1
|
Wang Z, Sun X, Lin Y, Fu Y, Yi Z. Stealth in non-tuberculous mycobacteria: clever challengers to the immune system. Microbiol Res 2025; 292:128039. [PMID: 39752805 DOI: 10.1016/j.micres.2024.128039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent. Currently, there is a lack of effective treatments and preventive measures for NTM infections. This article aims to deepen the comprehension of the pathogenic mechanisms linked to NTM and to formulate new intervention strategies by synthesizing current research and detailing the different tactics used by NTM to avoid elimination by the host's immune response. These intricate mechanisms not only affect the innate immune response but also successfully oppose the adaptive immune response, establishing persistent infections within the host. This includes effects on the functions of macrophages, neutrophils, dendritic cells, and T lymphocytes, as well as modulation of cytokine production. The article particularly emphasizes the survival strategies of NTM within macrophages, such as inhibiting phagosome maturation and acidification, resisting intracellular killing mechanisms, and interfering with autophagy and cell death pathways. This review aims to deepen the understanding of NTM's immune evasion mechanisms, thereby facilitating efforts to inhibit its proliferation and spread within the host, ultimately providing new methods and strategies for NTM-related treatments.
Collapse
Affiliation(s)
- Zhenghao Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Xiurong Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yuli Lin
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China
| | - Yurong Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
2
|
Mohammadnabi N, Shamseddin J, Emadi M, Bodaghi AB, Varseh M, Shariati A, Rezaei M, Dastranj M, Farahani A. Mycobacterium tuberculosis: The Mechanism of Pathogenicity, Immune Responses, and Diagnostic Challenges. J Clin Lab Anal 2024; 38:e25122. [PMID: 39593272 PMCID: PMC11632860 DOI: 10.1002/jcla.25122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/27/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The infection caused by Mycobacterium tuberculosis arises from a complex interplay between the host immune system and the bacteria. Early and effective treatment of this disease is of great importance in order to prevent the emergence of drug-resistant strains. This necessitates the availability of fast and reliable diagnostic methods for managing affected cases. One reason why this study is significant is the lack of a comprehensive review in this field that thoroughly examines the importance, pathogenesis, and diagnosis of M. tuberculosis. Therefore, the aim of this review is to provide updated information on M. tuberculosis. METHODS We investigate the virulence factors, pathogenicity, and diagnostic methods of this bacterium, alongside the clinical symptoms and interpretation of different types of tuberculosis, including cerebral, miliary, nerve, and tubercular tuberculosis. RESULTS Mycobacterium tuberculosis acts as the causative agent of human tuberculosis and is regarded as one of the most adaptable human pathogens. M. tuberculosis possesses several virulence factors that help the bacterium evade mucous barriers. The rise of multidrug-resistant tuberculosis (MDR-TB) in both developing and industrialized countries emphasizes the need for rapid diagnostic methods. CONCLUSIONS Non-protein virulence factors play a crucial role in the pathogenicity of Mycobacterium tuberculosis (M. tuberculosis). The bacterial cell membrane contains proteins that modulate the host immune response. For instance, ESAT-6, either alone or in combination with CFP-10, reduces immune activity. While molecular techniques-such as DNA microarray, luciferase reporter assay, polymerase chain reaction (PCR), DNA and RNA probes, next-generation sequencing, and whole-genome sequencing-offer rapid, sensitive, and specific detection of M. tuberculosis, these methods are expensive and require technical expertise.
Collapse
Affiliation(s)
- Noura Mohammadnabi
- Student Research CommitteeKhomein University of Medical SciencesKhomeinIran
| | - Jebreil Shamseddin
- Infectious and Tropical Diseases Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| | - Mobina Emadi
- Student Research CommitteeKhomein University of Medical SciencesKhomeinIran
| | - Ali Bayat Bodaghi
- Student Research CommitteeKhomein University of Medical SciencesKhomeinIran
| | - Mahdieh Varseh
- Student Research CommitteeKhomein University of Medical SciencesKhomeinIran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC)Arak University of Medical SciencesArakIran
| | - Mina Rezaei
- School of Environment, College of EngineeringUniversity of TehranTehranIran
| | - Mahsa Dastranj
- Microbiology Department, Kurdistan Science and Research BranchIslamic Azad UniversitySanandajIran
| | - Abbas Farahani
- Molecular Medicine Research CenterKhomein University of Medical SciencesKhomeinIran
- Department of Basic SciencesKhomein University of Medical SciencesKhomeinIran
| |
Collapse
|
3
|
Sun F, Li J, Cao L, Yan C. Mycobacterium tuberculosis virulence protein ESAT-6 influences M1/M2 polarization and macrophage apoptosis to regulate tuberculosis progression. Genes Genomics 2024; 46:37-47. [PMID: 37971619 DOI: 10.1007/s13258-023-01469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Tuberculosis (TB) is an infectious disease caused by infection with Mycobacterium tuberculosis (Mtb), and it remains one of the major threats to human health worldwide. To our knowledge, the polarization of M1/M2 macrophages were critical innate immune cells which play important roles in regulating the immune response during TB progression. OBJECTIVE We aimed to explore the potential mechanisms of M1/M2 macrophage polarization in TB development. METHODS THP-1 macrophages were treated with early secreted antigenic target of 6 kDa (ESAT-6) protein for an increasing time. The polarization profiles, apoptosis levels of M1 and M2 macrophages were detected by RT-qPCR, immunofluorescence, Western blot and flow cytometry. RESULTS ESAT-6 initially promoted the generation of pro-inflammatory M1-polarized macrophages in THP-1 cells within 24 h, which were suppressed by further ESAT-6 treatment at 30-42 h. Interestingly, ESAT-6 continuously promoted M2 polarization of THP-1 cells, thereby maintaining the anti-inflammatory response in a time-dependent manner. In addition, ESAT-6 promoted apoptotic cell death in M1-polarized macrophages, which had little effects on apoptosis of M2-phenotype of macrophages. Then, the potential underlying mechanisms were uncovered, and we verified that ESAT-6 increased the protein levels of TLR4, MyD88 and NF-κB to activate the TLR4/MyD88/NF-κB pathway within 24 h, and this signal pathway was significantly inactivated at 36 h post-treatment. Interestingly, the following experiments confirmed that ESAT-6 TLR4/MyD88/NF-κB pathway-dependently regulated M1/M2 polarization and apoptosis of macrophage in THP-1 cells. CONCLUSION Our study investigated the detailed effects and mechanisms of M1/M2 macrophages in regulating innate responses during TB development, which provided a new perspective on the development of treatment strategies for this disease.
Collapse
Affiliation(s)
- Feng Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Pulmonary and Critical Care Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyu Shan Road, Urumqi, 830054, China
| | - Jiangbo Li
- Xinjiang Medical University, Urumqi, China
| | - Ling Cao
- Inspection Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Cunzi Yan
- Pulmonary and Critical Care Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyu Shan Road, Urumqi, 830054, China.
| |
Collapse
|
4
|
Wang H, Wang S, Fang R, Li X, Xing J, Li Z, Song N. Enhancing TB Vaccine Efficacy: Current Progress on Vaccines, Adjuvants and Immunization Strategies. Vaccines (Basel) 2023; 12:38. [PMID: 38250851 PMCID: PMC10820143 DOI: 10.3390/vaccines12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB) remains a global infectious disease primarily transmitted via respiratory tract infection. Presently, vaccination stands as the primary method for TB prevention, predominantly reliant on the Bacillus Calmette-Guérin (BCG) vaccine. Although it is effective in preventing disseminated diseases in children, its impact on adults is limited. To broaden vaccine protection, efforts are underway to accelerate the development of new TB vaccines. However, challenges arise due to the limited immunogenicity and safety of these vaccines, necessitating adjuvants to bolster their ability to elicit a robust immune response for improved and safer immunization. These adjuvants function by augmenting cellular and humoral immunity against M. tuberculosis antigens via different delivery systems, ultimately enhancing vaccine efficacy. Therefore, this paper reviews and summarizes the current research progress on M. tuberculosis vaccines and their associated adjuvants, aiming to provide a valuable reference for the development of novel TB vaccines and the screening of adjuvants.
Collapse
Affiliation(s)
- Hui Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Shuxian Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Xiaotian Li
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Jiayin Xing
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co., Ltd., Beijing 100000, China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| |
Collapse
|
5
|
Wang R, Fan X, Xu D, Li M, Zhao X, Cao B, Qian C, Yu J, Fang D, Gu Y, Wan K, Liu H. Comparison of the Immunogenicity and Efficacy of rBCG-EPCP009, BCG Prime-EPCP009 Booster, and EPCP009 Protein Regimens as Tuberculosis Vaccine Candidates. Vaccines (Basel) 2023; 11:1738. [PMID: 38140143 PMCID: PMC10747267 DOI: 10.3390/vaccines11121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) is the only widely used prophylactic tuberculosis (TB) vaccine that can prevent severe TB in infants. However, it provides poor protection in adults, and therefore, there is ongoing research into new TB vaccines and immunization strategies with more durable immune effects. The recombinant BCG and BCG prime-protein booster are two important vaccine strategies that have recently been developed based on BCG and could improve immune responses. In this study, three immune strategies based on four protective antigens, namely, ESAT-6, CFP-10, nPPE18, and nPstS1, were applied to construct recombinant rBCG-EPCP009, EPCP009 subunit protein, and BCG prime-EPCP009 booster vaccine candidates. The short- and long-term immune effects after vaccination in Balb/c mice were evaluated based on humoral immunity, cellular immunity, and the ability of spleen cells to inhibit in vitro mycobacterial growth. At 8 and 12 weeks after the initial immunization, splenocytes from mice inoculated with the BCG prime-EPCP009 protein booster secreted higher levels of PPD- and EPCP009-specific IFN-γ, IL-2, TNF-α, IL-17, GM-CSF, and IL-12 and had a higher IFN-γ+CD4+ TEM:IL-2+CD8+ TCM cell ratio than splenocytes from mice inoculated with the rBCG-EPCP009 and EPCP009 proteins. In addition, the EPCPE009-specific IgG2a/IgG1 ratio was slightly higher in the BCG prime-EPCP009 protein booster group than in the other two groups. The in vitro mycobacterial inhibition assay showed that the splenocytes of mice from the BCG prime-EPCP009 protein booster group exhibited stronger inhibition of Mycobacterium tuberculosis (M. tuberculosis) growth than the splenocytes of mice from the other two groups. These results indicate that the BCG prime-EPCP009 protein booster exhibited superior immunogenicity and M. tuberculosis growth inhibition to the parental BCG, rBCG-EPCP009, and EPCP009 proteins under in vitro conditions. Thus, the BCG prime-EPCP009 protein booster may be important for the development of a more effective adult TB vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.F.); (D.X.); (M.L.); (X.Z.); (B.C.); (C.Q.); (J.Y.); (D.F.); (Y.G.)
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.F.); (D.X.); (M.L.); (X.Z.); (B.C.); (C.Q.); (J.Y.); (D.F.); (Y.G.)
| |
Collapse
|
6
|
Valdemar-Aguilar CM, Manisekaran R, Acosta-Torres LS, López-Marín LM. Spotlight on mycobacterial lipid exploitation using nanotechnology for diagnosis, vaccines, and treatments. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102653. [PMID: 36646193 PMCID: PMC9839462 DOI: 10.1016/j.nano.2023.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Tuberculosis (TB), historically the most significant cause of human morbidity and mortality, has returned as the top infectious disease worldwide, under circumstances worsened by the COVID-19 pandemic's devastating effects on public health. Although Mycobacterium tuberculosis, the causal agent, has been known of for more than a century, the development of tools to control it has been largely neglected. With the advancement of nanotechnology, the possibility of engineering tools at the nanoscale creates unique opportunities to exploit any molecular type. However, little attention has been paid to one of the major attributes of the pathogen, represented by the atypical coat and its abundant lipids. In this review, an overview of the lipids encountered in M. tuberculosis and interest in exploiting them for the development of TB control tools are presented. Then, the amalgamation of nanotechnology with mycobacterial lipids from both reported and future works are discussed.
Collapse
Affiliation(s)
- Carlos M. Valdemar-Aguilar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37689 León, Mexico.
| | - Laura S. Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37689 León, Mexico
| | - Luz M. López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico,Corresponding authors
| |
Collapse
|