1
|
Sobiech Ł, Grzanka M, Idziak R, Blecharczyk A. The Effect of Post-Emergence Application of Biostimulants and Soil Amendments in Maize Cultivation on the Growth and Yield of Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:1274. [PMID: 40364303 PMCID: PMC12073994 DOI: 10.3390/plants14091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025]
Abstract
Maize is considered to be one of the most significant crops in the world. On a global scale, the appropriate yield level of food can largely affect food security. During cultivation, this plant is exposed to many adverse environmental factors, including water deficiency. Plant stress is reduced by applying appropriate biostimulants or soil amendments. This study tested the effectiveness of preparations based on Rhizophagus irregularis, humic acids, Bacillus velezensis + Bacillus licheniformis and Methylobacterium symbioticum. The aim of the project was to assess the effect of selected microorganisms and substances on the growth, yield, and physiological parameters of maize. The hypothesis assumed that the preparations selected for this study could improve the condition of the plants in various soil moisture conditions. All treatments were carried out post-emergence. The experiments were conducted in greenhouse conditions, where, in conditions of different level of soil moisture, optimal and water deficiency, the effect of the above-mentioned substances and microorganisms on the height, mass of plants, and plant chlorophyll fluorescence was determined. Chlorophyll, anthocyanin, and flavonol content were also measured. In two-year field studies, the effect of the same preparations on plant height, grain yield, thousand-grain weight, oil, protein, and starch content in the grain was determined. It was shown that appropriately selected biostimulants have a positive effect on plant growth, physiological parameters, and the yield of maize grain. The impact of preparations on the grain yield depended on the conditions that prevailed in the growing season.
Collapse
Affiliation(s)
| | | | | | - Andrzej Blecharczyk
- Department of Agronomy, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wojska Polskiego 28 St., 60-637 Poznań, Poland; (Ł.S.); (M.G.); (R.I.)
| |
Collapse
|
2
|
Zhang C, Yao L, Zhang MM, Tian DD, Wu J, Hu YZ, Bao K, Ma ZX, Tan LL, Yang S. Improvement of plant growth and fruit quality by introducing a phosphoribosylpyrophosphate synthetase mutation into Methylorubrum populi. J Appl Microbiol 2025; 136:lxaf013. [PMID: 39794283 DOI: 10.1093/jambio/lxaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/13/2025]
Abstract
AIMS The aim of this study was to evaluate the impact of the introduction of a phosphoribosylpyrophosphate synthetase (PRS) mutation into a plant growth-promoting strain of Methylorubrum on the enhancement of phyllosphere colonization, with the ultimate goal of improving plant growth and quality. METHODS AND RESULTS A strain of Methylorubrum populi (named HS04) was isolated from the groundnut leaves and found to process the plant-promoting traits, including the ability to produce indole acetic acid, siderophore, 1-aminocyclopropane-1-carboxylate deaminase, and to fix nitrogen. The application via foliar spray significantly increased the fresh weight of cucumber seedlings cultivated in a standard growth chamber, with 43.0% higher than the control group. Genomic analysis revealed that the presence of an array of genes involved in plant growth promotion, including accD, aldB, and ltaE, as well as potential nitrogen-fixation-related genes, including nifA, bchlLNB, and bchXYZ, in the HS04 strain. The introduction of the PRS mutation (an aspartic acid to an asparagine residue, D38N) in the HS04 strain (named HS04PTR) enhanced the utilization capacity of low concentrations of methanol and multi-carbon sources (C2-C5 carbon sources). The HS04PTR strain indicated a notable enhancement in the phyllosphere colonization, with the subsequent application further promoting the growth of cucumber seedlings. An agricultural solar greenhouse experiment was thus performed to assess the efficiency of the HS04PTR strain, sprayed at low abundance, in improving the growth and quality of cucumber plants, including vitamin C, reducing sugars, and total sugars. CONCLUSIONS Our findings provide insights into the potential of Methylorubrum/Methylobacterium strains with the PRS mutations as an efficient inoculant for advantageous agricultural applications.
Collapse
Affiliation(s)
- Cong Zhang
- School of Life Sciences, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
| | - Lu Yao
- School of Life Sciences, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao 266000, People's Republic of China
| | - Ming-Ming Zhang
- School of Life Sciences, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
| | - Dan-Dan Tian
- School of Life Sciences, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
| | - Jing Wu
- School of Life Sciences, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
| | - Yu-Zheng Hu
- School of Life Sciences, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
| | - Kai Bao
- School of Life Sciences, Hubei University, No. 368 Youyi Road, Wuchang District, Wuhan 430062, People's Republic of China
| | - Zeng-Xin Ma
- School of Life Sciences, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
| | - Ling-Ling Tan
- School of Life Sciences, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
| | - Song Yang
- School of Life Sciences, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
- School of Marine Science and Engineering, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| |
Collapse
|
3
|
Rodrigues MÂ, Correia CM, Arrobas M. The Application of a Foliar Spray Containing Methylobacterium symbioticum Had a Limited Effect on Crop Yield and Nitrogen Recovery in Field and Pot-Grown Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:2909. [PMID: 39458855 PMCID: PMC11510831 DOI: 10.3390/plants13202909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
In this study, the effectiveness of an inoculant containing a nitrogen (N)-fixing microorganism (Methylobacterium symbioticum) was evaluated on maize (Zea mays L.) grown both in the field (silage maize) and in pots over two years (2021 and 2022). The field trial included the following two treatments: with (Yes) and without (No) the inoculant. The pot experiment was designed as a factorial arrangement with two factors: the application of the inoculant (Yes and No) and N applied to the soil (0, 0.4, 0.8, and 1.6 g pot-1). In the field, total dry matter yield (DMY) did not differ significantly between treatments, although the average DMY was higher in the inoculant treatment. In pots, the total DMY varied significantly across all N rates but was only significantly affected by the inoculant application in 2022. N fixation estimates in the field were 58.8 and 14.5 kg ha-1 for 2021 and 2022, respectively, representing 23.7% and 9.1% of the N recovered in the aboveground plant parts. In pots, the estimated fixed N values were -49.2 and 199.2 mg pot-1 in 2021 and 2022, respectively, which corresponded to -5.2% and 18.5% of the N found in the aboveground plant parts. Considering the average values obtained across the four cultivation conditions, there was a positive outcome for the treated plants. However, these values cannot be considered significant when compared to nitrogen removal in maize crops. A commercial product should provide an unequivocal and quantitatively relevant contribution to plant nutrition, which did not appear to be the case. Thus, for this inoculant to provide reliable guarantees of positive outcomes for farmers and become a useful tool in promoting more sustainable agriculture, further studies appear necessary. These studies should aim to determine in which crops and under what cultivation conditions the application of the inoculant is truly effective in enhancing N fixation and improving crop productivity.
Collapse
Affiliation(s)
- Manuel Ângelo Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carlos Manuel Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
| | - Margarida Arrobas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
4
|
Pappalettere L, Bartolini S, Toffanin A. Auxin-Producing Bacteria Used as Microbial Biostimulants Improve the Growth of Tomato ( Solanum lycopersicum L.) Seedlings in Hydroponic Systems. BIOTECH 2024; 13:32. [PMID: 39189211 PMCID: PMC11348165 DOI: 10.3390/biotech13030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Seven auxin-producing endophytic bacterial strains (Azospirillum spp., Methylobacterium symbioticum, Bacillus spp.), and two different combinations of these strains were used to verify their influence on tomato during germination and development in hydroponic conditions where, as a novelty for Canestrino di Lucca cultivar, endophytic bacteria were inoculated. To emphasize the presence of bacterial auxins in roots and stems of seedlings, both in situ staining qualitative assessment and quantitative analysis were carried out. Moreover, hypogeal and epigeal growth of the plantlets were measured, and correlation analyses were conducted to examine the relationship between the amount of indolacetic acid (IAA) produced by the bacterial strains and root and stem parameters. Plantlets treated with microbial inoculants showed a significant increase in the survival rate compared to the control treatment. The best results as IAA producers were from Azospirillum baldaniorum Sp245 and A. brasilense Cd, which also induced significant root growth. On the other hand, Bacillus amyloliquefaciens and B. licheniformis induced the best rates in stem growth. These findings highlight the potential for using endophytic bacterial strains in a hydroponic co-cultivation system that enables inoculating plantlets, at an early stage of growth (5 days old).
Collapse
Affiliation(s)
- Livia Pappalettere
- Institute of Crop Science, Sant’Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127 Pisa, Italy;
| | - Susanna Bartolini
- Institute of Crop Science, Sant’Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127 Pisa, Italy;
| | - Annita Toffanin
- Department of Agriculture Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
- CIRSEC (Centro Interdipartimentale per lo Studio degli Effetti del Cambiamento Climatico dell’Università di Pisa), Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
5
|
Torres Vera R, Bernabé García AJ, Carmona Álvarez FJ, Martínez Ruiz J, Fernández Martín F. Application and effectiveness of Methylobacterium symbioticum as a biological inoculant in maize and strawberry crops. Folia Microbiol (Praha) 2024; 69:121-131. [PMID: 37526803 PMCID: PMC10876812 DOI: 10.1007/s12223-023-01078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
The effectiveness of Methylobacterium symbioticum in maize and strawberry plants was measured under different doses of nitrogen fertilisation. The biostimulant effect of the bacteria was observed in maize and strawberry plants treated with the biological inoculant under different doses of nitrogen fertiliser compared to untreated plants (control). It was found that bacteria allowed a 50 and 25% decrease in the amount of nitrogen applied in maize and strawberry crops, respectively, and the photosynthetic capacity increased compared with the control plant under all nutritional conditions. A decrease in nitrate reductase activity in inoculated maize plants indicated that the bacteria affects the metabolism of the plant. In addition, inoculated strawberry plants grown with a 25% reduction in nitrogen had a higher concentration of nitrogen in leaves than control plants under optimal nutritional conditions. Again, this indicates that Methylobacterium symbioticum provide an additional supply of nitrogen.
Collapse
|
6
|
Gonçalves OS, Santana MF. Uncovering the Secrets of Slow-Growing Bacteria in Tropical Savanna Soil Through Isolation and Genomic Analysis. MICROBIAL ECOLOGY 2023; 86:2687-2702. [PMID: 37507488 DOI: 10.1007/s00248-023-02275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
One gram of soil holds ten billion bacteria of thousands of different species, but most remain unknown, and one of the serious issues is intrinsic to slow-growing bacteria. In this study, we aimed to isolate and characterize slow-growing bacteria from Brazilian Cerrado soil. Over a period of 4 weeks, we conducted an incubation process and selected a total of 92 isolates. These isolates, consisting mostly of slow-growing bacteria, have the ability to thrive in low-water conditions and possess features that promote plant growth. To identify the isolated bacteria, we performed 16S rRNA sequencing analysis and found that the slow-growing strains were genetically similar to known bacterial species but also belonged to a novel group of species. The new strains identified were Caballeronia sp., Neobacillus sp., Bradyrhizobium sp., and high GC Gram-positive species. Furthermore, we conducted growth experiments using various culture media and temperature conditions. These experiments revealed an extended lag phase for five strains, indicating their slow growth characteristics. Genomic analysis of these five slow-growing bacteria showed their potential to participate in biogeochemical cycles, metabolize various carbohydrates, encode proteins with a role in promoting plant growth and have biosynthetic potential for secondary metabolites. Taken together, our findings reveal the untapped potential of slow-growing bacteria in tropical savanna soils.
Collapse
Affiliation(s)
- Osiel Silva Gonçalves
- Grupo de Genômica Eco-evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Mateus Ferreira Santana
- Grupo de Genômica Eco-evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Barros-Rodríguez A, García-Gálvez C, Pacheco P, Kalyuzhnaya MG, Manzanera M. Isolation of Methane Enriched Bacterial Communities and Application as Wheat Biofertilizer under Drought Conditions: An Environmental Contribution. PLANTS (BASEL, SWITZERLAND) 2023; 12:2487. [PMID: 37447048 DOI: 10.3390/plants12132487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The search for methanotrophs as plant-growth-promoting rhizobacteria (PGPR) presents an important contribution to mitigating the impact of global warming by restoring the natural soil potential for consuming methane while benefiting plants during droughts. Our in silico simulations suggest that water, produced as a byproduct of methane oxidation, can satisfy the cell growth requirement. In addition to water, methanotrophs can produce metabolites that stimulate plant growth. Considering this, we proposed that applying methanotrophs as PGPR can alleviate the effect of droughts on crops, while stimulating atmospheric methane consumption. In this work, we isolated a series of methanotrophic communities from the rhizospheres of different crops, including Italian sweet pepper and zucchini, using an atmosphere enriched with pure methane gas, to determine their potential for alleviating drought stress in wheat plants. Subsequently, 23 strains of nonmethanotrophic bacteria present in the methanotrophic communities were isolated and characterized. We then analyzed the contribution of the methane-consuming consortia to the improvement of plant growth under drought conditions, showing that some communities contributed to increases in the wheat plants' lengths and weights, with statistically significant differences according to ANOVA models. Furthermore, we found that the presence of methane gas can further stimulate the plant-microbe interactions, resulting in larger plants and higher drought tolerance.
Collapse
Affiliation(s)
- Adoración Barros-Rodríguez
- Institute for Water Research and Department of Microbiology, University of Granada, 18071 Granada, Spain
- VitaNtech Biotechnology S.L., 18008 Granada, Spain
| | - Carlos García-Gálvez
- Institute for Water Research and Department of Microbiology, University of Granada, 18071 Granada, Spain
- VitaNtech Biotechnology S.L., 18008 Granada, Spain
| | - Pamela Pacheco
- Institute for Water Research and Department of Microbiology, University of Granada, 18071 Granada, Spain
| | | | - Maximino Manzanera
- Institute for Water Research and Department of Microbiology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Ndlovu S, Suinyuy TN, Pérez-Fernández MA, Magadlela A. Encephalartos natalensis, Their Nutrient-Cycling Microbes and Enzymes: A Story of Successful Trade-Offs. PLANTS (BASEL, SWITZERLAND) 2023; 12:1034. [PMID: 36903894 PMCID: PMC10005579 DOI: 10.3390/plants12051034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Encephalartos spp. establish symbioses with nitrogen (N)-fixing bacteria that contribute to soil nutrition and improve plant growth. Despite the Encephalartos mutualistic symbioses with N-fixing bacteria, the identity of other bacteria and their contribution to soil fertility and ecosystem functioning is not well understood. Due to Encephalartos spp. being threatened in the wild, this limited information presents a challenge in developing comprehensive conservation and management strategies for these cycad species. Therefore, this study identified the nutrient-cycling bacteria in Encephalartos natalensis coralloid roots, rhizosphere, and non-rhizosphere soils. Additionally, the soil characteristics and soil enzyme activities of the rhizosphere and non-rhizosphere soils were assayed. The coralloid roots, rhizosphere, and non-rhizosphere soils of E. natalensis were collected from a population of >500 E. natalensis in a disturbed savanna woodland at Edendale in KwaZulu-Natal (South Africa) for nutrient analysis, bacterial identification, and enzyme activity assays. Nutrient-cycling bacteria such as Lysinibacillus xylanilyticus; Paraburkholderia sabiae, and Novosphingobium barchaimii were identified in the coralloid roots, rhizosphere, and non-rhizosphere soils of E. natalensis. Phosphorus (P) cycling (alkaline and acid phosphatase) and N cycling (β-(D)-Glucosaminidase and nitrate reductase) enzyme activities showed a positive correlation with soil extractable P and total N concentrations in the rhizosphere and non-rhizosphere soils of E. natalensis. The positive correlation between soil enzymes and soil nutrients demonstrates that the identified nutrient-cycling bacteria in E. natalensis coralloid roots, rhizosphere, and non-rhizosphere soils and associated enzymes assayed may contribute to soil nutrient bioavailability of E. natalensis plants growing in acidic and nutrient-poor savanna woodland ecosystems.
Collapse
Affiliation(s)
- Siphelele Ndlovu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Terence N. Suinyuy
- School of Biology and Environmental Sciences, University of Mpumalanga (Mbombela Campus), Private Bag X11283, Mbombela 1200, South Africa
| | - María A. Pérez-Fernández
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
| | - Anathi Magadlela
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
9
|
Jirakkakul J, Khoiri AN, Duangfoo T, Dulsawat S, Sutheeworapong S, Petsong K, Wattanachaisaereekul S, Paenkaew P, Tachaleat A, Cheevadhanarak S, Prommeenate P. Insights into the genome of Methylobacterium sp. NMS14P, a novel bacterium for growth promotion of maize, chili, and sugarcane. PLoS One 2023; 18:e0281505. [PMID: 36749783 PMCID: PMC9904496 DOI: 10.1371/journal.pone.0281505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
A novel methylotrophic bacterium designated as NMS14P was isolated from the root of an organic coffee plant (Coffea arabica) in Thailand. The 16S rRNA sequence analysis revealed that this new isolate belongs to the genus Methylobacterium, and its novelty was clarified by genomic and comparative genomic analyses, in which NMS14P exhibited low levels of relatedness with other Methylobacterium-type strains. NMS14P genome consists of a 6,268,579 bp chromosome, accompanied by a 542,519 bp megaplasmid and a 66,590 bp plasmid, namely pNMS14P1 and pNMS14P2, respectively. Several genes conferring plant growth promotion are aggregated on both chromosome and plasmids, including phosphate solubilization, indole-3-acetic acid (IAA) biosynthesis, cytokinins (CKs) production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, sulfur-oxidizing activity, trehalose synthesis, and urea metabolism. Furthermore, pangenome analysis showed that NMS14P possessed the highest number of strain-specific genes accounting for 1408 genes, particularly those that are essential for colonization and survival in a wide array of host environments, such as ABC transporter, chemotaxis, quorum sensing, biofilm formation, and biosynthesis of secondary metabolites. In vivo tests have supported that NMS14P significantly promoted the growth and development of maize, chili, and sugarcane. Collectively, NMS14P is proposed as a novel plant growth-promoting Methylobacterium that could potentially be applied to a broad range of host plants as Methylobacterium-based biofertilizers to reduce and ultimately substitute the use of synthetic agrochemicals for sustainable agriculture.
Collapse
Affiliation(s)
- Jiraporn Jirakkakul
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Ahmad Nuruddin Khoiri
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Thanawat Duangfoo
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Sudarat Dulsawat
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Sawannee Sutheeworapong
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Kantiya Petsong
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
| | - Songsak Wattanachaisaereekul
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Prasobsook Paenkaew
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Anuwat Tachaleat
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Peerada Prommeenate
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
10
|
Leducq JB, Sneddon D, Santos M, Condrain-Morel D, Bourret G, Cecilia Martinez-Gomez N, Lee JA, Foster JA, Stolyar S, Jesse Shapiro B, Kembel SW, Sullivan JM, Marx CJ. Comprehensive phylogenomics of Methylobacterium reveals four evolutionary distinct groups and underappreciated phyllosphere diversity. Genome Biol Evol 2022; 14:6652236. [PMID: 35906926 PMCID: PMC9364378 DOI: 10.1093/gbe/evac123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Methylobacterium is a group of methylotrophic microbes associated with soil, fresh water, and particularly the phyllosphere, the aerial part of plants that has been well-studied in terms of physiology but whose evolutionary history and taxonomy are unclear. Recent work has suggested that Methylobacterium is much more diverse than thought previously, questioning its status as an ecologically and phylogenetically coherent taxonomic genus. However, taxonomic and evolutionary studies of Methylobacterium have mostly been restricted to model species, often isolated from habitats other than the phyllosphere, and have yet to utilize comprehensive phylogenomic methods to examine gene trees, gene content, or synteny. By analyzing 189 Methylobacterium genomes from a wide range of habitats, including the phyllosphere, we inferred a robust phylogenetic tree while explicitly accounting for the impact of horizontal gene transfer. We showed that Methylobacterium contains four evolutionarily distinct groups of bacteria (namely A, B, C, D), characterized by different genome size, GC content, gene content and genome architecture, revealing the dynamic nature of Methylobacterium genomes. In addition to recovering 59 described species, we identified 45 candidate species, mostly phyllosphere-associated, stressing the significance of plants as a reservoir of Methylobacterium diversity. We inferred an ancient transition from a free-living lifestyle to association with plant roots in Methylobacteriaceae ancestor, followed by phyllosphere association of three of the major groups (A, B, D), whose early branching in Methylobacterium history has been heavily obscured by HGT. Together, our work lays the foundations for a thorough redefinition of Methylobacterium taxonomy, beginning with the abandonment of Methylorubrum.
Collapse
Affiliation(s)
- Jean-Baptiste Leducq
- Université Laval - Quebec City (QC) Canada.,University of Idaho - Moscow (ID) US
| | | | | | | | | | | | | | | | | | - B Jesse Shapiro
- Université de Montréal - Montreal (QC) Canada.,McGill University - Montreal (QC) Canada
| | | | | | | |
Collapse
|
11
|
Fine-Scale Adaptations to Environmental Variation and Growth Strategies Drive Phyllosphere Methylobacterium Diversity. mBio 2022; 13:e0317521. [PMID: 35073752 PMCID: PMC8787475 DOI: 10.1128/mbio.03175-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Methylobacterium is a prevalent bacterial genus of the phyllosphere. Despite its ubiquity, little is known about the extent to which its diversity reflects neutral processes like migration and drift, versus environmental filtering of life history strategies and adaptations. In two temperate forests, we investigated how phylogenetic diversity within Methylobacterium is structured by biogeography, seasonality, and growth strategies. Using deep, culture-independent barcoded marker gene sequencing coupled with culture-based approaches, we uncovered a considerable diversity of Methylobacterium in the phyllosphere. We cultured different subsets of Methylobacterium lineages depending upon the temperature of isolation and growth (20°C or 30°C), suggesting long-term adaptation to temperature. To a lesser extent than temperature adaptation, Methylobacterium diversity was also structured across large (>100 km; between forests) and small (<1.2 km; within forests) geographical scales, among host tree species, and was dynamic over seasons. By measuring the growth of 79 isolates during different temperature treatments, we observed contrasting growth performances, with strong lineage- and season-dependent variations in growth strategies. Finally, we documented a progressive replacement of lineages with a high-yield growth strategy typical of cooperative, structured communities in favor of those characterized by rapid growth, resulting in convergence and homogenization of community structure at the end of the growing season. Together, our results show how Methylobacterium is phylogenetically structured into lineages with distinct growth strategies, which helps explain their differential abundance across regions, host tree species, and time. This work paves the way for further investigation of adaptive strategies and traits within a ubiquitous phyllosphere genus. IMPORTANCE Methylobacterium is a bacterial group tied to plants. Despite the ubiquity of methylobacteria and the importance to their hosts, little is known about the processes driving Methylobacterium community dynamics. By combining traditional culture-dependent and -independent (metabarcoding) approaches, we monitored Methylobacterium diversity in two temperate forests over a growing season. On the surface of tree leaves, we discovered remarkably diverse and dynamic Methylobacterium communities over short temporal (from June to October) and spatial (within 1.2 km) scales. Because we cultured different subsets of Methylobacterium diversity depending on the temperature of incubation, we suspected that these dynamics partly reflected climatic adaptation. By culturing strains under laboratory conditions mimicking seasonal variations, we found that diversity and environmental variations were indeed good predictors of Methylobacterium growth performances. Our findings suggest that Methylobacterium community dynamics at the surface of tree leaves results from the succession of strains with contrasting growth strategies in response to environmental variations.
Collapse
|
12
|
de Lajudie P, Mousavi SA, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting by videoconference, 6 July 2020. Int J Syst Evol Microbiol 2021; 71:004784. [PMID: 33956594 PMCID: PMC8289204 DOI: 10.1099/ijsem.0.004784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/20/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
- Philippe de Lajudie
- IRD, University of Montpellier, CIRAD, INRAE, SupAgro, LSTM, Montpellier, France
| | - Seyed Abdollah Mousavi
- Ecosystems and Environment Research Programme, University of Helsinki, Finland
- Department of Biology, University of Turku, Finland
| | | |
Collapse
|
13
|
Oren A, Garrity GM. List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication. Int J Syst Evol Microbiol 2021; 71. [PMID: 33513088 DOI: 10.1099/ijsem.0.004600] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|