1
|
Rebai H, Lefaida C, Sholkamy EN, Pratheesh PT, Hassan AA, Tazdait D, Citarasu T, Boudemagh A. Utilizing actinobacteria for glyphosate biodegradation: innovative solutions for sustainable agricultural soil remediation. Braz J Microbiol 2025; 56:951-963. [PMID: 40183877 DOI: 10.1007/s42770-025-01655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/11/2025] [Indexed: 04/05/2025] Open
Abstract
Glyphosate is one of the most widely used herbicides globally, yet its extensive application has raised significant ecological concerns. The objective of this study is to evaluate the ability of actinobacteria to degrade glyphosate under various environmental conditions. Four strains of actinobacteria were selected for their ability to thrive in a minimal medium containing 50 mg/L of glyphosate. The optimization of glyphosate biodegradation was assessed through a colorimetric method, which showed that the highest biodegradation rate occurred at a pH of 7.2, a temperature of 30 °C and an inoculum volume of 4%. The isolates were identified as follows: Streptomyces sp. strain SPA2 (accession number pp413753), Streptomyces rochei. strain IT (accession number pp413751), Streptomyces variabilis. strain Herb (accession number pp413750), and Streptomyces griseoincarnatus. strain SC (accession number PP413754). Analysis of total organic carbon reduction demonstrated that the strains SPA2, IT, Herb, and SC achieved reductions of 56.11%, 47.96%, 82.06%, and 67.12%, respectively. Furthermore, ATR-FTIR spectroscopy indicated alterations in the chemical structure of glyphosate post-biodegradation. These findings underscore the significant potential of the identified actinobacterial strains as viable agents for the bioremediation of glyphosate-contaminated agricultural soils.
Collapse
Affiliation(s)
- Hadjer Rebai
- Department of Microbiology, Constantine 1- Frères Mentouri University, Chaâbat Erssas Campus, Ain El Bey Road, Constantine, 25000, Algeria.
| | - Cherifa Lefaida
- Department of Microbiology, Constantine 1- Frères Mentouri University, Chaâbat Erssas Campus, Ain El Bey Road, Constantine, 25000, Algeria
| | - Essam Nageh Sholkamy
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Prakasam Thanka Pratheesh
- Department of Civil and Environmental Engineering, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Ashraf Aly Hassan
- Department of Civil and Environmental Engineering, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Djaber Tazdait
- Department of Nature and Life Sciences, University of Algiers, Benyoucef Benkhedda, 2 Rue Didouche Mourad, Algiers, Algeria
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, Algiers, Algeria
| | - Thavasimuthu Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, 629502, India
| | - Allaoueddine Boudemagh
- Laboratory of Molecular and Cellular Biology, Constantine 1- Frères Mentouri University, Chaâbat Erssas Campus, Ain El Bey Road, Constantine, 25000, Algeria
| |
Collapse
|
2
|
Aluffi ME, Magnoli K, Carranza CS, Aparicio VC, Barberis CL, Magnoli CE. Ability of mixed fungal cultures to remove glyphosate from soil microcosms under stressful conditions. Biodegradation 2025; 36:31. [PMID: 40237965 DOI: 10.1007/s10532-025-10126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
Many herbicides used extensively to manage weeds and protect economically important crops contain glyphosate (GP) as their main ingredient, which contaminates ecosystems when it spreads from the soil into the surrounding environment. This study evaluated the ability of two fungal strains to remove GP at a microcosm scale. The strains, Aspergillus oryzae AM2 and Mucor circinelloides 166, were tested on their own and in mixed cultures. The microcosms were conditioned at 30 or 70% field capacity (FC), and contaminated with 5000 or 15,000 mg kg-1 GP. The native microbial communities played a crucial role in the dissipation of the herbicide. At the end of the incubation (60 days), they had achieved removal percentages above 95% in most treatments. The exceptions were the microcosms subjected to hydric stress (30% FC) and contaminated with 15,000 mg kg-1 GP, in which the co-cultures outperformed the native microbial species (≥ 80 vs 33% removal, respectively). An increase in AMPA (aminomethylphosphonic acid), the main metabolite of GP degradation, was usually detected after 60 days, which indicates that biodegradation may have been one of the main mechanisms involved in the removal of the herbicide. These results provide information about the potential of two mixed fungal cultures (containing species that are native to agricultural soils) to remove GP under stressful conditions.
Collapse
Affiliation(s)
- Melisa Eglé Aluffi
- Research Institute On Mycology and Micotoxicology (IMICO), National Scientific and Technical Research Council - Argentina (CONICET), Department of Microbiology and Immunology, Faculty of Exact, Physical, Chemical and Natural Sciences, National University of Río Cuarto (UNRC), Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina
| | - Karen Magnoli
- Research Institute On Mycology and Micotoxicology (IMICO), National Scientific and Technical Research Council - Argentina (CONICET), Department of Microbiology and Immunology, Faculty of Exact, Physical, Chemical and Natural Sciences, National University of Río Cuarto (UNRC), Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina
| | - Cecilia Soledad Carranza
- Research Institute On Mycology and Micotoxicology (IMICO), National Scientific and Technical Research Council - Argentina (CONICET), Department of Microbiology and Immunology, Faculty of Exact, Physical, Chemical and Natural Sciences, National University of Río Cuarto (UNRC), Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina
| | - Virginia Carolina Aparicio
- National Institute of Agricultural Technology (INTA), Balcarce, Road 226 Km 73.5 (7620) Balcarce, Buenos Aires, Argentina
| | - Carla Lorena Barberis
- Research Institute On Mycology and Micotoxicology (IMICO), National Scientific and Technical Research Council - Argentina (CONICET), Department of Microbiology and Immunology, Faculty of Exact, Physical, Chemical and Natural Sciences, National University of Río Cuarto (UNRC), Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina
| | - Carina Elizabeth Magnoli
- Research Institute On Mycology and Micotoxicology (IMICO), National Scientific and Technical Research Council - Argentina (CONICET), Department of Microbiology and Immunology, Faculty of Exact, Physical, Chemical and Natural Sciences, National University of Río Cuarto (UNRC), Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina.
| |
Collapse
|
3
|
Banasiewicz J, Gumowska A, Hołubek A, Orzechowski S. Adaptations of the Genus Bradyrhizobium to Selected Elements, Heavy Metals and Pesticides Present in the Soil Environment. Curr Issues Mol Biol 2025; 47:205. [PMID: 40136459 PMCID: PMC11941057 DOI: 10.3390/cimb47030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/08/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Rhizobial bacteria perform a number of extremely important functions in the soil environment. In addition to fixing molecular nitrogen and transforming it into a form available to plants, they participate in the circulation of elements and the decomposition of complex compounds present in the soil, sometimes toxic to other organisms. This review article describes the molecular mechanisms occurring in the most diverse group of rhizobia, the genus Bradyrhizobium, allowing these bacteria to adapt to selected substances found in the soil. Firstly, the adaptation of bradyrhizobia to low and high concentrations of elements such as iron, phosphorus, sulfur, calcium and manganese was shown. Secondly, the processes activated in their cells in the presence of heavy metals such as lead, mercury and arsenic, as well as radionuclides, were described. Additionally, due to the potential use of Bradyrhziobium as biofertilizers, their response to pesticides commonly used in agriculture, such as glyphosate, sulfentrazone, chlorophenoxy herbicides, flumioxazine, imidazolinone, atrazine, and insecticides and fungicides, was also discussed. The paper shows the great genetic diversity of bradyrhizobia in terms of adapting to variable environmental conditions present in the soil.
Collapse
Affiliation(s)
- Joanna Banasiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Aleksandra Gumowska
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; (A.G.); (A.H.)
| | - Agata Hołubek
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; (A.G.); (A.H.)
| | - Sławomir Orzechowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
4
|
Sorochkina K, Martens-Habbena W, Reardon CL, Inglett PW, Strauss SL. Nitrogen-fixing bacterial communities differ between perennial agroecosystem crops. FEMS Microbiol Ecol 2024; 100:fiae064. [PMID: 38637314 DOI: 10.1093/femsec/fiae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
Biocrusts, common in natural ecosystems, are specific assemblages of microorganisms at or on the soil surface with associated microorganisms extending into the top centimeter of soil. Agroecosystem biocrusts have similar rates of nitrogen (N) fixation as those in natural ecosystems, but it is unclear how agricultural management influences their composition and function. This study examined the total bacterial and diazotrophic communities of biocrusts in a citrus orchard and a vineyard that shared a similar climate and soil type but differed in management. To contrast climate and soil type, these biocrusts were also compared with those from an apple orchard. Unlike natural ecosystem biocrusts, these agroecosystem biocrusts were dominated by proteobacteria and had a lower abundance of cyanobacteria. All of the examined agroecosystem biocrust diazotroph communities were dominated by N-fixing cyanobacteria from the Nostocales order, similar to natural ecosystem cyanobacterial biocrusts. Lower irrigation and fertilizer in the vineyard compared with the citrus orchard could have contributed to biocrust microbial composition, whereas soil type and climate could have differentiated the apple orchard biocrust. Season did not influence the bacterial and diazotrophic community composition of any of these agroecosystem biocrusts. Overall, agricultural management and climatic and edaphic factors potentially influenced the community composition and function of these biocrusts.
Collapse
Affiliation(s)
- Kira Sorochkina
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
- Southwest Research and Education Center, University of Florida, Immokalee, FL, United States
| | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, United States
| | - Catherine L Reardon
- Soil and Water Conservation Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pendleton, OR, United States
| | - Patrick W Inglett
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
| | - Sarah L Strauss
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
- Southwest Research and Education Center, University of Florida, Immokalee, FL, United States
| |
Collapse
|
5
|
Qu M, Cheng X, Xu Q, Zeng Z, Zheng M, Mei Y, Zhao J, Liu G. Fate of glyphosate in lakes with varying trophic levels and its modification by root exudates of submerged macrophytes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132757. [PMID: 37865072 DOI: 10.1016/j.jhazmat.2023.132757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
Accelerated eutrophication in lakes reduces the number of submerged macrophytes and alters the residues of glyphosate and its degradation products. However, the effects of submerged macrophytes on the fate of glyphosate remain unclear. We investigated eight lakes with varying trophic levels along the middle and lower reaches of the Yangtze River in China, of which five lakes contained either glyphosate or aminomethylphosphate (AMPA). Glyphosate and AMPA residues were significantly positively correlated with the trophic levels of lakes (P < 0.01). In lakes, glyphosate is degraded through the AMPA and sarcosine pathways. Eight shared glyphosate-degrading enzymes and genes were observed in different lake sediments, corresponding to 44 degrading microorganisms. Glyphosate concentrations in sediments were significantly higher in lakes with lower abundances of soxA (sarcosine oxidase) and soxB (sarcosine oxidase) (P < 0.05). In the presence of submerged macrophytes, oxalic and malonic acids secreted by the roots of submerged macrophytes increased the abundance of glyphosate-degrading microorganisms containing soxA or soxB (P < 0.05). These results revealed that a decrease in the number of submerged macrophytes in eutrophic lakes may inhibit glyphosate degradation via the sarcosine pathway, leading to a decrease in glyphosate degradation and an increase in glyphosate residues.
Collapse
Affiliation(s)
- Mengjie Qu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuan Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiang Xu
- School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
| | - Ziming Zeng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingming Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yunjun Mei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jianwei Zhao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guanglong Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Wang S, Han Y, Wu X, Sun H. Metagenomics reveals the effects of glyphosate on soil microbial communities and functional profiles of C and P cycling in the competitive vegetation control process of Chinese fir plantation. ENVIRONMENTAL RESEARCH 2023; 238:117162. [PMID: 37722584 DOI: 10.1016/j.envres.2023.117162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Although considerable efforts have been devoted to investigate the behavior of glyphosate on microbiome in various environment, knowledge about the soil microbial community and functional profile in weeds control process of the Chinese fir plantation are limited. In this study, shotgun metagenomic sequencing was used to determine the abundance and diversity of microbial communities and functional genes after foliar application of glyphosate for 1, 2, 3 and 4 months in a Chinese fir plantation. The results showed that glyphosate increased the copy numbers (qPCR) of 16S rRNA gene for 16.9%, improved the bacterial diversity (Shannon index) and complexity of bacterial co-occurrence network, and changed the abundances of some bacterial and fungal taxa, but had no effects on ITS gene copy numbers, fungal Shannon index, and bacterial and fungal communities (PCoA). Glyphosate application significantly decreased the amount of microbial function potentials involved in organic P mineralization for 10.7%, chitin degradation for 13.1%, and CAZy gene families with an exception of PL for 11.5% at the first month, while did not affect the profile of microbial genes response to P and C cycling in longer term. In addition, glyphosate reduced the contents of soil TOC, DOC and NH4+-H for 17.6%, 52.3% and 44.6% respectively, and decreased the starch, soluble sugar, Zn and Fe of Chinese fir leaves for 20.6%, 19.8%, 32.8% and 48.4% respectively. Mantle test, Spearman's correlation, and PLS-PM model revealed the connections among soil properties, tree nutrients, bacterial and fungal communities, and microbial function potentials were influenced by glyphosate. While our findings need to be validated in other filed and mechanistic studies, they may indicate that the foliar application of glyphosate has a potential effect on Chinese fir seedlings, and this effect may contribute to the changes of the bacterial community and soil properties including AN, DON and NH4+-H.
Collapse
Affiliation(s)
- Song Wang
- Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Yuanyuan Han
- Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Xiaoyu Wu
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Fenyi, 336600, China
| | - Honggang Sun
- Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China.
| |
Collapse
|
7
|
Guerrero Ramírez JR, Ibarra Muñoz LA, Balagurusamy N, Frías Ramírez JE, Alfaro Hernández L, Carrillo Campos J. Microbiology and Biochemistry of Pesticides Biodegradation. Int J Mol Sci 2023; 24:15969. [PMID: 37958952 PMCID: PMC10649977 DOI: 10.3390/ijms242115969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pesticides are chemicals used in agriculture, forestry, and, to some extent, public health. As effective as they can be, due to the limited biodegradability and toxicity of some of them, they can also have negative environmental and health impacts. Pesticide biodegradation is important because it can help mitigate the negative effects of pesticides. Many types of microorganisms, including bacteria, fungi, and algae, can degrade pesticides; microorganisms are able to bioremediate pesticides using diverse metabolic pathways where enzymatic degradation plays a crucial role in achieving chemical transformation of the pesticides. The growing concern about the environmental and health impacts of pesticides is pushing the industry of these products to develop more sustainable alternatives, such as high biodegradable chemicals. The degradative properties of microorganisms could be fully exploited using the advances in genetic engineering and biotechnology, paving the way for more effective bioremediation strategies, new technologies, and novel applications. The purpose of the current review is to discuss the microorganisms that have demonstrated their capacity to degrade pesticides and those categorized by the World Health Organization as important for the impact they may have on human health. A comprehensive list of microorganisms is presented, and some metabolic pathways and enzymes for pesticide degradation and the genetics behind this process are discussed. Due to the high number of microorganisms known to be capable of degrading pesticides and the low number of metabolic pathways that are fully described for this purpose, more research must be conducted in this field, and more enzymes and genes are yet to be discovered with the possibility of finding more efficient metabolic pathways for pesticide biodegradation.
Collapse
Affiliation(s)
- José Roberto Guerrero Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Lizbeth Alejandra Ibarra Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - José Ernesto Frías Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Leticia Alfaro Hernández
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Javier Carrillo Campos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chihuahua, Mexico
| |
Collapse
|
8
|
Masotti F, Garavaglia BS, Gottig N, Ottado J. Bioremediation of the herbicide glyphosate in polluted soils by plant-associated microbes. Curr Opin Microbiol 2023; 73:102290. [PMID: 36893683 DOI: 10.1016/j.mib.2023.102290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
Most productive lands worldwide base their crop production on the use of glyphosate (GLY)-resistant plants, and consequently, widespread use of this herbicide has led to environmental issues that need to be solved. Soil bioremediation technologies based on degradation of GLY by microorganisms are strategies that have been considered useful to solve this environmental problem. Recently, a further step has been taken considering the use of bacteria that interact with plants, either alone or both bacteria and plant together, for the removal of GLY herbicide. Plant-interacting microorganisms with plant growth-promoting traits can also enhance plant growth and contribute to successful bioremediation strategies.
Collapse
Affiliation(s)
- Fiorella Masotti
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Betiana S Garavaglia
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina.
| |
Collapse
|
9
|
Functional Characterization and Structural Modeling of a Novel Glycine Oxidase from Variovorax paradoxus Iso1. Appl Environ Microbiol 2022; 88:e0107722. [PMID: 36377957 PMCID: PMC9746326 DOI: 10.1128/aem.01077-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The N-acyl-d-amino acid amidohydrolase (N-d-AAase) of Variovorax paradoxus Iso1 can enantioselectively catalyze the zinc-assisted deacetylation of N-acyl-d-amino acids to yield consistent d-amino acids. A putative FAD-binding glycine/d-amino acid oxidase was located immediately upstream of the N-d-AAase gene. The gene encoding this protein was cloned into Escherichia coli BL21 (DE3)pLysS and overexpressed at 25°C for 6 h with 0.5 mM isopropyl β-d-1-thiogalactopyranoside induction. After purification, the tag-free recombinant protein was obtained. The enzyme could metabolize glycine, sarcosine, and d-alanine, but not l-amino acids or bulky d-amino acids. Protein modeling further supported these results, demonstrating that glycine, sarcosine, and d-alanine could fit into the pocket of the enzyme's activation site, while l-alanine and d-threonine were out of position. Therefore, this protein was proposed as a glycine oxidase, and we designated it VpGO. Interestingly, VpGO showed low sequence similarity to other well-characterized glycine oxidases. We found that VpGO and N-d-AAase were expressed on the same mRNA and could be transcriptionally induced by various N-acetyl-d-amino acids. Western blotting and zymography showed that both proteins had similar expression patterns in response to different types of inducers. Thus, we have identified a novel glycine oxidase that is co-regulated with N-d-AAase in an operon, and metabolizes N-acyl-d-amino acids in the metabolically versatile V. paradoxus Iso1. IMPORTANCE The Gram-negative bacterium Variovorax paradoxus has numerous metabolic capabilities, including the association with important catabolic processes and the promotion of plant growth. We had previously identified and characterized an N-acyl-d-amino-acid amidohydrolase (N-d-AAase) gene from the strain of V. paradoxus Iso1. The aim of this study was to isolate and characterize (both in vitro and in vivo) another potential gene found in the promoter region of this N-d-AAase gene. The protein was identified as a glycine oxidase, and the gene existed in an operon with N-d-AAase. The structural basis for its FAD-binding potential and substrate stereo-specificity were also elucidated. This study first reported a novel glycine oxidase from V. paradoxus. We believe that our study makes a significant contribution to the literature, because this enzyme has great potential for use as an industrial catalysis, as a biosensor, and in agricultural biotechnology.
Collapse
|
10
|
Zhang W, Li J, Zhang Y, Wu X, Zhou Z, Huang Y, Zhao Y, Mishra S, Bhatt P, Chen S. Characterization of a novel glyphosate-degrading bacterial species, Chryseobacterium sp. Y16C, and evaluation of its effects on microbial communities in glyphosate-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128689. [PMID: 35325860 DOI: 10.1016/j.jhazmat.2022.128689] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Widespread use of the herbicide glyphosate in agriculture has resulted in serious environmental problems. Thus, environment-friendly technological solutions are urgently needed for the removal of residual glyphosate from soil. Here, we successfully isolated a novel bacterial strain, Chryseobacterium sp. Y16C, which efficiently degrades glyphosate and its main metabolite aminomethylphosphonic acid (AMPA). Strain Y16C was found to completely degrade glyphosate at 400 mg·L-1 concentration within four days. Kinetics analysis indicated that glyphosate biodegradation was concentration-dependent, with a maximum specific degradation rate, half-saturation constant, and inhibition constant of 0.91459 d-1, 15.79796 mg·L-1, and 290.28133 mg·L-1, respectively. AMPA was identified as the major degradation product of glyphosate degradation, suggesting that glyphosate was first degraded via cleavage of its C-N bond prior to subsequent metabolic degradation. Strain Y16C was also found to tolerate and degrade AMPA at concentrations up to 800 mg·L-1. Moreover, strain Y16C accelerated glyphosate degradation in soil indirectly by inducing a slight alteration in the diversity and composition of soil microbial community. Taken together, our results suggest that strain Y16C may be a potential microbial agent for bioremediation of glyphosate-contaminated soil.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yingjie Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
11
|
Zabaloy MC, Allegrini M, Hernandez Guijarro K, Behrends Kraemer F, Morrás H, Erijman L. Microbiomes and glyphosate biodegradation in edaphic and aquatic environments: recent issues and trends. World J Microbiol Biotechnol 2022; 38:98. [PMID: 35478266 DOI: 10.1007/s11274-022-03281-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
Abstract
Glyphosate (N-(phosphonomethyl)glycine) has emerged as the top-selling herbicide worldwide because of its versatility in controlling annual and perennial weeds and the extensive use of glyphosate-resistant crops. Concerns related to the widespread use of glyphosate and its ubiquitous presence in the environment has led to a large number of studies and reviews, which examined the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA) in the environment. Because the biological breakdown of glyphosate is most likely the main elimination process, the biodegradation of glyphosate has also been the object of abundant experimental work. Importantly, glyphosate biodegradation in aquatic and soil ecosystems is affected not only by the composition and the activity of microbial communities, but also by the physical environment. However, the interplay between microbiomes and glyphosate biodegradation in edaphic and aquatic environments has rarely been considered before. The proposed minireview aims at filling this gap. We summarize the most recent work exploring glyphosate biodegradation in natural aquatic biofilms, the biological, chemical and physical factors and processes playing on the adsorption, transport and biodegradation of glyphosate at different levels of soil organization and under different agricultural managements, and its impact on soil microbial communities.
Collapse
Affiliation(s)
- María Celina Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Marco Allegrini
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Keren Hernandez Guijarro
- Instituto Nacional de Tecnología Agropecuaria (INTA), Unidad Integrada Estación Experimental Agropecuaria Balcarce, Balcarce, Argentina
| | - Filipe Behrends Kraemer
- Cátedra de Manejo y Conservación de Suelos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Suelos-CIRN-INTA, Hurlingham, Argentina
| | - Héctor Morrás
- Instituto de Suelos-CIRN-INTA, Hurlingham, Argentina
- Facultad de Ciencias Agrarias y Veterinaria, Universidad del Salvador, Pilar, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Guo J, Song X, Li R, Zhang Q, Zheng S, Li Q, Tao B. Isolation of a degrading strain of Fusarium verticillioides and bioremediation of glyphosate residue. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105031. [PMID: 35249652 DOI: 10.1016/j.pestbp.2021.105031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Glyphosate is a broad-spectrum and nonselective organophosphorus herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme in the shikimate pathway in plants. A glyphosate-resistant fungus identified as Fusarium verticillioides was screened from soil subjected to long-term glyphosate application, and this fungus could grow in inorganic salt medium containing 90 mmol/L glyphosate. The optimum culture conditions identified via the response surface curve method were 28 °C and pH 7.0. The target gene epsps was cloned in this study, and the open reading frame contained 1170 nucleotides and putatively encoded 389 amino acid residues. Phylogenetic analysis showed that this gene belonged to class I, genes naturally sensitive to glyphosate. q-PCR confirmed that the relative expression level of the epsps gene was low, and no significant difference in expression was observed among different glyphosate concentrations at 12 h or 48 h. On day 28, the degradation by Fusarium verticillioides C-2 of sterilized soil and unsterilized soil supplemented with 60 mg/kg glyphosate reached 72.17% and 89.07%, respectively, and a significant difference was observed between the treatments with and without the glyphosate-degrading strain. The recovery of soil dehydrogenase activity after the addition of Fusarium verticillioides was significantly higher than that in the absence of the degrading fungus on the 28th day. The results showed that C-2 is a highly effective glyphosate-degrading strain with bioremediation potential for glyphosate-contaminated soil.
Collapse
Affiliation(s)
- Jing Guo
- College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xiuli Song
- Lingnan Normal University, ZhanJiang 524048, Guang Dong, PR China
| | - Rongxing Li
- College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Qi Zhang
- College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Shengwei Zheng
- College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Qiucheng Li
- College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Bo Tao
- College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|