1
|
Camli-Saunders D, Villouta C. Root exudates in controlled environment agriculture: composition, function, and future directions. FRONTIERS IN PLANT SCIENCE 2025; 16:1567707. [PMID: 40357154 PMCID: PMC12066541 DOI: 10.3389/fpls.2025.1567707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025]
Abstract
Two decades of research has revealed an intricate network of root exudates in plants, which they use to interact with and mediate their surrounding environment, the rhizosphere. Prior research has been conducted mainly on model plants such as Arabidopsis or staple monoculture crops like maize, soybean, and rice, revealing crucial roles in plant growth, microbiota interaction, nutrient acquisition, and bioremediation. However, similar research has only begun to be conducted in Controlled Environment Agriculture (CEA) systems, leaving a considerable knowledge gap in the mechanisms, impacts, and uses of exudates in CEA. Exhaustive literature searches revealed less than two dozen articles with direct implications in CEA vegetable crop exudates. This review synthesizes the existing literature to examine the composition, functions, and influences of vegetable root exudates within CEA systems. The first section explores key compounds -including amino and organic acids, and sugars- along with mechanistic processes, and microbial interactions. The second section compares root exudates in soil-based versus hydroponic CEA systems based upon differences in substrate, (a)biotic stressors, microorganisms, and nutrient availability. By contrasting existing literature on both CEA soil-based and hydroponic systems, the section examines likely differences in exudate composition, mechanisms, and functions. The final section presents case studies from both hydroponic and soil based systems, highlighting how root exudates contribute to environmental stress mitigation, allelopathy, disease response, bio/phytoremediation, and pest control. It reveals major avenues for the use of exudates in CEA systems worldwide. Lastly, we ponder the future avenues of exploration for CEA root exudates, proposing the creation of a database for usage in smaller or organic farms and in urban agriculture settings. In conjunction, we emphasize the need for further investigation into the potential of exogenous applications of exudate-like compounds to positively impact yield, disease resistance, soil restoration, and land reclamation, especially in the context of climate change.
Collapse
Affiliation(s)
| | - Camilo Villouta
- Controlled Environment Agriculture Lab, Department of Plant Sciences and Entomology,
University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
2
|
Gao H, Guo Z, He X, Yang J, Jiang L, Yang A, Xiao X, Xu R. Stress mitigation mechanism of rice leaf microbiota amid atmospheric deposition of heavy metals. CHEMOSPHERE 2024; 362:142680. [PMID: 38908447 DOI: 10.1016/j.chemosphere.2024.142680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Leaf microbiota have been extensively applied in the biological control of plant diseases, but their crucial roles in mitigating atmospheric heavy metal (HM) deposition and promoting plant growth remain poorly understood. This study demonstrates that elevated atmospheric HM deposition on rice leaves significantly shapes distinct epiphytic and endophytic microbiota across all growth stages. HM stress consistently leads to the dominance of epiphytic Pantoea and endophytic Microbacterium in rice leaves, particularly during the booting and filling stages. Leaf-bound HMs stimulate the differentiation of specialized microbial communities in both endophytic and epiphytic compartments, thereby regulating leaf microbial interactions. Metagenomic binning retrieved high-quality genomes of keystone leaf microorganisms, indicating their potential for essential metabolic functions. Notably, Pantoea and Microbacterium show significant HM resistance, plant growth-promoting capabilities, and diverse element cycling functions. They possess genes associated with metal(loid) resistance, such as ars and czc, suggesting their ability to detoxify arsenic(As) and cadmium(Cd). They also support carbon, nitrogen, and sulfur cycling, with genes linked to carbon fixation, nitrogen fixation, and sulfur reduction. Additionally, these bacteria may enhance plant stress resistance and growth by producing antioxidants, phytohormones, and other beneficial compounds, potentially improving HM stress tolerance and nutrient availability in rice plants. This study shows that atmospheric HMs affect rice leaf microbial communities, prompting plants to seek microbial help to combat stress. The unique composition and metabolic potential of rice leaf microbiota offer a novel perspective for mitigating adverse stress induced by atmospheric HM deposition. This contributes to the utilization of leaf microbiota to alleviate the negative impact of heavy metal deposition on rice development and food security.
Collapse
Affiliation(s)
- Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xiao He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Jinbo Yang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Li Jiang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Aiping Yang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
3
|
Kumar R, Singh A, Shukla E, Singh P, Khan A, Singh NK, Srivastava A. Siderophore of plant growth promoting rhizobacterium origin reduces reactive oxygen species mediated injury in Solanum spp. caused by fungal pathogens. J Appl Microbiol 2024; 135:lxae036. [PMID: 38341275 DOI: 10.1093/jambio/lxae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
AIMS The study aims to explore antifungal properties of bacillibactin siderophore produced by the plant growth-promoting rhizobacterium (PGPR) Bacillus subtilis against fungal phytopathogens Alternaria porri and Fusarium equiseti isolated from Solanum lycopersicum and Solanum melongena plants. METHODS AND RESULTS Alternaria porri and F. equiseti were isolated from infected plants of eggplant and tomato, respectively. A plate assay was employed to assess the effect of bacillibactin against the phytopathogens. The antifungal potential of the PGPR was evaluated by estimation of dry fungal biomass, visualization of cellular deformity using compound and scanning electron microscopy, antioxidative enzyme assay and analysis of membrane damage via using lipid peroxidation. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis was employed to investigate changes in intracellular iron content. The impact of bacillibactin on pathogenesis was evaluated by infecting detached leaves of S. lycopersicum and S. melongena plants with both the pathogens and treating the infected leaves with bacillibactin. Leaves were further investigated for ROS accumulation, extent of necrosis and cell death. Our findings revealed significant damage to the hyphal structure of A. porri and F. equiseti following treatment with bacillibactin. Biomass reduction, elevated antioxidative enzyme levels, and membrane damage further substantiated the inhibitory effects of the siderophore on fungal growth. ICP-AES analysis indicates an increase in intracellular iron content suggesting enhanced iron uptake facilitated by bacillibactin. Moreover, application of 1500 µg ml-1 bacillibactin on infected leaves demonstrated a substantial inhibition of ROS accumulation, necrosis, and cell death upon bacillibactin treatment. CONCLUSIONS This study confirms the potent antagonistic activity of bacillibactin against both the phytopathogens A. porri and F. equiseti growth, supporting its potential as a promising biological control agent for fungal plant diseases. Bacillibactin-induced morphological, physiological, and biochemical alterations in the isolated fungi and pathogen-infected leaves highlight the prospects of bacillibactin as an effective and sustainable solution to mitigate economic losses associated with fungal infections in vegetable crops.
Collapse
Affiliation(s)
- Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Ashutosh Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Ekta Shukla
- Department of Botany, Sunbeam College for Women, U.P., Bhagwanpur, Varanasi 221005, India
| | - Pratika Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Azmi Khan
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Naveen Kumar Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| |
Collapse
|
4
|
Chiaranunt P, White JF. Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:400. [PMID: 36679113 PMCID: PMC9861093 DOI: 10.3390/plants12020400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
In this literature review, we discuss the various functions of beneficial plant bacteria in improving plant nutrition, the defense against biotic and abiotic stress, and hormonal regulation. We also review the recent research on rhizophagy, a nutrient scavenging mechanism in which bacteria enter and exit root cells on a cyclical basis. These concepts are covered in the contexts of soil agriculture and controlled environment agriculture, and they are also used in vertical farming systems. Vertical farming-its advantages and disadvantages over soil agriculture, and the various climatic factors in controlled environment agriculture-is also discussed in relation to plant-bacterial relationships. The different factors under grower control, such as choice of substrate, oxygenation rates, temperature, light, and CO2 supplementation, may influence plant-bacterial interactions in unintended ways. Understanding the specific effects of these environmental factors may inform the best cultural practices and further elucidate the mechanisms by which beneficial bacteria promote plant growth.
Collapse
|
5
|
Qin Y, Xie XQ, Khan Q, Wei JL, Sun AN, Su YM, Guo DJ, Li YR, Xing YX. Endophytic nitrogen-fixing bacteria DX120E inoculation altered the carbon and nitrogen metabolism in sugarcane. Front Microbiol 2022; 13:1000033. [PMID: 36419423 PMCID: PMC9678049 DOI: 10.3389/fmicb.2022.1000033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2024] Open
Abstract
Endophytic nitrogen-fixing bacteria are versatile and widely distributed in plants. Numerous strains of endophytic nitrogen-fixing bacteria are used as biofertilizers to minimize the utilization of chemical fertilizers, improve nutrient use efficiency, increase crop productivity, and reduce environmental pollution. However, the mechanism underlying the interaction between nitrogen-fixing bacteria and plants is still unclear. So, the present study was planned to assess the effects of endophytic nitrogen-fixing bacteria on sugarcane by analyzing the changes in physiological and biochemical activities. In the current study, Klebsiella variicola DX120E, an endophytic nitrogen-fixing bacterium, was inoculated on sugarcane varieties B8 and ROC22 to evaluate the effects on nitrogen and carbon metabolism-related enzymatic activity and biomass. Results showed that DX120E inoculation improved the enzymatic activities related to gluconeogenesis and nitrogen metabolism increased the sugarcane plant's height, cane juice Brix, biomass, chlorophyll, and soluble sugar content in sugarcane. Metabolomics analysis revealed that the metabolome modules were highly enriched in carbon and nitrogen metabolic pathways of strain-affected sugarcane than uninoculated control. The identified carbohydrates were associated with the glycolysis or gluconeogenesis and tricarboxylic acid (TCA) cycle in plants. Metabolomic profiling in the present investigation showed that carbohydrate metabolism is coordinated with nitrogen metabolism to provide carbon skeletons and energy to amino acid synthesis, and amino acid degradation results in several metabolites used by the citric acid cycle as an energy source. Moreover, differentially expressed metabolites of non-proteinogenic amino acids have a further complementary role to the action of endophytic nitrogen-fixing bacteria. Meanwhile, a significant difference in metabolites and metabolic pathways present in stems and leaves of B8 and ROC22 varieties was found. This study discovered the potential benefits of DX120E in sugarcane and suggested candidate regulatory elements to enhance interactions between nitrogen-fixing microbes and sugarcane.
Collapse
Affiliation(s)
- Ying Qin
- College of Agriculture, Guangxi University, Nanning, China
| | - Xian-Qiu Xie
- College of Agriculture, Guangxi University, Nanning, China
| | - Qaisar Khan
- College of Agriculture, Guangxi University, Nanning, China
| | - Jiang-Lu Wei
- College of Agriculture, Guangxi University, Nanning, China
| | - An-Ni Sun
- College of Agriculture, Guangxi University, Nanning, China
| | - Yi-Mei Su
- College of Agriculture, Guangxi University, Nanning, China
| | - Dao-Jun Guo
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Yang-Rui Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Sood U, Dhingra GG, Anand S, Hira P, Kumar R, Kaur J, Verma M, Singhvi N, Lal S, Rawat CD, Singh VK, Kaur J, Verma H, Tripathi C, Singh P, Dua A, Saxena A, Phartyal R, Jayaraj P, Makhija S, Gupta R, Sahni S, Nayyar N, Abraham JS, Somasundaram S, Lata P, Solanki R, Mahato NK, Prakash O, Bala K, Kumari R, Toteja R, Kalia VC, Lal R. Microbial Journey: Mount Everest to Mars. Indian J Microbiol 2022; 62:323-337. [PMID: 35974919 PMCID: PMC9375815 DOI: 10.1007/s12088-022-01029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022] Open
Abstract
A rigorous exploration of microbial diversity has revealed its presence on Earth, deep oceans, and vast space. The presence of microbial life in diverse environmental conditions, ranging from moderate to extreme temperature, pH, salinity, oxygen, radiations, and altitudes, has provided the necessary impetus to search for them by extending the limits of their habitats. Microbiology started as a distinct science in the mid-nineteenth century and has provided inputs for the betterment of mankind during the last 150 years. As beneficial microbes are assets and pathogens are detrimental, studying both have its own merits. Scientists are nowadays working on illustrating the microbial dynamics in Earth's subsurface, deep sea, and polar regions. In addition to studying the role of microbes in the environment, the microbe-host interactions in humans, animals and plants are also unearthing newer insights that can help us to improve the health of the host by modulating the microbiota. Microbes have the potential to remediate persistent organic pollutants. Antimicrobial resistance which is a serious concern can also be tackled only after monitoring the spread of resistant microbes using disciplines of genomics and metagenomics The cognizance of microbiology has reached the top of the world. Space Missions are now looking for signs of life on the planets (specifically Mars), the Moon and beyond them. Among the most potent pieces of evidence to support the existence of life is to look for microbial, plant, and animal fossils. There is also an urgent need to deliberate and communicate these findings to layman and policymakers that would help them to take an adequate decision for better health and the environment around us. Here, we present a glimpse of recent advancements by scientists from around the world, exploring and exploiting microbial diversity.
Collapse
Affiliation(s)
- Utkarsh Sood
- The Energy and Resources Institute, New Delhi, India
| | | | - Shailly Anand
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Princy Hira
- Maitreyi College, University of Delhi, New Delhi, India
| | - Roshan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar India
| | | | - Mansi Verma
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | - Sukanya Lal
- Ramjas College, University of Delhi, Delhi, India
| | | | | | - Jaspreet Kaur
- Maitreyi College, University of Delhi, New Delhi, India
| | | | | | - Priya Singh
- Maitreyi College, University of Delhi, New Delhi, India
| | - Ankita Dua
- Shivaji College, University of Delhi, New Delhi, India
| | - Anjali Saxena
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | | | - Perumal Jayaraj
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Renu Gupta
- Maitreyi College, University of Delhi, New Delhi, India
| | - Sumit Sahni
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Namita Nayyar
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | | | - Pushp Lata
- Ramjas College, University of Delhi, Delhi, India
| | - Renu Solanki
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Nitish Kumar Mahato
- University Department of Zoology, Kolhan University, Chaibasa, Jharkhand India
| | - Om Prakash
- National Centre for Cell Sciences, Pune, Maharashtra India
| | - Kiran Bala
- Deshbandhu College, University of Delhi, New Delhi, India
| | - Rashmi Kumari
- College of Commerce, Arts and Science, Patliputra University, Patna, Bihar India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | | | - Rup Lal
- The Energy and Resources Institute, New Delhi, India
| |
Collapse
|