reading frames (ORFs), and 15 tRNAs. Phylogenetic analysis and nucleotide-based intergenomic similarity suggest that Synechococcus phage S-H9-2 belongs to the Bristolvirus genus under the family Kyanoviridae. Homologs of the S-H9-2 open reading frame can be found in a variety of marine environments, as shown by the results of mapping the genome sequence of S-H9-2 to the Global Ocean Viromes 2.0 dataset. The presence of auxiliary metabolic genes (AMGs) related to photosynthesis, carbon metabolism, and phosphorus assimilation, as well as phylogenetic relationships based on complete genome sequences, reflect the mechanism of phage-host interaction and host-specific strategies for adaptation to environmental conditions. This study enriches the current genomic database of cyanophage and contributed to our understanding of the virus-host interactions and their adaption to the environment.
Collapse
Affiliation(s)
- Lin Luo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaohong Ma
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao266011, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tiancong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, SA
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China; The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
3
|
Wang M, Gao C, Jiang T, You S, Jiang Y, Guo C, He H, Liu Y, Zhang X, Shao H, Liu H, Liang Y, Wang M, McMinn A. Genomic analysis of Synechococcus phage S-B43 and its adaption to the coastal environment. Virus Res 2020; 289:198155. [PMID: 32941942 DOI: 10.1016/j.virusres.2020.198155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022]
Abstract
Synechococcus dominate picocyanobacterial communities in coastal environments. However, only a few Synechococcus phages have been described from the coastal seas of the Northwest Pacific Ocean. Here a new Synechococcus phage, S-B43 was isolated from the Bohai Sea, a semi-closed coastal sea of the Northwest Pacific Ocean. S-B43 is a member of Myoviridae, containing 275 predicted open reading frames. Fourteen auxiliary metabolic genes (AMG) were identified from the genome of S-B43, including five photosynthetic associated genes and several AMGs related to its adaption to the high turbidity and eutrophic coastal environment with a low ratio of phosphorus to nitrogen (HNLP). The occurrences of 31 AMGs among 34 cyanophage genomes indicates that AMGs zwf, gnd, speD, petF and those coding for FECH and thioredoxin were more common in coastal areas than in the open ocean and AMGs pebS and ho1 were more prevalent in the open ocean. The occurrence of cyanophage AMGs in different environments might be a reflection of the environmental adaption of their hosts. This study contributes to our understanding of the interactions between cyanobacteria and cyanophages and their environmental adaption to the coastal environment.
Collapse
Affiliation(s)
- Meiwen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chen Gao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Tong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Siyuan You
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yundan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Hongbin Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
4
|
Jiang T, Guo C, Wang M, Wang M, Zhang X, Liu Y, Liang Y, Jiang Y, He H, Shao H, McMinn A. Genome Analysis of Two Novel Synechococcus Phages That Lack Common Auxiliary Metabolic Genes: Possible Reasons and Ecological Insights by Comparative Analysis of Cyanomyoviruses. Viruses 2020; 12:v12080800. [PMID: 32722486 PMCID: PMC7472177 DOI: 10.3390/v12080800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/01/2023] Open
Abstract
The abundant and widespread unicellular cyanobacteria Synechococcus plays an important role in contributing to global phytoplankton primary production. In the present study, two novel cyanomyoviruses, S-N03 and S-H34 that infected Synechococcus MW02, were isolated from the coastal waters of the Yellow Sea. S-N03 contained a 167,069-bp genome comprising double-stranded DNA with a G + C content of 50.1%, 247 potential open reading frames and 1 tRNA; S-H34 contained a 167,040-bp genome with a G + C content of 50.1%, 246 potential open reading frames and 5 tRNAs. These two cyanophages contain fewer auxiliary metabolic genes (AMGs) than other previously isolated cyanophages. S-H34 in particular, is currently the only known cyanomyovirus that does not contain any AMGs related to photosynthesis. The absence of such common AMGs in S-N03 and S-H34, their distinct evolutionary history and ecological features imply that the energy for phage production might be obtained from other sources rather than being strictly dependent on the maintenance of photochemical ATP under high light. Phylogenetic analysis showed that the two isolated cyanophages clustered together and had a close relationship with two other cyanophages of low AMG content. Comparative genomic analysis, habitats and hosts across 81 representative cyanomyovirus showed that cyanomyovirus with less AMGs content all belonged to Synechococcus phages isolated from eutrophic waters. The relatively small genome size and high G + C content may also relate to the lower AMG content, as suggested by the significant correlation between the number of AMGs and G + C%. Therefore, the lower content of AMG in S-N03 and S-H34 might be a result of viral evolution that was likely shaped by habitat, host, and their genomic context. The genomic content of AMGs in cyanophages may have adaptive significance and provide clues to their evolution.
Collapse
Affiliation(s)
- Tong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Cui Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- Correspondence:
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Meiwen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Yundan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
5
|
Wang Y, Jin H, Yang F, Jiang YL, Zhao YY, Chen ZP, Li WF, Chen Y, Zhou CZ, Li Q. Crystal structure of a novel fold protein Gp72 from the freshwater cyanophage Mic1. Proteins 2020; 88:1226-1232. [PMID: 32337767 DOI: 10.1002/prot.25896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/10/2020] [Indexed: 11/09/2022]
Abstract
Cyanophages, widespread in aquatic systems, are a class of viruses that specifically infect cyanobacteria. Though they play important roles in modulating the homeostasis of cyanobacterial populations, little is known about the freshwater cyanophages, especially those hypothetical proteins of unknown function. Mic1 is a freshwater siphocyanophage isolated from the Lake Chaohu. It encodes three hypothetical proteins Gp65, Gp66, and Gp72, which share an identity of 61.6% to 83%. However, we find these three homologous proteins differ from each other in oligomeric state. Moreover, we solve the crystal structure of Gp72 at 2.3 Å, which represents a novel fold in the α + β class. Structural analyses combined with redox assays enable us to propose a model of disulfide bond mediated oligomerization for Gp72. Altogether, these findings provide structural and biochemical basis for further investigations on the freshwater cyanophage Mic1.
Collapse
Affiliation(s)
- Ying Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Hua Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Feng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yan-Yan Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei-Fang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
6
|
Jiang T, Guo C, Wang M, Wang M, You S, Liu Y, Zhang X, Liu H, Jiang Y, Shao H, Liang Y, McMinn A. Isolation and complete genome sequence of a novel cyanophage, S-B05, infecting an estuarine Synechococcus strain: insights into environmental adaptation. Arch Virol 2020; 165:1397-1407. [PMID: 32307604 DOI: 10.1007/s00705-020-04595-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/21/2020] [Indexed: 11/24/2022]
Abstract
A new cyanophage, S-B05, infecting a phycoerythrin-enriched (PE-type) Synechococcus strain was isolated by the liquid infection method, and its morphology and genetic features were examined. Phylogenetic analysis and morphological observation confirmed that S-B05 belongs to the family Myoviridae of the order Caudovirales. Its genome was fully sequenced, and found to be 208,857 bp in length with a G + C content of 39.9%. It contained 280 potential open reading frames and 123 conserved domains. Ninety-eight functional genes responsible for cyanophage structuring and packaging, DNA replication and regulation, and photosynthesis were identified, as well as genes encoding 172 hypothetical proteins. The genome of S-B05 is most similar to that of Prochlorococcus phage P-TIM68. Homologues of open reading frames of S-B05 can be found in various marine environments, as revealed by comparison of the S-B05 genome sequence to sequences in marine viral metagenomic databases. The presence of auxiliary metabolic genes (AMGs) related to photosynthesis, carbon metabolism, and phosphorus assimilation, as well as the phylogenetic relationships based on AMGs and the complete genome sequence, reflect the phage-host interaction mechanism or the specific adaptation strategy of the host to environmental conditions. The genome sequence information reported here will provide an important basis for further study of the adaptive evolution and ecological role of cyanophages and their hosts in the marine environment.
Collapse
Affiliation(s)
- Tong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China
| | - Meiwen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Siyuan You
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yundan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongbin Liu
- Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| |
Collapse
|