1
|
López-Menéndez H, Luque-Rioja C, Kharbedia M, Herráez-Aguilar D, Santiago JA, Monroy F. Multiscale modelling of active hydrogel elasticity driven by living polymers: softening by bacterial motor protein FtsZ. SOFT MATTER 2025; 21:670-686. [PMID: 39760521 DOI: 10.1039/d4sm00839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
We present a neo-Hookean elasticity theory for hybrid mechano-active hydrogels, integrating motor proteins into polymer meshes to create composite materials with active softening due to modulable chain overlaps. Focusing on polyacrylamide (PA) hydrogels embedded with FtsZ, a bacterial cytokinetic protein powered by GTP, we develop a multiscale model using microscopic Flory theory of rubbery meshes through mesoscopic De Gennes' scaling concepts for meshwork dynamics and phenomenological Landau's formalism for second-order phase transitions. Our theoretical multiscale model explains the active softening observed in hybrid FtsZ-PA hydrogels by incorporating modulable meshwork dynamics, such as overlapping functionality and reptation dynamics, into an active mean-field of unbinding interactions. The novel FtsZ-based metamaterial and companion multiscale theory offer insights for designing, predicting, and controlling complex active hydrogels, with potential applications in technology and biomedicine.
Collapse
Affiliation(s)
- Horacio López-Menéndez
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Clara Luque-Rioja
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
- Unit of Translational Biophysics, IIS Hospital Doce de Octubre (Imas12), Av. Andalucía s/n, 28041 Madrid, Spain
| | - Mikheil Kharbedia
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Diego Herráez-Aguilar
- Instituto de Investigaciones Biosanitarias, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, 28223 Pozuelo de Alarcón, Spain
| | - José A Santiago
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
- Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Cuajimalpa, Vasco de Quiroga 4871, 05348 Ciudad de México, Mexico
| | - Francisco Monroy
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
- Unit of Translational Biophysics, IIS Hospital Doce de Octubre (Imas12), Av. Andalucía s/n, 28041 Madrid, Spain
| |
Collapse
|
2
|
Ruiz-Martinez A, Bartol TM, Sejnowski TJ, Tartakovsky DM. Efficient Multiscale Models of Polymer Assembly. Biophys J 2017; 111:185-96. [PMID: 27410746 DOI: 10.1016/j.bpj.2016.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/24/2016] [Accepted: 05/09/2016] [Indexed: 12/25/2022] Open
Abstract
Protein polymerization and bundling play a central role in cell physiology. Predictive modeling of these processes remains an open challenge, especially when the proteins involved become large and their concentrations high. We present an effective kinetics model of filament formation, bundling, and depolymerization after GTP hydrolysis, which involves a relatively small number of species and reactions, and remains robust over a wide range of concentrations and timescales. We apply this general model to study assembly of FtsZ protein, a basic element in the division process of prokaryotic cells such as Escherichia coli, Bacillus subtilis, or Caulobacter crescentus. This analysis demonstrates that our model outperforms its counterparts in terms of both accuracy and computational efficiency. Because our model comprises only 17 ordinary differential equations, its computational cost is orders-of-magnitude smaller than the current alternatives consisting of up to 1000 ordinary differential equations. It also provides, to our knowledge, a new insight into the characteristics and functioning of FtsZ proteins at high concentrations. The simplicity and versatility of our model render it a powerful computational tool, which can be used either as a standalone descriptor of other biopolymers' assembly or as a component in more complete kinetic models.
Collapse
Affiliation(s)
- Alvaro Ruiz-Martinez
- Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California
| | - Thomas M Bartol
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California; The Division of Biological Studies Sciences, University of California-San Diego, La Jolla, California.
| | - Daniel M Tartakovsky
- Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California.
| |
Collapse
|
3
|
Wu H, Fan Z, Jiang X, Chen J, Chen GQ. Enhanced production of polyhydroxybutyrate by multiple dividing E. coli. Microb Cell Fact 2016; 15:128. [PMID: 27465264 PMCID: PMC4964105 DOI: 10.1186/s12934-016-0531-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Most bacteria are grown in a binary fission way meaning a bacterial cell is equally divided into two. Polyhydroxyalkanoates (PHA) can be accumulated as inclusion bodies by bacteria. The cell division way and morphology have been shown to play an important role in regulating the bacterial growth and PHA storages. RESULTS The common growth pattern of Escherichia coli was changed to multiple fission patterns by deleting fission related genes minC and minD together, allowing the formation of multiple fission rings (Z-rings) in several positions of an elongated cell, thus a bacterial cell was observed to be divided into more than two daughter cells at same time. To further improve cell growth and PHA production, some genes related with division process including ftsQ, ftsL, ftsW, ftsN and ftsZ, together with the cell shape control gene mreB, were all overexpressed in E. coli JM109 ∆minCD. The changing pattern of E. coli cell growth and morphology resulted in more cell dry weights (CDW) and more than 80 % polyhydroxybutyrate (PHB) accumulation increases compared to its binary fission control grown under the same conditions. CONCLUSIONS This study clearly demonstrated that combined over-expression genes ftsQ, ftsW, ftsN, ftsL and ftsZ together with shape control gene mreB in multiple division bacterial E. coli JM109 ∆minCD benefited PHA accumulation. Our study provides useful information on increasing the yield of PHA by changing the cell division pattern and cell morphology of E. coli.
Collapse
Affiliation(s)
- Hong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongyun Fan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoran Jiang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinchun Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China. .,Center for Nano and Micro Mechanics, MOE, Tsinghua University, Beijing, 100084, China. .,MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Nishida Y, Takeuchi H, Morimoto N, Umeda A, Kadota Y, Kira M, Okazaki A, Matsumura Y, Sugiura T. Intrinsic characteristics of Min proteins on the cell division of Helicobacter pylori. FEMS Microbiol Lett 2016; 363:fnw025. [PMID: 26862143 DOI: 10.1093/femsle/fnw025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2016] [Indexed: 01/24/2023] Open
Abstract
Helicobacter pylori divides in the human stomach resulting in persistent infections and causing various disorders. Bacterial cell division is precisely coordinated by many molecules, including FtsZ and Min proteins. However, the role of Min proteins in H. pylori division is poorly understood. We investigated the functional characteristics of Min proteins in wild-type HPK5 and five HPK5-derivative mutants using morphological and genetic approaches. All mutants showed a filamentous shape. However, the bacterial cell growth and viability of three single-gene mutants (minC, minD, minE) were similar to that of the wild-type. The coccoid form number was lowest in the minE-disruptant, indicating that MinE contributes to the coccoid form conversion during the stationary phase. Immunofluorescence microscopic observations showed that FtsZ was dispersedly distributed throughout the bacterial cell irrespective of nucleoid position in only minD-disruptants, indicating that MinD is involved in the nucleoid occlusion system. A chase assay demonstrated that MinC loss suppressed FtsZ-degradation, indicating that FtsZ degrades in a MinC-dependent manner. Molecular interactions between FtsZ and Min proteins were confirmed by immunoprecipitation (IP)-western blotting (WB), suggesting the functional cooperation of these molecules during bacterial cell division. This study describes the intrinsic characteristics of Min proteins and provides new insights into H. pylori cell division.
Collapse
Affiliation(s)
- Yoshie Nishida
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Hiroaki Takeuchi
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Norihito Morimoto
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Akiko Umeda
- Department of Clinical Laboratory Medicine, Yamaguchi University, 1-1-1 MinamiKogushi, Ube-city, Yamaguchi 755-8505, Japan
| | - Yoshu Kadota
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Mizuki Kira
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Ami Okazaki
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Yoshihisa Matsumura
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Tetsuro Sugiura
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| |
Collapse
|
5
|
Broughton CE, Roper DI, Van Den Berg HA, Rodger A. Bacterial cell division: experimental and theoretical approaches to the divisome. Sci Prog 2015; 98:313-45. [PMID: 26790174 PMCID: PMC10365498 DOI: 10.3184/003685015x14461391862881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell division is a key event in the bacterial life cycle. It involves constriction at the midcell, so that one cell can give rise to two daughter cells. This constriction is mediated by a ring composed offibrous multimers of the protein FtsZ. However a host of additional factors is involved in the formation and dynamics of this "Z-ring" and this complicated apparatus is collectively known as the "divisome". We review the literature, with an emphasis on mathematical modelling, and show how such theoretical efforts have helped experimentalists to make sense of the at times bewildering data, and plan further experiments.
Collapse
|