1
|
Petithomme-Nanrocki M, Nicolau-Guillaumet N, Borie N, Haudrechy A, Renault JH, Moussalih S, Muggeo A, Guillard T. Resistance of Pseudomonas aeruginosa and Staphylococcus aureus to the airway epithelium oxidative response assessed by a cell-free in vitro assay. PLoS One 2024; 19:e0306259. [PMID: 39141636 PMCID: PMC11324103 DOI: 10.1371/journal.pone.0306259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/12/2024] [Indexed: 08/16/2024] Open
Abstract
The antibacterial oxidative response, which relies on the production of hydrogen peroxide (H2O2) and hypothiocyanite (OSCN-), is a major line of defense protecting the human airway epithelium (HAE) from lesions when infected. The in vitro studies of the oxidative responses are performed mainly by one-shot H2O2 exposure that does not recapitulate the complex H2O2/LPO/SCN- system releasing the reactive oxygen species in airway secretions. A cell-free in vitro assay mimicking this system has been described but was not fully characterized. Here, we comprehensively characterized the hourly H2O2/OSCN- concentrations produced within this in vitro assay and assessed the resistance of Pseudomonas aeruginosa and Staphylococcus aureus clinical strains to the HAE oxidative response. We found that H2O2/OSCN- were steadily produced from 7h and up to 25h, but OSCN- was detoxified in 15 minutes by bacteria upon exposure. Preliminary tests on PA14 showed survival rates at 1-hour post-exposure (hpe) to H2O2 of roughly 50% for 105 and 107 colony-forming unit (CFU)/mL inocula, while 102 and 104 CFU/mL inocula were cleared after one hpe. Thirteen clinical strains were then exposed, highlighting that conversely to P. aeruginosa, S. aureus showed resistance to oxidative stress independently of its antibiotic resistance phenotype. Our results demonstrated how this in vitro assay can be helpful in assessing whether pathogens can resist the antibacterial oxidative HAE response. We anticipate these findings as a starting point for more sophisticated in vitro models that could serve as high-throughput screening for molecules targeting the bacterial antioxidant response.
Collapse
Affiliation(s)
| | - Nathan Nicolau-Guillaumet
- INSERM, CHU de Reims, Laboratoire de Bactériologie-Virologie-Hygiène hospitalière-Parasitologie-Mycologie, P3Cell, U 1250, Université de Reims Champagne-Ardenne, Reims, France
| | - Nicolas Borie
- CNRS, ICMR, UMR 7312, Université de Reims Champagne-Ardenne, Reims, France
| | - Arnaud Haudrechy
- CNRS, ICMR, UMR 7312, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Sophie Moussalih
- INSERM, P3Cell, U 1250, Université de Reims Champagne-Ardenne, Reims, France
| | - Anaëlle Muggeo
- INSERM, CHU de Reims, Laboratoire de Bactériologie-Virologie-Hygiène hospitalière-Parasitologie-Mycologie, P3Cell, U 1250, Université de Reims Champagne-Ardenne, Reims, France
| | - Thomas Guillard
- INSERM, CHU de Reims, Laboratoire de Bactériologie-Virologie-Hygiène hospitalière-Parasitologie-Mycologie, P3Cell, U 1250, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
2
|
Zhu L, Li J, Yang J, Li X, Lin D, Wang M. Fermentation broth from fruit and vegetable waste works: Reducing the risk of human bacterial pathogens in soil by inhibiting quorum sensing. ENVIRONMENT INTERNATIONAL 2024; 188:108753. [PMID: 38761431 DOI: 10.1016/j.envint.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Fermentation broth from fruit and vegetable waste (FFVW) has demonstrated remarkable ability as a soil amendment and in reducing antibiotic resistance genes (ARGs) pollution. However, the potential of FFVW to mitigate other microbial contamination such as human bacterial pathogens (HBPs) and virulence factor genes (VFGs), which are closely associated with human health, remains unknown. In this study, metagenomic analysis revealed that FFVW reduced the HBPs with high-risk of ARGs and VFGs including Klebsiella pneumoniae (reduced by 40.4 %), Mycobacterium tuberculosis (reduced by 21.4 %) and Streptococcus pneumoniae (reduced by 38.7 %). Correspondingly, VFG abundance in soil decreased from 3.40 copies/cell to 2.99 copies/cell. Further analysis illustrated that these was mainly attributed to the inhibition of quorum sensing (QS). FFVW reduced the abundance of QS signals, QS synthesis genes such as rpaI and luxS, as well as receptor genes such as rpfC and fusK, resulting in a decreased in risk of ARGs and VFGs. The pure culture experiment revealed that the expression of genes related to QS, VFGs, ARGs and mobile genetic elements (MGEs) were downregulated in Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and K. pneumoniae treated by FFVW, consistent with the result of metagenomic analysis. This study suggested an environmentally friendly approach for controlling soil VFGs/ARGs-carrying HBPs, which is crucial for both soil and human health under the framework of "One Health".
Collapse
Affiliation(s)
- Lin Zhu
- Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China; Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jingpeng Li
- Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China; Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jian Yang
- Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China; Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiaodi Li
- Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China; Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Da Lin
- Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China; Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Meizhen Wang
- Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China; Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
3
|
Zhong W, Tang M, Xie Y, Huang X, Liu Y. Tea Polyphenols Inhibit the Activity and Toxicity of Staphylococcus aureus by Destroying Cell Membranes and Accumulating Reactive Oxygen Species. Foodborne Pathog Dis 2023; 20:294-302. [PMID: 37347934 DOI: 10.1089/fpd.2022.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Staphylococcus aureus can cause bacterial food intoxication and seriously affect human health. Tea polyphenols (TP) are a kind of natural, safe, and broad-spectrum bacteriostatic substances, with a wide range of bacteriostatic effects. In the study, we explored the possible bacteriostatic mode of TP. The minimum inhibitory concentration of TP against S. aureus was 64 μg/mL. Protein, DNA, and K+ leak experiments, fluorescence microscopy, and transmission electron microscopy suggested that TP disrupt cell membranes, leading to intracellular component loss. By studying the effect of TP on the toxicity of S. aureus, it was found that the expression levels of two toxin genes, coa and spa, were downregulated by 2.37 and 32.6, respectively. Furthermore, after treatment with TP, a large number of reactive oxygen species (ROS) were propagated and released, leading to oxidative stress in cells. We speculated that the bacteriostatic mechanism of TP may be through the destruction of the cell membrane and ROS-mediated oxidative stress. Meanwhile, the hemolysis activity proved the safety of TP. Our results suggested that TP may be a potential antimicrobial agent for food.
Collapse
Affiliation(s)
- Weiwei Zhong
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Mengsheng Tang
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Yan Xie
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Liu
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Wang M, Lian Y, Wang Y, Zhu L. The role and mechanism of quorum sensing on environmental antimicrobial resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121238. [PMID: 36758922 DOI: 10.1016/j.envpol.2023.121238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
As more environmental contaminants emerging, antibiotics and antibiotic resistance genes (ARGs) have caused a substantial increase of antimicrobial resistance (AMR) in environment. Quorum sensing (QS) is a bacterial cell-to-cell communication process that regulates many traits and gene expression, including ARGs and the related genes that contribute to AMR development. Herein, we summarize the role, physiology, and genetic mechanisms of bacterial QS in AMR development in the environment. First, the effect of QS on AMR is introduced. Next, the role of QS in bacterial physiological behaviors that promote AMR development, including membrane permeability, tactic movement, biofilm formation, persister formation, and small colony variants (SCVs), is systematically analyzed. Furthermore, the regulation of QS on the expression of ARGs, generation of reactive oxygen species (ROS), which affects ARGs formation, and horizontal gene transfer (HGT), which accelerates the transmission of ARGs, are discussed to reveal the molecular mechanism for AMR development. This review provides a reference for a better understanding of AMR evolution and novel insights into AMR prevention.
Collapse
Affiliation(s)
- Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Yulu Lian
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
5
|
He J, Liu S, Fang Q, Gu H, Hu Y. The Thioredoxin System in Edwardsiella piscicida Contributes to Oxidative Stress Tolerance, Motility, and Virulence. Microorganisms 2023; 11:827. [PMID: 37110252 PMCID: PMC10145099 DOI: 10.3390/microorganisms11040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Edwardsiella piscicida is an important fish pathogen that causes substantial economic losses. In order to understand its pathogenic mechanism, additional new virulence factors need to be identified. The bacterial thioredoxin system is a major disulfide reductase system, but its function is largely unknown in E. piscicida. In this study, we investigated the roles of the thioredoxin system in E. piscicida (named TrxBEp, TrxAEp, and TrxCEp, respectively) by constructing a correspondingly markerless in-frame mutant strain: ΔtrxB, ΔtrxA, and ΔtrxC, respectively. We found that (i) TrxBEp is confirmed as an intracellular protein, which is different from the prediction made by the Protter illustration; (ii) compared to the wild-type strain, ΔtrxB exhibits resistance against H2O2 stress but high sensitivity to thiol-specific diamide stress, while ΔtrxA and ΔtrxC are moderately sensitive to both H2O2 and diamide conditions; (iii) the deletions of trxBEp, trxAEp, and trxCEp damage E. piscicida's flagella formation and motility, and trxBEp plays a decisive role; (iv) deletions of trxBEp, trxAEp, and trxCEp substantially abate bacterial resistance against host serum, especially trxBEp deletion; (v) trxAEp and trxCEp, but not trxBEp, are involved in bacterial survival and replication in phagocytes; (vi) the thioredoxin system participates in bacterial dissemination in host immune tissues. These findings indicate that the thioredoxin system of E. piscicida plays an important role in stress resistance and virulence, which provides insight into the pathogenic mechanism of E. piscicida.
Collapse
Affiliation(s)
- Jiaojiao He
- School of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Su Liu
- School of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qingjian Fang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
6
|
Solmi L, Rossi FR, Romero FM, Bach-Pages M, Preston GM, Ruiz OA, Gárriz A. Polyamine-mediated mechanisms contribute to oxidative stress tolerance in Pseudomonas syringae. Sci Rep 2023; 13:4279. [PMID: 36922543 PMCID: PMC10017717 DOI: 10.1038/s41598-023-31239-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial phytopathogens living on the surface or within plant tissues may experience oxidative stress because of the triggered plant defense responses. Although it has been suggested that polyamines can defend bacteria from this stress, the mechanism behind this action is not entirely understood. In this study, we investigated the effects of oxidative stress on the polyamine homeostasis of the plant pathogen Pseudomonas syringae and the functions of these compounds in bacterial stress tolerance. We demonstrated that bacteria respond to H2O2 by increasing the external levels of the polyamine putrescine while maintaining the inner concentrations of this compound as well as the analogue amine spermidine. In line with this, adding exogenous putrescine to media increased bacterial tolerance to H2O2. Deletion of arginine decarboxylase (speA) and ornithine decarboxylate (speC), prevented the synthesis of putrescine and augmented susceptibility to H2O2, whereas targeting spermidine synthesis alone through deletion of spermidine synthase (speE) increased the level of extracellular putrescine and enhanced H2O2 tolerance. Further research demonstrated that the increased tolerance of the ΔspeE mutant correlated with higher expression of H2O2-degrading catalases and enhanced outer cell membrane stability. Thus, this work demonstrates previously unrecognized connections between bacterial defense mechanisms against oxidative stress and the polyamine metabolism.
Collapse
Affiliation(s)
- Leandro Solmi
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Avenida Intendente Marino Km 8.2, Chascomús, CP7130, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | - Franco R Rossi
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Avenida Intendente Marino Km 8.2, Chascomús, CP7130, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | - Fernando M Romero
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Avenida Intendente Marino Km 8.2, Chascomús, CP7130, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | | | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Oscar A Ruiz
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Avenida Intendente Marino Km 8.2, Chascomús, CP7130, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | - Andrés Gárriz
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Avenida Intendente Marino Km 8.2, Chascomús, CP7130, Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Santamaria G, Liao C, Lindberg C, Chen Y, Wang Z, Rhee K, Pinto FR, Yan J, Xavier JB. Evolution and regulation of microbial secondary metabolism. eLife 2022; 11:e76119. [PMID: 36409069 PMCID: PMC9708071 DOI: 10.7554/elife.76119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Microbes have disproportionate impacts on the macroscopic world. This is in part due to their ability to grow to large populations that collectively secrete massive amounts of secondary metabolites and alter their environment. Yet, the conditions favoring secondary metabolism despite the potential costs for primary metabolism remain unclear. Here we investigated the biosurfactants that the bacterium Pseudomonas aeruginosa makes and secretes to decrease the surface tension of surrounding liquid. Using a combination of genomics, metabolomics, transcriptomics, and mathematical modeling we show that the ability to make surfactants from glycerol varies inconsistently across the phylogenetic tree; instead, lineages that lost this ability are also worse at reducing the oxidative stress of primary metabolism on glycerol. Experiments with different carbon sources support a link with oxidative stress that explains the inconsistent distribution across the P. aeruginosa phylogeny and suggests a general principle: P. aeruginosa lineages produce surfactants if they can reduce the oxidative stress produced by primary metabolism and have excess resources, beyond their primary needs, to afford secondary metabolism. These results add a new layer to the regulation of a secondary metabolite unessential for primary metabolism but important to change physical properties of the environments surrounding bacterial populations.
Collapse
Affiliation(s)
- Guillem Santamaria
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of LisboaLisboaPortugal
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Chloe Lindberg
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Yanyan Chen
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Zhe Wang
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Francisco Rodrigues Pinto
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of LisboaLisboaPortugal
| | - Jinyuan Yan
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joao B Xavier
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
8
|
McLean C, Brown K, Windmill J, Dennany L. Innovations In Point-Of-Care Electrochemical Detection Of Pyocyanin. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Galiniak S, Mołoń M, Rachel M. Links between Disease Severity, Bacterial Infections and Oxidative Stress in Cystic Fibrosis. Antioxidants (Basel) 2022; 11:887. [PMID: 35624751 PMCID: PMC9137818 DOI: 10.3390/antiox11050887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) is one of the most common, yet fatal genetic diseases in Caucasians. The presence of a defective CF transmembrane conductance regulator and the massive neutrophils influx into the airways contribute to an imbalance in epithelial cell processes and extracellular fluids and lead to excessive production of reactive oxygen species and intensification of oxidative stress. The study included 16 controls and 42 participants with CF aged 10 to 38. The products of protein oxidation, total antioxidant capacity (TAC) and markers of lipid peroxidation were estimated in the serum of the subjects. Furthermore, we compared the level of oxidative stress in patients with CF according to the severity of disease and type of bacterial infection. Thiol groups and serum TAC decreased significantly in patients with CF (p < 0.05). Elevated levels of 3-nitrotyrosine, malondialdehyde and 8-isoprostane were observed in CF subjects (p < 0.05). Furthermore, as the severity of the disease increased, there was a decrease in the thiol groups and TAC levels, as well as an increase in the concentration of 3-nitrotyrosine and 8-isoprostane. CF participants infected with Pseudomonas aeruginosa had elevated 3-nitrotyrosine concentration levels (p < 0.05), while those infected with Staphylococcus aureus noted a decrease in thiol groups (p < 0.05). Elevated levels of oxidative stress markers were found in the serum of CF patients. Furthermore, oxidative stress progressively increased over the years and along with the severity of the disease. The presence of bacterial infection with P. aeruginosa or S. aureus had a slight effect on oxidative stress, while co-infection by two species did not affect the level of oxidative stress.
Collapse
Affiliation(s)
- Sabina Galiniak
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Warzywna 1a, 35-310 Rzeszów, Poland
| | - Mateusz Mołoń
- Department of Biology, Institute of Biology and Biotechnology, Rzeszów University, Zelwerowicza 4, 35-601 Rzeszów, Poland;
| | - Marta Rachel
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Warzywna 1a, 35-310 Rzeszów, Poland
- Department of Allergology and Cystic Fibrosis, State Hospital 2 in Rzeszów, Lwowska 60, 35-301 Rzeszów, Poland
| |
Collapse
|
10
|
Li H, Xia Y, Tian Z, Jin Y, Bai F, Cheng Z, Swietnicki W, Wu W, Pan X. Dihydrolipoamide Acetyltransferase AceF Influences the Type III Secretion System and Resistance to Oxidative Stresses through RsmY/Z in Pseudomonas aeruginosa. Microorganisms 2022; 10:microorganisms10030666. [PMID: 35336241 PMCID: PMC8950878 DOI: 10.3390/microorganisms10030666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Carbon metabolism plays an important role in bacterial physiology and pathogenesis. The type III secretion system (T3SS) of Pseudomonas aeruginosa is a virulence factor that contributes to acute infections. It has been demonstrated that bacterial metabolism affects the T3SS. Meanwhile, expression of T3SS genes is negatively regulated by the small RNAs RsmY and RsmZ. In this study, we studied the relationship between the dihydrolipoamide acetyltransferase gene aceF and the T3SS. Our results reveal an upregulation of RsmY and RsmZ in the aceF mutant, which represses the expression of the T3SS genes. Meanwhile, the aceF mutant is more tolerant to hydrogen peroxide. We demonstrate that the expression levels of the catalase KatB and the alkyl hydroperoxide reductase AhpB are increased in the aceF mutant. The simultaneous deletion of rsmY and rsmZ in the aceF mutant restored the expression levels of katB and ahpB, as well as bacterial susceptibility to hydrogen peroxide. Thus, we identify a novel role of AceF in the virulence and oxidative response of P. aeruginosa.
Collapse
Affiliation(s)
- Haozhou Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.L.); (Y.X.); (Z.T.); (Y.J.); (F.B.); (Z.C.); (W.W.)
| | - Yushan Xia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.L.); (Y.X.); (Z.T.); (Y.J.); (F.B.); (Z.C.); (W.W.)
| | - Zhenyang Tian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.L.); (Y.X.); (Z.T.); (Y.J.); (F.B.); (Z.C.); (W.W.)
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.L.); (Y.X.); (Z.T.); (Y.J.); (F.B.); (Z.C.); (W.W.)
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.L.); (Y.X.); (Z.T.); (Y.J.); (F.B.); (Z.C.); (W.W.)
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.L.); (Y.X.); (Z.T.); (Y.J.); (F.B.); (Z.C.); (W.W.)
| | - Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, 53-114 Wroclaw, Poland;
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.L.); (Y.X.); (Z.T.); (Y.J.); (F.B.); (Z.C.); (W.W.)
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.L.); (Y.X.); (Z.T.); (Y.J.); (F.B.); (Z.C.); (W.W.)
- Correspondence:
| |
Collapse
|
11
|
Cai Z, Yang F, Shao X, Yue Z, Li Z, Song Y, Pan X, Jin Y, Cheng Z, Ha UH, Feng J, Yang L, Deng X, Wu W, Bai F. ECF Sigma Factor HxuI Is Critical for In Vivo Fitness of Pseudomonas aeruginosa during Infection. Microbiol Spectr 2022; 10:e0162021. [PMID: 35044199 PMCID: PMC8768829 DOI: 10.1128/spectrum.01620-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa often adapts to its host environment and causes recurrent nosocomial infections. The extracytoplasmic function (ECF) sigma factor enables bacteria to alter their gene expression in response to host environmental stimuli. Here, we report an ECF sigma factor, HxuI, which is rapidly induced once P. aeruginosa encounters the host. Host stresses such as iron limitation, oxidative stress, low oxygen, and nitric oxide induce the expression of hxuI. By combining RNA-seq and promoter-lacZ reporter fusion analysis, we reveal that HxuI can activate the expression of diverse metabolic and virulence pathways which are critical to P. aeruginosa infections, including iron acquisition, denitrification, pyocyanin synthesis, and bacteriocin production. Most importantly, overexpression of the hxuI in the laboratory strain PAO1 promotes its colonization in both murine lung and subcutaneous infections. Together, our findings show that HxuI, a key player in host stress-response, controls the in vivo adaptability and virulence of P. aeruginosa during infection. IMPORTANCE P. aeruginosa has a strong ability to adapt to diverse environments, making it capable of causing recurrent and multisite infections in clinics. Understanding host adaptive mechanisms plays an important guiding role in the development of new anti-infective agents. Here, we demonstrate that an ECFσ factor of P. aeruginosa response to the host-inflicted stresses, which promotes the bacterial in vivo fitness and pathogenicity. Furthermore, our findings may help explain the emergence of highly transmissible strains of P. aeruginosa and the acute exacerbations during chronic infections.
Collapse
Affiliation(s)
- Zeqiong Cai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Zhuo Yue
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenpeng Li
- School of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology (SUSTec), Shenzhen, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Choudhary M, Verma V, Saran R, Bhagyawant SS, Srivastava N. Natural Biosurfactant as Antimicrobial Agent: Strategy to Action Against Fungal and Bacterial Activities. Cell Biochem Biophys 2022; 80:245-259. [PMID: 34982372 DOI: 10.1007/s12013-021-01045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022]
Abstract
Natural surfactants have gained importance as the usage of synthetic surfactants shows economical aspects, health, and environmental effect. This study examined the anti-microbial activity of safflower seed waste (Ssw) isolated surfactant against dandruff-causing Malassezia furfur and skin diseases causing bacterial strains. Saponin was the major component and non-ionic surfactants derived from plants, which have a special molecular structure with hydrophilic glycoside backbone and lipophilic triterpene derivative. The antimicrobial activity of isolated surfactants was confirmed by the MIC and kill-time assays. Our results showed that the isolated saponin may interact with the cell wall and membrane first and destroy the cell wall and membranes, which finally results in bacterial death. Besides, isolated saponin penetrates the cytoplasmic membrane or enters inside the cell after the destruction of cell structure, and then inhibits the normal synthesis of DNA and proteins that are required for bacterial growth. These results suggested that the effects of the Ssw isolated saponin on the growth inhibition of selected bacterial strains may be at the molecular level rather than only physical damage. Extraction of Biosurfactant (saponin) from Safflower seed waste and its antimicrobial activity.
Collapse
Affiliation(s)
- Monika Choudhary
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | | | | | | | - Nidhi Srivastava
- National Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
13
|
Oxidative Stress Response in Pseudomonas aeruginosa. Pathogens 2021; 10:pathogens10091187. [PMID: 34578219 PMCID: PMC8466533 DOI: 10.3390/pathogens10091187] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative environmental and human opportunistic pathogen highly adapted to many different environmental conditions. It can cause a wide range of serious infections, including wounds, lungs, the urinary tract, and systemic infections. The high versatility and pathogenicity of this bacterium is attributed to its genomic complexity, the expression of several virulence factors, and its intrinsic resistance to various antimicrobials. However, to thrive and establish infection, P. aeruginosa must overcome several barriers. One of these barriers is the presence of oxidizing agents (e.g., hydrogen peroxide, superoxide, and hypochlorous acid) produced by the host immune system or that are commonly used as disinfectants in a variety of different environments including hospitals. These agents damage several cellular molecules and can cause cell death. Therefore, bacteria adapt to these harsh conditions by altering gene expression and eliciting several stress responses to survive under oxidative stress. Here, we used PubMed to evaluate the current knowledge on the oxidative stress responses adopted by P. aeruginosa. We will describe the genes that are often differently expressed under oxidative stress conditions, the pathways and proteins employed to sense and respond to oxidative stress, and how these changes in gene expression influence pathogenicity and the virulence of P. aeruginosa. Understanding these responses and changes in gene expression is critical to controlling bacterial pathogenicity and developing new therapeutic agents.
Collapse
|
14
|
Panta PR, Doerrler WT. A link between pH homeostasis and colistin resistance in bacteria. Sci Rep 2021; 11:13230. [PMID: 34168215 PMCID: PMC8225787 DOI: 10.1038/s41598-021-92718-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
Colistin resistance is complex and multifactorial. DbcA is an inner membrane protein belonging to the DedA superfamily required for maintaining extreme colistin resistance of Burkholderia thailandensis. The molecular mechanisms behind this remain unclear. Here, we report that ∆dbcA displays alkaline pH/bicarbonate sensitivity and propose a role of DbcA in extreme colistin resistance of B. thailandensis by maintaining cytoplasmic pH homeostasis. We found that alkaline pH or presence of sodium bicarbonate displays a synergistic effect with colistin against not only extremely colistin resistant species like B. thailandensis and Serratia marcescens, but also a majority of Gram-negative and Gram-positive bacteria tested, suggesting a link between cytoplasmic pH homeostasis and colistin resistance across species. We found that lowering the level of oxygen in the growth media or supplementation of fermentable sugars such as glucose not only alleviated alkaline pH stress, but also increased colistin resistance in most bacteria tested, likely by avoiding cytoplasmic alkalinization. Our observations suggest a previously unreported link between pH, oxygen, and colistin resistance. We propose that maintaining optimal cytoplasmic pH is required for colistin resistance in a majority of bacterial species, consistent with the emerging link between cytoplasmic pH homeostasis and antibiotic resistance.
Collapse
Affiliation(s)
- Pradip R Panta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - William T Doerrler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
15
|
Ribeiro ÁCDS, Martins WMBDS, Silva AAD, Gales AC, Rando DGG, Minarini LADR. Exposure to sub-inhibitory ciprofloxacin and nitrofurantoin concentrations increases recA gene expression in uropathogenic Escherichia coli: The role of RecA protein as a drug target. Eur J Pharm Sci 2020; 146:105268. [PMID: 32081832 DOI: 10.1016/j.ejps.2020.105268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 01/01/2023]
Abstract
Sub-inhibitory concentrations (sub-MIC) of antimicrobial agents can lead to genetic changes in bacteria, modulating the expression of genes related to bacterial stress and leading to drug resistance. Herein we describe the impact of sub-MIC of ciprofloxacin and nitrofurantoin on three uropathogenic Escherichia coli strains. Disk-diffusion assays with different antimicrobial agents were tested to detect phenotype alterations, and quantitative real-time PCR (qRT-PCR) was performed to analyze the expression of ompF and recA genes. Significant reduction on the susceptibility to ciprofloxacin and nitrofurantoin was detected on disk diffusion test. The qRT-PCR results revealed a 1.2-4.7 increase in recA expression in all E. coli studied, while the ompF expression varied. Because RecA was pointed as an important component to the development of drug resistance, molecular docking studies were performed with three experimentally known inhibitors of this enzyme. These studies aimed to understand the inhibitory binding mode of such compounds. The results confirmed the ADP/ATP binding site as a potential site of inhibitor recognition and a binding mode based on π-stacking interactions with Tyr103 and hydrogen bonds with Tyr264. These findings can be useful for guiding the search and design of new antimicrobial agents, mainly concerning the treatment of infections with resistant bacterial strains.
Collapse
Affiliation(s)
- Ághata Cardoso da Silva Ribeiro
- Universidade Federal de São Paulo - UNIFESP, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Laboratório Multidisciplinar em Saúde e Meio Ambiente, Departamento de Ciências Farmacêuticas, Rua São Nicolau, 210 Diadema, SP, Brazil
| | - Willames Marcos Brasileiro da Silva Martins
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, Rua Pedro de Toledo, 781 São Paulom, SP, Brazil
| | - Adilson Aderito da Silva
- Universidade Presbiteriana Mackenzie, Centro de Ciências Sociais e Aplicadas, Rua da Consolação, 930, São Paulo, SP, Brazil
| | - Ana Cristina Gales
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, Rua Pedro de Toledo, 781 São Paulom, SP, Brazil
| | - Daniela Gonçales Galasse Rando
- Universidade Federal de São Paulo - UNIFESP, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Grupo de Pesquisas Químico-Farmacêuticas da UNIFESP, Departamento de Ciências Farmacêuticas, Rua São Nicolau, 210, Diadema, SP, Brazil
| | - Luciene Andrade da Rocha Minarini
- Universidade Federal de São Paulo - UNIFESP, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Laboratório Multidisciplinar em Saúde e Meio Ambiente, Departamento de Ciências Farmacêuticas, Rua São Nicolau, 210 Diadema, SP, Brazil.
| |
Collapse
|