1
|
Liu X, Ahmad S, Ma J, Wang D, Tang J. Comparative study on the toxic effects of secondary nanoplastics from biodegradable and conventional plastics on Streptomyces coelicolor M145. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132343. [PMID: 37639795 DOI: 10.1016/j.jhazmat.2023.132343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Because of the excellent properties, plastics have been widely used in the past decades and caused serious environmental issues. As an excellent substitute for conventional plastics, the biodegradable plastics have attracted increasing attention. However, biodegradable plastics may produce more micro/nanoplastics in the short time compared with conventional plastics, and cause more serious ecological risks. In this study, the short-term toxicity of nanoplastics released from biodegradable and conventional plastics on Streptomyces coelicolor M145 was investigated. After 30 days of degradation, the biodegradable microplastics, polylactic acid (PLA) and polyhydroxyalkanoates (PHA) released more secondary nanoplastics than conventional microplastics, polystyrene (PS). After exposure, PLA and PHA nanoplastics showed significant toxicity to M145. The survival rate of M145 cells was 16.1% after treatment with PLA nanoplastics for 7 days (PLA-7). The toxicity of PHA was lower than that of PLA. This might have been due to the agglomeration of PHA nanoplastics in the solution. Compared with the controls, the PS secondary nanoplastics showed no significant toxicity to M145. After the treatment, the production of antibiotics, actinorhodin (ACT) and undecylprodigiosin (RED), significantly increased. The yields of ACT and RED reached their maximum values after treatment with PLA-7, which were 4.2-fold and 2.1-fold higher than those of the controls, respectively. The addition of biodegradable nanoplastics significantly increased the expression of these key pathway-specific regulatory genes, leading to increased antibiotic production. This study provides toxicological insights into the impacts of conventional and biodegradable microplastics on S. coelicolor.
Collapse
Affiliation(s)
- Xiaomei Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shakeel Ahmad
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingkang Ma
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Dan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Cruz-Bautista R, Ruíz-Villafán B, Romero-Rodríguez A, Rodríguez-Sanoja R, Sánchez S. Trends in the two-component system's role in the synthesis of antibiotics by Streptomyces. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12623-z. [PMID: 37341754 DOI: 10.1007/s00253-023-12623-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
Despite the advances in understanding the regulatory networks for secondary metabolite production in Streptomyces, the participation of the two-component systems (TCS) in this process still requires better characterization. These sensing systems and their responses to environmental stimuli have been described by evaluating mutant strains with techniques that allow in-depth regulatory responses. However, defining the stimulus that triggers their activation is still a task. The transmembrane nature of the sensor kinases and the high content of GC in the streptomycetes represent significant challenges in their study. In some examples, adding elements to the assay medium has determined the respective ligand. However, a complete TCS description and characterization requires specific amounts of the involved proteins that are most difficult to obtain. The availability of enough sensor histidine kinase concentrations could facilitate the identification of the ligand-protein interaction, and besides would allow the establishment of its phosphorylation mechanisms and determine their tridimensional structure. Similarly, the advances in the development of bioinformatics tools and novel experimental techniques also promise to accelerate the TCSs description and provide knowledge on their participation in the regulation processes of secondary metabolite formation. This review aims to summarize the recent advances in the study of TCSs involved in antibiotic biosynthesis and to discuss alternatives to continue their characterization. KEY POINTS: • TCSs are the environmental signal transducers more abundant in nature. • The Streptomyces have some of the highest number of TCSs found in bacteria. • The study of signal transduction between SHKs and RRs domains is a big challenge.
Collapse
Affiliation(s)
- Rodrigo Cruz-Bautista
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico.
| | - Beatriz Ruíz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Alba Romero-Rodríguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico.
| |
Collapse
|
3
|
Jin S, Hui M, Lu Y, Zhao Y. An overview on the two-component systems of Streptomyces coelicolor. World J Microbiol Biotechnol 2023; 39:78. [PMID: 36645528 DOI: 10.1007/s11274-023-03522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
The two-component system (TCS) found in various organisms is a regulatory system, which is involved in the response by the organism to stimuli, thereby regulating the internal behavior of the cell. It is commonly found in prokaryotes and is an important signaling system in bacteria. TCSs are involved in the regulation of physiological and morphological differentiation of the industrially important microbes from the genus Streptomyces, which produce a vast array of bioactive secondary metabolites (SMs). Genetic engineering of TCSs can substantially increase the yield of target SMs, which is valuable for industrial-scale production. Research on TCS has mainly been completed in the model strain Streptomyces coelicolor. In this review, we summarize the recent advances in the functional identification and elucidation of the regulatory mechanisms of various TCSs in S. coelicolor, with a focus on their roles in the biosynthesis of important SMs.
Collapse
Affiliation(s)
- Shangping Jin
- College of Bioengineering, Henan University of Technology, 100 Lianhua Street, 450001, Zhengzhou, China
| | - Ming Hui
- College of Bioengineering, Henan University of Technology, 100 Lianhua Street, 450001, Zhengzhou, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, 200234, Shanghai, China.
| | - Yawei Zhao
- College of Bioengineering, Henan University of Technology, 100 Lianhua Street, 450001, Zhengzhou, China.
| |
Collapse
|
4
|
Sánchez de la Nieta R, Santamaría RI, Díaz M. Two-Component Systems of Streptomyces coelicolor: An Intricate Network to Be Unraveled. Int J Mol Sci 2022; 23:ijms232315085. [PMID: 36499414 PMCID: PMC9739842 DOI: 10.3390/ijms232315085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Bacteria of the Streptomyces genus constitute an authentic biotech gold mine thanks to their ability to produce a myriad of compounds and enzymes of great interest at various clinical, agricultural, and industrial levels. Understanding the physiology of these organisms and revealing their regulatory mechanisms is essential for their manipulation and application. Two-component systems (TCSs) constitute the predominant signal transduction mechanism in prokaryotes, and can detect a multitude of external and internal stimuli and trigger the appropriate cellular responses for adapting to diverse environmental conditions. These global regulatory systems usually coordinate various biological processes for the maintenance of homeostasis and proper cell function. Here, we review the multiple TCSs described and characterized in Streptomyces coelicolor, one of the most studied and important model species within this bacterial group. TCSs are involved in all cellular processes; hence, unravelling the complex regulatory network they form is essential for their potential biotechnological application.
Collapse
|
5
|
Clara L, David C, Laila S, Virginie R, Marie-Joelle V. Comparative Proteomic Analysis of Transcriptional and Regulatory Proteins Abundances in S. lividans and S. coelicolor Suggests a Link between Various Stresses and Antibiotic Production. Int J Mol Sci 2022; 23:ijms232314792. [PMID: 36499130 PMCID: PMC9739823 DOI: 10.3390/ijms232314792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Streptomyces coelicolor and Streptomyces lividans constitute model strains to study the regulation of antibiotics biosynthesis in Streptomyces species since these closely related strains possess the same pathways directing the biosynthesis of various antibiotics but only S. coelicolor produces them. To get a better understanding of the origin of the contrasted abilities of these strains to produce bioactive specialized metabolites, these strains were grown in conditions of phosphate limitation or proficiency and a comparative analysis of their transcriptional/regulatory proteins was carried out. The abundance of the vast majority of the 355 proteins detected greatly differed between these two strains and responded differently to phosphate availability. This study confirmed, consistently with previous studies, that S. coelicolor suffers from nitrogen stress. This stress likely triggers the degradation of the nitrogen-rich peptidoglycan cell wall in order to recycle nitrogen present in its constituents, resulting in cell wall stress. When an altered cell wall is unable to fulfill its osmo-protective function, the bacteria also suffer from osmotic stress. This study thus revealed that these three stresses are intimately linked in S. coelicolor. The aggravation of these stresses leading to an increase of antibiotic biosynthesis, the connection between these stresses, and antibiotic production are discussed.
Collapse
Affiliation(s)
- Lejeune Clara
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cornu David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Sago Laila
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Redeker Virginie
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Laboratory of Neurodegenerative Diseases, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Center (MIRCen), Institut François Jacob, Université Paris-Saclay, 92260 Fontenay-aux-Roses, France
| | - Virolle Marie-Joelle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|
6
|
Zhu Y, Wang X, Zhang J, Ni X, Zhang X, Tao M, Pang X. The regulatory gene wblA is a target of the orphan response regulator OrrA in Streptomyces coelicolor. Environ Microbiol 2022; 24:3081-3096. [PMID: 35384219 DOI: 10.1111/1462-2920.15992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
Our previous study using transposon mutagenesis indicated that disruption of the putative response regulator gene orrA impacted antibiotic production in Streptomyces coelicolor. In this study, the role of OrrA was further characterized by comparing the phenotypes and transcriptomic profiles of the wild-type S. coelicolor strain M145 and ΔorrA, a strain with an inactivated orrA gene. Chromatin immunoprecipitation using a strain expressing OrrA fused with FLAG showed that OrrA binds the promoter of wblA, whose expression was downregulated in ΔorrA. The interaction of OrrA with the wblA promoter was further validated by a pull-down assay. Similar to ΔorrA, the deletion mutant of wblA (ΔwblA) was defective in development, and developmental genes were expressed at similar levels in ΔorrA and ΔwblA. Although both OrrA and WblA downregulated actinorhodin and undecylprodigiosin, their roles in regulation of the calcium-dependent antibiotic and yellow-pigmented type I polyketide differed. sco1375, a gene of unknown function, was identified as another OrrA target, and overexpression of either sco1375 or wblA in ΔorrA partially restored the wild-type phenotype, indicating that these genes mediate some of the effects of OrrA. This study revealed targets of OrrA and provided more insights into the role of the orphan response regulator OrrA in Streptomyces. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yanping Zhu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.,Colleage of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xinyuan Wang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xue Ni
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xia Zhang
- Qingdao Vland Biotech Group Inc, Qingdao, 266000, China
| | - Meifeng Tao
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|