1
|
Wang Z, Li H. The tigecycline resistance mechanisms in Gram-negative bacilli. Front Cell Infect Microbiol 2024; 14:1471469. [PMID: 39635040 PMCID: PMC11615727 DOI: 10.3389/fcimb.2024.1471469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Tigecycline, hailed as a pivotal agent in combating multidrug-resistant bacterial infections, confronts obstacles posed by the emergence of resistance mechanisms in Gram-negative bacilli. This study explores the complex mechanisms of tigecycline resistance in Gram-negative bacilli, with a particular focus on the role of efflux pumps and drug modification in resistance. By summarizing these mechanisms, our objective is to provide a comprehensive understanding of tigecycline resistance in Gram-negative bacilli, thereby illuminating the evolving landscape of antimicrobial resistance. This review contributes to the elucidation of current existing tigecycline resistance mechanisms and provides insights into the development of effective strategies to manage the control of antimicrobial resistance in the clinical setting, as well as potential new targets for the treatment of tigecycline-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhiren Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Henan Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
2
|
Sivarajan K, Ravindhiran R, Sekar JN, Murugesan R, Chidambaram K, Dhandapani K. Deciphering the impact of Acinetobacter baumannii on human health, and exploration of natural compounds as efflux pump inhibitors to treat multidrug resistance. J Med Microbiol 2024; 73. [PMID: 39212030 DOI: 10.1099/jmm.0.001867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii is an ESKAPE pathogen and threatens human health by generating infections with high fatality rates. A. baumannii leads to a spectrum of infections such as skin and wound infections, endocarditis, meningitis pneumonia, septicaemia and urinary tract infections. Recently, strains of A. baumannii have emerged as multidrug-resistant (MDR), meaning they are resistant to at least three different classes of antibiotics. MDR development is primarily intensified by widespread antibiotic misuse and inadequate stewardship. The World Health Organization (WHO) declared A. baumannii a precarious MDR species. A. baumannii maintains the MDR phenotype via a diverse array of antimicrobial metabolite-hydrolysing enzymes, efflux of antibiotics, impermeability and antibiotic target modification, thereby complicating treatment. Hence, a deeper understanding of the resistance mechanisms employed by MDR A. baumannii can give possible approaches to treat antimicrobial resistance. Resistance-nodulation-cell division (RND) efflux pumps have been identified as the key contributors to MDR determinants, owing to their capacity to force a broad spectrum of chemical substances out of the bacterial cell. Though synthetic inhibitors have been reported previously, their efficacy and safety are of debate. As resistance-modifying agents, phytochemicals are ideal choices. These natural compounds could eliminate the bacteria or interact with pathogenicity events and reduce the bacteria's ability to evolve resistance. This review aims to highlight the mechanism behind the multidrug resistance in A. baumannii and elucidate the utility of natural compounds as efflux pump inhibitors to deal with the infections caused by A. baumannii.
Collapse
Affiliation(s)
- Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Jothi Nayaki Sekar
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, School of Pharmacy, King Khalid University, Abha 652529, Saudi Arabia
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| |
Collapse
|
3
|
Shi J, Cheng J, Liu S, Zhu Y, Zhu M. Acinetobacter baumannii: an evolving and cunning opponent. Front Microbiol 2024; 15:1332108. [PMID: 38318341 PMCID: PMC10838990 DOI: 10.3389/fmicb.2024.1332108] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Acinetobacter baumannii is one of the most common multidrug-resistant pathogens causing nosocomial infections. The prevalence of multidrug-resistant A. baumannii infections is increasing because of several factors, including unregulated antibiotic use. A. baumannii drug resistance rate is high; in particular, its resistance rates for tigecycline and polymyxin-the drugs of last resort for extensively drug-resistant A. baumannii-has been increasing annually. Patients with a severe infection of extensively antibiotic-resistant A. baumannii demonstrate a high mortality rate along with a poor prognosis, which makes treating them challenging. Through carbapenem enzyme production and other relevant mechanisms, A. baumannii has rapidly acquired a strong resistance to carbapenem antibiotics-once considered a class of strong antibacterials for A. baumannii infection treatment. Therefore, understanding the resistance mechanism of A. baumannii is particularly crucial. This review summarizes mechanisms underlying common antimicrobial resistance in A. baumannii, particularly those underlying tigecycline and polymyxin resistance. This review will serve as a reference for reasonable antibiotic use at clinics, as well as new antibiotic development.
Collapse
Affiliation(s)
- Jingchao Shi
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianghao Cheng
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shourong Liu
- Department of Infectious Disease, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Zhu
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingli Zhu
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Sun C, Yu Y, Hua X. Resistance mechanisms of tigecycline in Acinetobacter baumannii. Front Cell Infect Microbiol 2023; 13:1141490. [PMID: 37228666 PMCID: PMC10203620 DOI: 10.3389/fcimb.2023.1141490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Acinetobacter baumannii is widely distributed in nature and in hospital settings and is a common pathogen causing various infectious diseases. Currently, the drug resistance rate of A. baumannii has been persistently high, showing a worryingly high resistance rate to various antibiotics commonly used in clinical practice, which greatly limits antibiotic treatment options. Tigecycline and polymyxins show rapid and effective bactericidal activity against CRAB, and they are both widely considered to be the last clinical line of defense against multidrug resistant A. baumannii. This review focuses with interest on the mechanisms of tigecycline resistance in A. baumannii. With the explosive increase in the incidence of tigecycline-resistant A. baumannii, controlling and treating such resistance events has been considered a global challenge. Accordingly, there is a need to systematically investigate the mechanisms of tigecycline resistance in A. baumannii. Currently, the resistance mechanism of A. baumannii to tigecycline is complex and not completely clear. This article reviews the proposed resistance mechanisms of A. baumannii to tigecycline, with a view to providing references for the rational clinical application of tigecycline and the development of new candidate antibiotics.
Collapse
Affiliation(s)
- Chunli Sun
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
The significant role of Carbapenems-resistant Acinetobacter Baumannii in mortality rate of patients with COVID-19. VACUNAS (ENGLISH EDITION) 2023; 24. [PMCID: PMC9969533 DOI: 10.1016/j.vacune.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Background: Infections caused by Acinetobacter baumannii, especially carbapenem-resistant (CR) strains, pose important challenges in patients with COVID-19 infection. Therefore, in the present study, we investigated co-infection and antimicrobial resistance patterns, as well as the role of A. baumannii in the outcome of patients with COVID-19. Materials and methods: Between February 2019 and January 2021, 141 patients with A. baumannii infections were detected from seven different hospitals (A to G) in Arak, Iran, and the antibacterial susceptibility pattern of these isolates was evaluated using disk diffusion and E-test methods. Forty-seven of these patients were co-infected with COVID-19. During the study, the data about the clinical course, demographic data, and the role of A. baumannii infections in the mortality rate of COVID-19 patients were collected. Results: Hospitals A and B reported the most patients, with 53 (38%) and 47 (33%), respectively. Additionally, most cases (105 cases, 75%) were reported from surgical and general ICUs. Mechanical ventilators were detected as predisposing factors in 95 (67%) patients, and infection was detected in 20% of patients on the 10th day after intubation. All of the A. baumannii isolates were resistant to different classes of antibiotics, such as carbapenems. Notably, 33% (47 patients) were also positive for COVID-19, and 68% (32 patients) died due to the infection. Statistical analysis showed a significant role of A. baumannii co-infection in the mortality rate of COVID-19 patients (p-value 0.05). Conclusion: co-infection with A. baumannii is one of the most important challenges in COVID-19 patients. Our results showed that all isolated bacteria were CR and significantly increased mortality rates in COVID-19 patients.
Collapse
|
6
|
AliMohammadi A, Chezani-sharahi N, Hezaveh ZA, Abbasi E, Shariati A, Ghaznavi-Rad E. The significant role of Carbapenems-resistant Acinetobacter Baumannii in mortality rate of patients with COVID-19. VACUNAS 2023; 24:13-18. [PMID: 36341004 PMCID: PMC9622378 DOI: 10.1016/j.vacun.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Background: Infections caused by Acinetobacter baumannii, especially carbapenem-resistant (CR) strains, pose important challenges in patients with COVID-19 infection. Therefore, in the present study, we investigated co-infection and antimicrobial resistance patterns, as well as the role of A. baumannii in the outcome of patients with COVID-19. Materials and methods: Between February 2019 and January 2021, 141 patients with A. baumannii infections were detected from seven different hospitals (A to G) in Arak, Iran, and the antibacterial susceptibility pattern of these isolates was evaluated using disk diffusion and E-test methods. Forty-seven of these patients were co-infected with COVID-19. During the study, the data about the clinical course, demographic data, and the role of A. baumannii infections in the mortality rate of COVID-19 patients were collected. Results: Hospitals A and B reported the most patients, with 53 (38%) and 47 (33%), respectively. Additionally, most cases (105 cases, 75%) were reported from surgical and general ICUs. Mechanical ventilators were detected as predisposing factors in 95 (67%) patients, and infection was detected in 20% of patients on the 10th day after intubation. All of the A. baumannii isolates were resistant to different classes of antibiotics, such as carbapenems. Notably, 33% (47 patients) were also positive for COVID-19, and 68% (32 patients) died due to the infection. Statistical analysis showed a significant role of A. baumannii co-infection in the mortality rate of COVID-19 patients (p-value 0.05). Conclusion: co-infection with A. baumannii is one of the most important challenges in COVID-19 patients. Our results showed that all isolated bacteria were CR and significantly increased mortality rates in COVID-19 patients.
Collapse
Affiliation(s)
- Ali AliMohammadi
- Assistant Professor of Forensic Medicine and Toxicology, Arak University of Medical Sciences, Arak, Iran
| | - Nahid Chezani-sharahi
- PhD student in Health Services Management, Arak University of Medical Sciences, Arak, Iran
| | | | - Elnaz Abbasi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran,Corresponding authors
| | - Ehsanollah Ghaznavi-Rad
- Department of Microbiology, faculty of Medicine, Arak University of Medical Sciences Arak, Iran,Corresponding authors
| |
Collapse
|