1
|
Pal S, Melnik R. Nonlocal models in biology and life sciences: Sources, developments, and applications. Phys Life Rev 2025; 53:24-75. [PMID: 40037217 DOI: 10.1016/j.plrev.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Mathematical modeling is one of the fundamental techniques for understanding biophysical mechanisms in developmental biology. It helps researchers to analyze complex physiological processes and connect like a bridge between theoretical and experimental observations. Various groups of mathematical models have been studied to analyze these processes, and the nonlocal models are one of them. Nonlocality is important in realistic mathematical models of physical and biological systems when local models fail to capture the essential dynamics and interactions that occur over a range of distances (e.g., cell-cell, cell-tissue adhesions, neural networks, the spread of diseases, intra-specific competition, nanobeams, etc.). This review illustrates different nonlocal mathematical models applied to biology and life sciences. The major focus has been given to sources, developments, and applications of such models. Among other things, a systematic discussion has been provided for the conditions of pattern formations in biological systems of population dynamics. Special attention has also been given to nonlocal interactions on networks, network coupling and integration, including brain dynamics models that provide an important tool to understand neurodegenerative diseases better. In addition, we have discussed nonlocal modeling approaches for cancer stem cells and tumor cells that are widely applied in the cell migration processes, growth, and avascular tumors in any organ. Furthermore, the discussed nonlocal continuum models can go sufficiently smaller scales, including nanotechnology, where classical local models often fail to capture the complexities of nanoscale interactions, applied to build biosensors to sense biomaterial and its concentration. Piezoelectric and other smart materials are among them, and these devices are becoming increasingly important in the digital and physical world that is intrinsically interconnected with biological systems. Additionally, we have reviewed a nonlocal theory of peridynamics, which deals with continuous and discrete media and applies to model the relationship between fracture and healing in cortical bone, tissue growth and shrinkage, and other areas increasingly important in biomedical and bioengineering applications. Finally, we provided a comprehensive summary of emerging trends and highlighted future directions in this rapidly expanding field.
Collapse
Affiliation(s)
- Swadesh Pal
- MS2 Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Canada.
| | - Roderick Melnik
- MS2 Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Canada; BCAM - Basque Center for Applied Mathematics, E-48009, Bilbao, Spain.
| |
Collapse
|
2
|
Zhigun A, Rajendran ML. Modelling non-local cell-cell adhesion: a multiscale approach. J Math Biol 2024; 88:55. [PMID: 38568280 PMCID: PMC10991076 DOI: 10.1007/s00285-024-02079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Cell-cell adhesion plays a vital role in the development and maintenance of multicellular organisms. One of its functions is regulation of cell migration, such as occurs, e.g. during embryogenesis or in cancer. In this work, we develop a versatile multiscale approach to modelling a moving self-adhesive cell population that combines a careful microscopic description of a deterministic adhesion-driven motion component with an efficient mesoscopic representation of a stochastic velocity-jump process. This approach gives rise to mesoscopic models in the form of kinetic transport equations featuring multiple non-localities. Subsequent parabolic and hyperbolic scalings produce general classes of equations with non-local adhesion and myopic diffusion, a special case being the classical macroscopic model proposed in Armstrong et al. (J Theoret Biol 243(1): 98-113, 2006). Our simulations show how the combination of the two motion effects can unfold. Cell-cell adhesion relies on the subcellular cell adhesion molecule binding. Our approach lends itself conveniently to capturing this microscopic effect. On the macroscale, this results in an additional non-linear integral equation of a novel type that is coupled to the cell density equation.
Collapse
Affiliation(s)
- Anna Zhigun
- School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, UK.
| | - Mabel Lizzy Rajendran
- School of Mathematics, Watson Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
3
|
Hillen T, Loy N, Painter KJ, Thiessen R. Modelling microtube driven invasion of glioma. J Math Biol 2023; 88:4. [PMID: 38015257 PMCID: PMC10684558 DOI: 10.1007/s00285-023-02025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
Malignant gliomas are notoriously invasive, a major impediment against their successful treatment. This invasive growth has motivated the use of predictive partial differential equation models, formulated at varying levels of detail, and including (i) "proliferation-infiltration" models, (ii) "go-or-grow" models, and (iii) anisotropic diffusion models. Often, these models use macroscopic observations of a diffuse tumour interface to motivate a phenomenological description of invasion, rather than performing a detailed and mechanistic modelling of glioma cell invasion processes. Here we close this gap. Based on experiments that support an important role played by long cellular protrusions, termed tumour microtubes, we formulate a new model for microtube-driven glioma invasion. In particular, we model a population of tumour cells that extend tissue-infiltrating microtubes. Mitosis leads to new nuclei that migrate along the microtubes and settle elsewhere. A combination of steady state analysis and numerical simulation is employed to show that the model can predict an expanding tumour, with travelling wave solutions led by microtube dynamics. A sequence of scaling arguments allows us reduce the detailed model into simpler formulations, including models falling into each of the general classes (i), (ii), and (iii) above. This analysis allows us to clearly identify the assumptions under which these various models can be a posteriori justified in the context of microtube-driven glioma invasion. Numerical simulations are used to compare the various model classes and we discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Thomas Hillen
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada.
| | - Nadia Loy
- Department of Mathematical Sciences (DISMA), Politecnico di Torino, Turin, Italy
| | - Kevin J Painter
- Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico di Torino, Turin, Italy
| | - Ryan Thiessen
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Lampiasi N. The Migration and the Fate of Dental Pulp Stem Cells. BIOLOGY 2023; 12:biology12050742. [PMID: 37237554 DOI: 10.3390/biology12050742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Human dental pulp stem cells (hDPSCs) are adult mesenchymal stem cells (MSCs) obtained from dental pulp and derived from the neural crest. They can differentiate into odontoblasts, osteoblasts, chondrocytes, adipocytes and nerve cells, and they play a role in tissue repair and regeneration. In fact, DPSCs, depending on the microenvironmental signals, can differentiate into odontoblasts and regenerate dentin or, when transplanted, replace/repair damaged neurons. Cell homing depends on recruitment and migration, and it is more effective and safer than cell transplantation. However, the main limitations of cell homing are the poor cell migration of MSCs and the limited information we have on the regulatory mechanism of the direct differentiation of MSCs. Different isolation methods used to recover DPSCs can yield different cell types. To date, most studies on DPSCs use the enzymatic isolation method, which prevents direct observation of cell migration. Instead, the explant method allows for the observation of single cells that can migrate at two different times and, therefore, could have different fates, for example, differentiation and self-renewal. DPSCs use mesenchymal and amoeboid migration modes with the formation of lamellipodia, filopodia and blebs, depending on the biochemical and biophysical signals of the microenvironment. Here, we present current knowledge on the possible intriguing role of cell migration, with particular attention to microenvironmental cues and mechanosensing properties, in the fate of DPSCs.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
5
|
Buckwar E, Conte M, Meddah A. A stochastic hierarchical model for low grade glioma evolution. J Math Biol 2023; 86:89. [PMID: 37147527 PMCID: PMC10163130 DOI: 10.1007/s00285-023-01909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 05/07/2023]
Abstract
A stochastic hierarchical model for the evolution of low grade gliomas is proposed. Starting with the description of cell motion using a piecewise diffusion Markov process (PDifMP) at the cellular level, we derive an equation for the density of the transition probability of this Markov process based on the generalised Fokker-Planck equation. Then, a macroscopic model is derived via parabolic limit and Hilbert expansions in the moment equations. After setting up the model, we perform several numerical tests to study the role of the local characteristics and the extended generator of the PDifMP in the process of tumour progression. The main aim focuses on understanding how the variations of the jump rate function of this process at the microscopic scale and the diffusion coefficient at the macroscopic scale are related to the diffusive behaviour of the glioma cells and to the onset of malignancy, i.e., the transition from low-grade to high-grade gliomas.
Collapse
Affiliation(s)
- Evelyn Buckwar
- Institute of Stochastics, Johannes Kepler University, Altenberger Straße 69, 4040, Linz, Austria
- Centre for Mathematical Sciences, Lund University, 221 00, Lund, Sweden
| | - Martina Conte
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Amira Meddah
- Institute of Stochastics, Johannes Kepler University, Altenberger Straße 69, 4040, Linz, Austria.
| |
Collapse
|
6
|
Conte M, Loy N. Multi-Cue Kinetic Model with Non-Local Sensing for Cell Migration on a Fiber Network with Chemotaxis. Bull Math Biol 2022; 84:42. [PMID: 35150333 PMCID: PMC8840942 DOI: 10.1007/s11538-021-00978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Cells perform directed motion in response to external stimuli that they detect by sensing the environment with their membrane protrusions. Precisely, several biochemical and biophysical cues give rise to tactic migration in the direction of their specific targets. Thus, this defines a multi-cue environment in which cells have to sort and combine different, and potentially competitive, stimuli. We propose a non-local kinetic model for cell migration in which cell polarization is influenced simultaneously by two external factors: contact guidance and chemotaxis. We propose two different sensing strategies, and we analyze the two resulting transport kinetic models by recovering the appropriate macroscopic limit in different regimes, in order to observe how the cell size, with respect to the variation of both external fields, influences the overall behavior. This analysis shows the importance of dealing with hyperbolic models, rather than drift-diffusion ones. Moreover, we numerically integrate the kinetic transport equations in a two-dimensional setting in order to investigate qualitatively various scenarios. Finally, we show how our setting is able to reproduce some experimental results concerning the influence of topographical and chemical cues in directing cell motility.
Collapse
Affiliation(s)
- Martina Conte
- Department of Mathematical Sciences, "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Nadia Loy
- Department of Mathematical Sciences, "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
7
|
Kumar P, Li J, Surulescu C. Multiscale modeling of glioma pseudopalisades: contributions from the tumor microenvironment. J Math Biol 2021; 82:49. [PMID: 33846838 PMCID: PMC8041715 DOI: 10.1007/s00285-021-01599-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/20/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
Gliomas are primary brain tumors with a high invasive potential and infiltrative spread. Among them, glioblastoma multiforme (GBM) exhibits microvascular hyperplasia and pronounced necrosis triggered by hypoxia. Histological samples showing garland-like hypercellular structures (so-called pseudopalisades) centered around the occlusion site of a capillary are typical for GBM and hint on poor prognosis of patient survival. We propose a multiscale modeling approach in the kinetic theory of active particles framework and deduce by an upscaling process a reaction-diffusion model with repellent pH-taxis. We prove existence of a unique global bounded classical solution for a version of the obtained macroscopic system and investigate the asymptotic behavior of the solution. Moreover, we study two different types of scaling and compare the behavior of the obtained macroscopic PDEs by way of simulations. These show that patterns (not necessarily of Turing type), including pseudopalisades, can be formed for some parameter ranges, in accordance with the tumor grade. This is true when the PDEs are obtained via parabolic scaling (undirected tissue), while no such patterns are observed for the PDEs arising by a hyperbolic limit (directed tissue). This suggests that brain tissue might be undirected - at least as far as glioma migration is concerned. We also investigate two different ways of including cell level descriptions of response to hypoxia and the way they are related .
Collapse
Affiliation(s)
- Pawan Kumar
- TU Kaiserslautern, Felix-Klein-Zentrum für Mathematik, Paul-Ehrlich-Street 31, 67663, Kaiserslautern, Germany
| | - Jing Li
- College of Science, Minzu University of China, Beijing, 100081, People's Republic of China
| | - Christina Surulescu
- TU Kaiserslautern, Felix-Klein-Zentrum für Mathematik, Paul-Ehrlich-Street 31, 67663, Kaiserslautern, Germany.
| |
Collapse
|
8
|
Loy N, Preziosi L. Stability of a non-local kinetic model for cell migration with density-dependent speed. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2020; 38:83-105. [PMID: 33338217 DOI: 10.1093/imammb/dqaa013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 11/14/2022]
Abstract
The aim of this article is to study the stability of a non-local kinetic model proposed by Loy & Preziosi (2020a) in which the cell speed is affected by the cell population density non-locally measured and weighted according to a sensing kernel in the direction of polarization and motion. We perform the analysis in a $d$-dimensional setting. We study the dispersion relation in the one-dimensional case and we show that the stability depends on two dimensionless parameters: the first one represents the stiffness of the system related to the cell turning rate, to the mean speed at equilibrium and to the sensing radius, while the second one relates to the derivative of the mean speed with respect to the density evaluated at the equilibrium. It is proved that for Dirac delta sensing kernels centered at a finite distance, corresponding to sensing limited to a given distance from the cell center, the homogeneous configuration is linearly unstable to short waves. On the other hand, for a uniform sensing kernel, corresponding to uniformly weighting the information collected up to a given distance, the most unstable wavelength is identified and consistently matches the numerical solution of the kinetic equation.
Collapse
Affiliation(s)
- Nadia Loy
- Department of Mathematical Sciences 'G. L. Lagrange', Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Luigi Preziosi
- Department of Mathematical Sciences 'G. L. Lagrange', Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
9
|
Eckardt M, Painter KJ, Surulescu C, Zhigun A. Nonlocal and local models for taxis in cell migration: a rigorous limit procedure. J Math Biol 2020; 81:1251-1298. [PMID: 33068155 PMCID: PMC7716906 DOI: 10.1007/s00285-020-01536-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/18/2020] [Indexed: 01/20/2023]
Abstract
A rigorous limit procedure is presented which links nonlocal models involving adhesion or nonlocal chemotaxis to their local counterparts featuring haptotaxis and classical chemotaxis, respectively. It relies on a novel reformulation of the involved nonlocalities in terms of integral operators applied directly to the gradients of signal-dependent quantities. The proposed approach handles both model types in a unified way and extends the previous mathematical framework to settings that allow for general solution-dependent coefficient functions. The previous forms of nonlocal operators are compared with the new ones introduced in this paper and the advantages of the latter are highlighted by concrete examples. Numerical simulations in 1D provide an illustration of some of the theoretical findings.
Collapse
Affiliation(s)
- Maria Eckardt
- Felix-Klein-Zentrum für Mathematik, Technische Universität Kaiserslautern, Paul-Ehrlich-Str. 31, 67663, Kaiserslautern, Germany
| | - Kevin J Painter
- Department of Mathematics & Maxwell Institute, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Christina Surulescu
- Felix-Klein-Zentrum für Mathematik, Technische Universität Kaiserslautern, Paul-Ehrlich-Str. 31, 67663, Kaiserslautern, Germany
| | - Anna Zhigun
- School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, UK.
| |
Collapse
|
10
|
Chen L, Painter K, Surulescu C, Zhigun A. Mathematical models for cell migration: a non-local perspective. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190379. [PMID: 32713297 PMCID: PMC7423384 DOI: 10.1098/rstb.2019.0379] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 01/06/2023] Open
Abstract
We provide a review of recent advancements in non-local continuous models for migration, mainly from the perspective of its involvement in embryonal development and cancer invasion. Particular emphasis is placed on spatial non-locality occurring in advection terms, used to characterize a cell's motility bias according to its interactions with other cellular and acellular components in its vicinity (e.g. cell-cell and cell-tissue adhesions, non-local chemotaxis), but we also briefly address spatially non-local source terms. Following a short introduction and description of applications, we give a systematic classification of available PDE models with respect to the type of featured non-localities and review some of the mathematical challenges arising from such models, with a focus on analytical aspects. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Li Chen
- Mathematisches Institut, Universität Mannheim, A5 6, 68131 Mannheim, Germany
| | - Kevin Painter
- Department of Mathematics & Maxwell Institute, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Christina Surulescu
- Felix-Klein-Zentrum für Mathematik, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 31, 67663 Kaiserslautern, Germany
| | - Anna Zhigun
- School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK
| |
Collapse
|
11
|
Deutsch A, Friedl P, Preziosi L, Theraulaz G. Multi-scale analysis and modelling of collective migration in biological systems. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190377. [PMID: 32713301 PMCID: PMC7423374 DOI: 10.1098/rstb.2019.0377] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Collective migration has become a paradigm for emergent behaviour in systems of moving and interacting individual units resulting in coherent motion. In biology, these units are cells or organisms. Collective cell migration is important in embryonic development, where it underlies tissue and organ formation, as well as pathological processes, such as cancer invasion and metastasis. In animal groups, collective movements may enhance individuals' decisions and facilitate navigation through complex environments and access to food resources. Mathematical models can extract unifying principles behind the diverse manifestations of collective migration. In biology, with a few exceptions, collective migration typically occurs at a 'mesoscopic scale' where the number of units ranges from only a few dozen to a few thousands, in contrast to the large systems treated by statistical mechanics. Recent developments in multi-scale analysis have allowed linkage of mesoscopic to micro- and macroscopic scales, and for different biological systems. The articles in this theme issue on 'Multi-scale analysis and modelling of collective migration' compile a range of mathematical modelling ideas and multi-scale methods for the analysis of collective migration. These approaches (i) uncover new unifying organization principles of collective behaviour, (ii) shed light on the transition from single to collective migration, and (iii) allow us to define similarities and differences of collective behaviour in groups of cells and organisms. As a common theme, self-organized collective migration is the result of ecological and evolutionary constraints both at the cell and organismic levels. Thereby, the rules governing physiological collective behaviours also underlie pathological processes, albeit with different upstream inputs and consequences for the group. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Andreas Deutsch
- Department of Innovative Methods of Computing, Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Cancer Genomics Center, Utrecht, The Netherlands
- Department of Genitourinary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| | - Guy Theraulaz
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- Institute for Advanced Study in Toulouse, Toulouse, France
| |
Collapse
|
12
|
Malik AA, Wennberg B, Gerlee P. The Impact of Elastic Deformations of the Extracellular Matrix on Cell Migration. Bull Math Biol 2020; 82:49. [PMID: 32248312 PMCID: PMC7128007 DOI: 10.1007/s11538-020-00721-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/15/2020] [Indexed: 01/06/2023]
Abstract
The mechanical properties of the extracellular matrix, in particular its stiffness, are known to impact cell migration. In this paper, we develop a mathematical model of a single cell migrating on an elastic matrix, which accounts for the deformation of the matrix induced by forces exerted by the cell, and investigate how the stiffness impacts the direction and speed of migration. We model a cell in 1D as a nucleus connected to a number of adhesion sites through elastic springs. The cell migrates by randomly updating the position of its adhesion sites. We start by investigating the case where the cell springs are constant, and then go on to assuming that they depend on the matrix stiffness, on matrices of both uniform stiffness as well as those with a stiffness gradient. We find that the assumption that cell springs depend on the substrate stiffness is necessary and sufficient for an efficient durotactic response. We compare simulations to recent experimental observations of human cancer cells exhibiting durotaxis, which show good qualitative agreement.
Collapse
Affiliation(s)
- A A Malik
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96, Gothenburg, Sweden.
| | - B Wennberg
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96, Gothenburg, Sweden
| | - P Gerlee
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96, Gothenburg, Sweden
| |
Collapse
|
13
|
Loy N, Preziosi L. Modelling physical limits of migration by a kinetic model with non-local sensing. J Math Biol 2020; 80:1759-1801. [DOI: 10.1007/s00285-020-01479-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/24/2019] [Indexed: 01/30/2023]
|