1
|
Zia SY, Ahmed S, Jamal HS, Perveen M, Sheraz MA, Anwar Z, Ali SA. Formulation development of highly stable collagenase-containing hydrogels for wound healing. J Pharm Sci 2025; 114:1264-1279. [PMID: 39826840 DOI: 10.1016/j.xphs.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Collagenases are enzymes that break down collagen and are used in wound healing and treating various disorders. Currently, collagenase is commercially available in only ointment and injectable forms and is sensitive to various environmental factors. In the present study, different hydrogel formulations of collagenase have been prepared at pH 6.5 using carboxymethylcellulose sodium and zinc acetate with and without humectants such as propylene glycol (PG) and glycerin (GL) in varying concentrations. The formulated gels were stored at room temperature (25±2°C, 60±5% RH) and refrigerator temperature (5±3°C) for six months to evaluate their physical and up to six years for chemical stability. The gels were subjected to various tests, including organoleptic studies, spreadability, moisture content, swelling index, swelling/de-swelling, syneresis, viscosity, gelation time, and weight variation. The purity and molecular weight of collagenase have been determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). At the same time, its activity during the storage period was evaluated by gelatin zymography. Casein zymography was also performed to detect any caseinase contamination in the formulations. The release of the enzyme from different gel formulations was assessed using the Franz diffusion apparatus and analyzed by gelatin zymography. The results showed some physical changes that were more prominent in gels stored at room temperature than those kept refrigerated. The difference in humectant concentration was also found to affect the stability of gels. PG was found to be a better humectant than GL, particularly in a concentration of 25%. The zymography results indicated that collagenase was stable in all formulations kept in the refrigerator. In contrast, its complete degradation was noted in the preparations stored at room temperature within a month. The data generated in this study will help the formulators to commercialize a relatively economical gel formulation of collagenase that is highly stable for up to six years at refrigerator temperature (5±3°C).
Collapse
Affiliation(s)
- Syeda Yamna Zia
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Sofia Ahmed
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Hafiza Sumaiyya Jamal
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mehvish Perveen
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Ali Sheraz
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Zubair Anwar
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan.
| | - Syed Abid Ali
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater Today Bio 2024; 25:100998. [PMID: 38390342 PMCID: PMC10882133 DOI: 10.1016/j.mtbio.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Borhani M, Dadpour S, Haghighizadeh A, Etemad L, Soheili V, Memar B, Vafaee F, Rajabi O. Crosslinked hydrogel loaded with chitosan-supported iron oxide and silver nanoparticles as burn wound dressing. Pharm Dev Technol 2023; 28:962-977. [PMID: 37943117 DOI: 10.1080/10837450.2023.2278613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
Burns can result in infection, disability, psychosocial and economic issues. Advanced wound dressings like hydrogel absorb exudate and maintain moisture. Considering the antimicrobial properties of silver nanoparticles and iron oxide nanoparticles, the efficiency of cross-linked hydrogel loaded with chitosan-supported iron oxide and silver nanoparticles for burn wounds repair was investigated in animal model. Cellulose hydrogel dressing made from carboxymethylcellulose and hydroxyethylcellulose crosslinked with different concentrations of citric acid (10, 15, 20, and 30%) was produced. The physicochemical characteristics of the synthetized hydrogels including Fourier-Transform Infrared spectroscopy, Thermal behavior, Swelling properties, and Scanning Electron Microscope (SEM) were evaluated. The silver nanoparticles and iron nanoparticles were produced and the characteristics, cytotoxicity, antimicrobial activities and their synergistic effect were investigated. After adding nanoparticles to hydrogels, the effects of the prepared wound dressings were investigated in a 14-day animal model of burn wound. The results showed that the mixture comprising 12.5 ppm AgNps, and IONPs at a concentration ≤100 ppm was non-cytotoxic. Moreover, the formulations with 20% CA had a swelling ratio of almost 250, 340, and 500 g/g at pHs of 5, 6.2, and 7.4 after one hour, which are lower than those of formulations with 5 and 10% CA. The total mass loss (59.31%) and the exothermic degradation happened in the range of 273-335 °C and its Tm was observed at 318.52 °C for hydrogels with 20% CA. Thus, the dressing comprising 20% CA which was loaded with 12.5 ppm silver nanoparticles (AgNPs) and 100 ppm iron oxide nanoparticles (IONPs) indicated better physicochemical, microbial and non-cytotoxic characteristics, and accelerated the process of wound healing after 14 days. It was concluded that the crosslinked hydrogel loaded with 12.5 ppm AgNPs and 100 ppm IONPs possesses great wound healing activity and could be regarded as an effective topical burn wound healing treatment.
Collapse
Affiliation(s)
- Mina Borhani
- Department of Pharmaceutical Control, Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Dadpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atoosa Haghighizadeh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Department of Pathology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Farzad Vafaee
- Department of Pharmaceutical Control, Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
El-Wakil N, Kamel R, Mahmoud AA, Dufresne A, Abouzeid RE, Abo El-Fadl M, Maged A. Risedronate-loaded aerogel scaffolds for bone regeneration. Drug Deliv 2023; 30:51-63. [PMID: 36474425 PMCID: PMC9937015 DOI: 10.1080/10717544.2022.2152135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sugarcane bagasse-derived nanofibrillated cellulose (NFC), a type of cellulose with a fibrous structure, is potentially used in the pharmaceutical field. Regeneration of this cellulose using a green process offers a more accessible and less ordered cellulose II structure (amorphous cellulose; AmC). Furthermore, the preparation of cross-linked cellulose (NFC/AmC) provides a dual advantage by building a structural block that could exhibit distinct mechanical properties. 3D aerogel scaffolds loaded with risedronate were prepared in our study using NFC or cross-linked cellulose (NFC/AmC), then combined with different concentrations of chitosan. Results proved that the aerogel scaffolds composed of NFC and chitosan had significantly improved the mechanical properties and retarded drug release compared to all other fabricated aerogel scaffolds. The aerogel scaffolds containing the highest concentration of chitosan (SC-T3) attained the highest compressive strength and mean release time values (415 ± 41.80 kPa and 2.61 ± 0.23 h, respectively). Scanning electron microscope images proved the uniform highly porous microstructure of SC-T3 with interconnectedness. All the tested medicated as well as unmedicated aerogel scaffolds had the ability to regenerate bone as assessed using the MG-63 cell line, with the former attaining a higher effect than the latter. However, SC-T3 aerogel scaffolds possessed a lower regenerative effect than those composed of NFC only. This study highlights the promising approach of the use of biopolymers derived from agro-wastes for tissue engineering.
Collapse
Affiliation(s)
- Nahla El-Wakil
- Cellulose and Paper Department, National Research Centre, Giza, Egypt
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Giza, Egypt
| | - Azza A. Mahmoud
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt,CONTACT Azza A. Mahmoud Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| | - Alain Dufresne
- CNRS, Grenoble INP, LGP2, Université Grenoble Alpes, Grenoble, France
| | - Ragab E. Abouzeid
- Cellulose and Paper Department, National Research Centre, Giza, Egypt
| | - Mahmoud T. Abo El-Fadl
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Amr Maged
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt,Pharmaceutical Factory, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
5
|
Kanungo S, Gupta N, Rawat R, Jain B, Solanki A, Panday A, Das P, Ganguly S. Doped Carbon Quantum Dots Reinforced Hydrogels for Sustained Delivery of Molecular Cargo. J Funct Biomater 2023; 14:jfb14030166. [PMID: 36976090 PMCID: PMC10057248 DOI: 10.3390/jfb14030166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels have emerged as important soft materials with numerous applications in fields including biomedicine, biomimetic smart materials, and electrochemistry. Because of their outstanding photo-physical properties and prolonged colloidal stability, the serendipitous findings of carbon quantum dots (CQDs) have introduced a new topic of investigation for materials scientists. CQDs confined polymeric hydrogel nanocomposites have emerged as novel materials with integrated properties of the individual constituents, resulting in vital uses in the realm of soft nanomaterials. Immobilizing CQDs within hydrogels has been shown to be a smart tactic for preventing the aggregation-caused quenching effect and also for manipulating the characteristics of hydrogels and introducing new properties. The combination of these two very different types of materials results in not only structural diversity but also significant improvements in many property aspects, leading to novel multifunctional materials. This review covers the synthesis of doped CQDs, different fabrication techniques for nanostructured materials made of CQDs and polymers, as well as their applications in sustained drug delivery. Finally, a brief overview of the present market and future perspectives are discussed.
Collapse
Affiliation(s)
- Shweta Kanungo
- Department of Engineering Science and Humanities, Indore Institute of Science and Technology, Indore 452001, Madhya Pradesh, India
| | - Neeta Gupta
- Department of Chemistry, Govt. E. Raghavendra Rao P. G. Science College, Bilaspur 495001, Chhattisgarh, India
| | - Reena Rawat
- Department of Chemistry, Echelon Institute of Technology, Faridabad 121101, Haryana, India
| | - Bhawana Jain
- Department of Chemistry, Govt. V.Y.T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Aruna Solanki
- Department of Chemistry, JNS Govt PG College Shujalpur, Affiliated to Vikram University Ujjain (M.P.), Dist Shajapur 465333, Madhya Pradesh, India
| | - Ashutosh Panday
- Department of Physics, Dr. C.V. Raman University, Kota, Bilaspur 495113, Chhattisgarh, India
| | - P Das
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - S Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
6
|
Reva Y, Jana B, Langford D, Kinzelmann M, Bo Y, Schol PR, Scharl T, Zhao X, Crisp RW, Drewello T, Clark T, Cadranel A, Guldi DM. Understanding the Visible Absorption of Electron Accepting and Donating CNDs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207238. [PMID: 36748284 DOI: 10.1002/smll.202207238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Carbon nanodots (CNDs) synthesized from citric acid and formyl derivatives, that is, formamide, urea, or N-methylformamide, stand out through their broad-range visible-light absorbance and extraordinary photostability. Despite their potential, their use has thus far been limited to imaging research. This work has now investigated the link between CNDs' photochemical properties and their chemical structure. Electron-rich, yellow carbon nanodots (yCNDs) are obtained with in situ addition of NaOH during the synthesis, whereas otherwise electron-poor, red carbon nanodots (rCNDs) are obtained. These properties originate from the reduced and oxidized dimer of citrazinic acid within the matrix of yCNDs and rCNDs, respectively. Remarkably, yCNDs deposited on TiO2 give a 30% higher photocurrent density of 0.7 mA cm-2 at +0.3 V versus Ag/AgCl under Xe-lamp irradiation (450 nm long-pass filter, 100 mW cm-2 ) than rCNDs. The difference in overall photoelectric performance is due to fundamentally different charge-transfer mechanisms. These depend on either the electron-accepting or the electron-donating nature of the CNDs, as is evident from photoelectrochemical tests with TiO2 and NiO and time-resolved spectroscopic measurements.
Collapse
Affiliation(s)
- Yana Reva
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Bikash Jana
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
- Technion - Israel Institute of Technology, Schulich Faculty of Chemistry, Technion, Haifa, 3200008, Israel
| | - Daniel Langford
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Marina Kinzelmann
- Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Yifan Bo
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
- Department of Chemistry and Pharmacy, Computer-Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Peter R Schol
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Tobias Scharl
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Xinyi Zhao
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ryan W Crisp
- Department of Chemistry and Pharmacy, Chair of Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Thomas Drewello
- Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer-Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
7
|
Gellan gum/bacterial cellulose hydrogel crosslinked with citric acid as an eco-friendly green adsorbent for safranin and crystal violet dye removal. Int J Biol Macromol 2022; 222:77-89. [PMID: 36096252 DOI: 10.1016/j.ijbiomac.2022.09.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/20/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
In this study, ex-situ crosslinked gellan gum (GG)/bacterial cellulose (BC) hydrogels have been investigated as good absorbents for the removal of safranin and crystal violet dye pollutants. The preparation involves a cost-effective and easy-to-perform crosslinking procedure, using citric acid (CA) as a green crosslinker. The physicochemical and mechanical properties of the crosslinked hydrogels were examined by FTIR, TGA, SEM, XRD, and unconfined compression analyses. The swelling capacity of the hydrogels as a function of pH was investigated. CA depicted to improve structural stability as a crosslinker. The dye removal capacity of the hydrogels as good adsorbents was explored and showed higher efficiency in the removal of safranin dye as compared to crystal violet with optimum adsorption capacities obtained as 17.57 and 13.49 mg/g, respectively. Adsorption kinetics and isotherm models as well as thermodynamics examined. Results showed the adsorption process well fitted the pseudo 2nd-order kinetic and Langmuir-Freundlich models while temperature dependence study depicted to be exothermic. Furthermore, no significant loss of removal efficiency of the hydrogel adsorbent was observed even after five adsorption-desorption cycles. Based on the revealed results, the prepared hydrogel may serve as an effective adsorbent for the removal of dyes from the aqueous phase.
Collapse
|
8
|
Hydrogel and Effects of Crosslinking Agent on Cellulose-Based Hydrogels: A Review. Gels 2022; 8:gels8090568. [PMID: 36135281 PMCID: PMC9498307 DOI: 10.3390/gels8090568] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023] Open
Abstract
Hydrogels are hydrophilic polymer materials that can swell but are insoluble in water. Hydrogels can be synthesized with synthetic or natural polymers, but natural polymers are preferred because they are similar to natural tissues, which can absorb a high water content, are biocompatible, and are biodegradable. The three-dimensional structure of the hydrogel affects its water insolubility and ability to maintain its shape. Cellulose hydrogels are preferred over other polymers because they are highly biocompatible, easily accessible, and affordable. Carboxymethyl cellulose sodium (CMCNa) is an example of a water-soluble cellulose derivative that can be synthesized using natural materials. A crosslinking agent is used to strengthen the properties of the hydrogel. Chemical crosslinking agent is used more often than physical crosslinking agent. In this review, article, different types of crosslinking agents are discussed based on synthetic and natural crosslinking agents. Hydrogels that utilize synthetic crosslinking agent have advantages, such as adjustable mechanical properties and easy control of the chemical composition. However, hydrogels that use natural crosslinking agent have better biocompatibility and less latent toxic effect.
Collapse
|
9
|
Shi R, Li T, Wang K, He Y, Fu R, Yu R, Zhao P, Oh KC, Jiang Z, Hou J. Investigation of the consequences of ultrasound on the physicochemical, emulsification, and gelatinization characteristics of citric acid-treated whey protein isolate. J Dairy Sci 2021; 104:10628-10639. [PMID: 34304873 DOI: 10.3168/jds.2021-20171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/06/2021] [Indexed: 11/19/2022]
Abstract
The effect of ultrasound (US) pretreatment (0, 200, 400, 600, and 800 W) on the physicochemical, emulsification, and gelatinization characteristics of citric acid (CA)-treated whey protein isolate (WPI) was investigated. Size exclusion chromatography demonstrated that when compared with untreated WPI, US pretreatment promoted production of more molecular polymers in the CA-treated WPI. There was a reduction in particle size of CA-treated WPI with the increase of US power (0-800 W), whereas its free sulfhydryl content, surface hydrophobicity, and intrinsic fluorescence strength increased. Furthermore, compared with untreated WPI, emulsifying ability index and emulsifying stability index of CA-treated WPI were increased by 14.04% and 10.10%, respectively, at 800 W. Accordingly, US pretreatment promoted the gel formation of CA-treated WPI, and its gel hardness was increased by 28.0% with US power ranging from 0 to 800 W. Therefore, US and CA treatment can be considered as an effective way to improve the emulsifying and gelatinization characteristics of WPI.
Collapse
Affiliation(s)
- Ruijie Shi
- Key Laboratory of Dairy Science, Northeast Agricultural University, Ministry of Education, Harbin, 150030, PR China
| | - Tong Li
- Key Laboratory of Dairy Science, Northeast Agricultural University, Ministry of Education, Harbin, 150030, PR China
| | - Kaili Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Ministry of Education, Harbin, 150030, PR China
| | - Yanting He
- Key Laboratory of Dairy Science, Northeast Agricultural University, Ministry of Education, Harbin, 150030, PR China
| | - Runxiao Fu
- Key Laboratory of Dairy Science, Northeast Agricultural University, Ministry of Education, Harbin, 150030, PR China
| | - Rui Yu
- Key Laboratory of Dairy Science, Northeast Agricultural University, Ministry of Education, Harbin, 150030, PR China
| | - Panpan Zhao
- Key Laboratory of Dairy Science, Northeast Agricultural University, Ministry of Education, Harbin, 150030, PR China
| | - Kwang-Chol Oh
- Pyongyang Technology College of Food and Commodity, 999093, Democratic People's Republic of Korea
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Ministry of Education, Harbin, 150030, PR China.
| | - Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, Ministry of Education, Harbin, 150030, PR China.
| |
Collapse
|
10
|
Li T, Hu J, Tian R, Wang K, Li J, Qayum A, Bilawal A, Gantumur MA, Jiang Z, Hou J. Citric acid promotes disulfide bond formation of whey protein isolate in non-acidic aqueous system. Food Chem 2021; 338:127819. [PMID: 32810812 DOI: 10.1016/j.foodchem.2020.127819] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/30/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022]
Abstract
Impacts of citric acid (CA) treatment under non-acidic conditions (pH 7.0, 8.0 and 9.0) on whey protein isolate (WPI) were examined in this study. Size exclusion chromatography and SDS-PAGE indicated that molecular size and weight of WPI-CA became larger at pH 7.0, 8.0 and 9.0 with CA ranged from 0 to 15 mg/mL, but the protein aggregates disappeared after β-mercaptoethanol was added. The free SH groups of WPI-CA gradually decreased. This could be deduced that CA could promote disulfide bond formation of WPI at the non-acidic pH values. Furthermore, fourier transform infra-red (FTIR) spectroscopy and fluorescence spectroscopy data confirmed the conformational changes of secondary and tertiary structures of CA-modified WPI, respectively. Therefore, these results suggested that disulfide bond formation of WPI occurred at citric acid treatment under non-acidic conditions, being contributed to production of its larger molecular size substances and alteration of its structural characteristics.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Technology, Northeast Agriculture University, Harbin 150030, PR China
| | - Jialun Hu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Technology, Northeast Agriculture University, Harbin 150030, PR China
| | - Ran Tian
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Technology, Northeast Agriculture University, Harbin 150030, PR China
| | - Kaili Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Technology, Northeast Agriculture University, Harbin 150030, PR China
| | - Jinpeng Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Technology, Northeast Agriculture University, Harbin 150030, PR China
| | - Abdul Qayum
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Technology, Northeast Agriculture University, Harbin 150030, PR China
| | - Akhunzada Bilawal
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Technology, Northeast Agriculture University, Harbin 150030, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Technology, Northeast Agriculture University, Harbin 150030, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Technology, Northeast Agriculture University, Harbin 150030, PR China.
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Technology, Northeast Agriculture University, Harbin 150030, PR China
| |
Collapse
|
11
|
Chitra G, Sakthivel M, Franklin DS, Sudarsan S, Selvi MS, Guhanathan S. Biomaterial mimicking indole-3-acetic acid based gold nanocomposite hydrogels. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1605514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- G. Chitra
- Department of Chemistry, Periyar University, Salem, India
- Department of Chemistry, Bangalore College of Engineering and Technology, Bangalore, India
| | - M. Sakthivel
- Department of Chemistry, Incheon National University, 119 Academy-ro Yeonsu-ku, Incheon, South Korea
| | - D. S. Franklin
- Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, India
| | - S. Sudarsan
- Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, India
| | - M. S. Selvi
- PG & Research Department of Chemistry, Muthurangam Government Arts College, Vellore, India
| | - S. Guhanathan
- PG & Research Department of Chemistry, Muthurangam Government Arts College, Vellore, India
| |
Collapse
|
12
|
Selvi M, Chitra G, Sudarsan S, Franklin DS, Guhanathan S. Novel pH-tunable nontoxic hydrogels of pyrrole-2-carboxylic acid and ethylenediamine derivatives: synthesis and characterization. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1793200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M.S. Selvi
- PG & Research Department of Chemistry, Muthurangam Government Arts College (Autonomous), Vellore, India
| | - G. Chitra
- Department of Chemistry, Bangalore College of Engineering and Technology, Bangalore, India
| | - S. Sudarsan
- Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, India
| | - D. S. Franklin
- Chemistry Facilitator, GeeKay World School, Ranipet, India
| | - S. Guhanathan
- PG & Research Department of Chemistry, Muthurangam Government Arts College (Autonomous), Vellore, India
| |
Collapse
|
13
|
Das T, Sengupta S, Pal A, Sardar S, Sahu N, Lenka N, Panigrahi KCS, Goswami L, Bandyopadhyay A. Aquasorbent guargum grafted hyperbranched poly (acrylic acid): A potential culture medium for microbes and plant tissues. Carbohydr Polym 2019; 222:114983. [PMID: 31320091 DOI: 10.1016/j.carbpol.2019.114983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022]
Abstract
This study reports the synthesis of an unprecedented bio-based aquasorbent guargum-g-hyperbranched poly (acrylic acid); bGG-g-HBPAA by employing graft-copolymerization and "Strathclyde methodology" simultaneously in emulsion and its possible use as a sustainable nutrient bed for the effective growth of Anabaena cylindrica and Vigna radiata seedlings. The formation of bGG-g-HBPAA and the presence of hyperbranched architectures was confirmed from XRD, FTIR, 13C NMR, solubility, intrinsic viscosity, BET surface area/ pore size, SEM and rheology analyses. The synthesized grade with a branching percent of 65.4% and a swelling percentage of 13,300% facilitated maximum growth of the cultured species as compared to guargum and its linear graft. Semi synthetic bGG-g-HBPAA culture medium was optically transparent, dried at a controlled rate, held a huge amount of water for growth, provided sufficient space for unhindered growth and featured dimensional stability.
Collapse
Affiliation(s)
- Tamalika Das
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, West Bengal, India
| | - Srijoni Sengupta
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, West Bengal, India
| | - Abhijit Pal
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, West Bengal, India
| | - Soumen Sardar
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, West Bengal, India
| | - Nilanjan Sahu
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar 752050, Odisha, India
| | - Naisargik Lenka
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar 752050, Odisha, India
| | - Kishore C S Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar 752050, Odisha, India
| | - Luna Goswami
- Department of Chemical Technology, KIIT University, Patia, Bhubaneswar 751024, Odisha, India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, West Bengal, India.
| |
Collapse
|
14
|
Bedade DK, Sutar YB, Singhal RS. Chitosan coated calcium alginate beads for covalent immobilization of acrylamidase: Process parameters and removal of acrylamide from coffee. Food Chem 2019; 275:95-104. [DOI: 10.1016/j.foodchem.2018.09.090] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 11/27/2022]
|
15
|
Yilmaz E, Guzel Kaya G, Deveci H. Preparation and characterization of pH-sensitive semi-interpenetrating network hybrid hydrogels with sodium humate and kaolin. APPLIED CLAY SCIENCE 2018; 162:311-316. [DOI: 10.1016/j.clay.2018.06.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Stimuli-Responsive Hydrogels Based on Polyglycerol Crosslinked with Citric and Fatty Acids. INT J POLYM SCI 2018. [DOI: 10.1155/2018/3267361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polyglycerol-based hydrogels from biodegradable raw materials were synthesized by crosslinking reactions of polyglycerol with citric and fatty acids. Three hydrogels were studied varying molar ratios of crosslinking agent. It was found that crosslink amount, type, and size play a crucial role in swelling, thermal, mechanical, and stimuli-responsive properties. The hydrogels absorption capacity changed in response to temperature and pH external stimuli. The hydrogel with the highest swelling capacity absorbed more than 7 times its own weight at room temperature and pH 5. This material increased 14 times its own weight at pH 10. Creep-recovery tests were performed to study the effect of crosslinking agent on mechanical properties. Deformation and percentage of recovery of synthesized hydrogels were obtained. Formation of hydrogels was confirmed using FTIR, and physicochemical properties were analyzed by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetric (DSC), and Dynamic Mechanical Analysis (DMA). This paper aims to give a contribution to biobased hydrogel knowledge from chemical, physicochemical, and mechanical point of view.
Collapse
|
17
|
Mali KK, Dhawale SC, Dias RJ. Synthesis and characterization of hydrogel films of carboxymethyl tamarind gum using citric acid. Int J Biol Macromol 2017; 105:463-470. [DOI: 10.1016/j.ijbiomac.2017.07.058] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/12/2017] [Accepted: 07/09/2017] [Indexed: 11/29/2022]
|
18
|
Abaee A, Mohammadian M, Jafari SM. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.011] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Pal A, Majumder K, Sengupta S, Das T, Bandyopadhyay A. Adsorption of soluble Pb(II) by a photocrosslinked polysaccharide hybrid: A swelling-adsorption correlation study. Carbohydr Polym 2017; 177:144-155. [DOI: 10.1016/j.carbpol.2017.08.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/17/2017] [Accepted: 08/27/2017] [Indexed: 10/18/2022]
|
20
|
Polysaccharides and lignin based hydrogels with potential pharmaceutical use as a drug delivery system produced by a reactive extrusion process. Int J Biol Macromol 2017; 104:564-575. [DOI: 10.1016/j.ijbiomac.2017.06.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 11/15/2022]
|
21
|
Rocha-García D, Guerra-Contreras A, Reyes-Hernández J, Palestino G. Thermal and kinetic evaluation of biodegradable thermo-sensitive gelatin/poly(ethylene glycol) diamine crosslinked citric acid hydrogels for controlled release of tramadol. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
The formation of non-heat-treated whey protein cold-set hydrogels via non-toxic chemical cross-linking. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
G. C, D.S. F, S. S, M. S, S. G. Indole-3-acetic acid/diol based pH-sensitive biological macromolecule for antibacterial, antifungal and antioxidant applications. Int J Biol Macromol 2017; 95:363-375. [DOI: 10.1016/j.ijbiomac.2016.11.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/26/2016] [Accepted: 11/19/2016] [Indexed: 11/15/2022]
|
24
|
Chitra G, Franklin DS, Guhanathan S. Indole-3-acetic acid based tunable hydrogels for antibacterial, antifungal and antioxidant applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1265401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- G. Chitra
- Department of Chemistry, Periyar University, Salem, India
- Department of Chemistry, Bangalore College of Engineering and Technology, Bangalore, India
| | - D. S. Franklin
- Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, India
| | - S. Guhanathan
- PG & Research Department of Chemistry, Muthurangam Government Arts College, Vellore, India
| |
Collapse
|
25
|
Preparation, antimicrobial and antioxidant evaluation of indole-3-acetic acid-based pH-responsive bio-nanocomposites. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-016-1900-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Xu X, Bai B, Wang H, Suo Y. Synthesis of human hair fiber-impregnated chitosan beads functionalized with citric acid for the adsorption of lysozyme. RSC Adv 2017. [DOI: 10.1039/c6ra26542a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Herein, a novel CA-CS/HHF composite was firstly constructed by impregnating human hair fiber into a CS matrix and then functionalized with citric acid.
Collapse
Affiliation(s)
- Xiaohui Xu
- College of Environmental Science and Engineering
- Chang’an University
- Xi’an
- P. R. China
| | - Bo Bai
- State Key Laboratory of Plateau Ecology and Agriculture (Qinghai University) Xining
- P. R. China
| | - Honglun Wang
- State Key Laboratory of Plateau Ecology and Agriculture (Qinghai University) Xining
- P. R. China
| | - Yourui Suo
- State Key Laboratory of Plateau Ecology and Agriculture (Qinghai University) Xining
- P. R. China
| |
Collapse
|
27
|
Sakthivel M, Franklin DS, Guhanathan S. pH-sensitive Itaconic acid based polymeric hydrogels for dye removal applications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134:427-432. [PMID: 26572824 DOI: 10.1016/j.ecoenv.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 10/25/2015] [Accepted: 11/02/2015] [Indexed: 05/02/2023]
Abstract
A series of Itaconic Acid (IA) based pH-sensitive polymeric hydrogels were synthesized by condensation polymerization of Itaconic Acid (IA) with Ethylene Glycol (EG) in the presence of an acid medium resulted into pre-polymer. Further, pre-polymer were co-polymerized with Acrylic Acid (AA) through free radical polymerization using Potassium persulphate (KPS). The structural and surface morphological characterizations of the synthesized hydrogels were studied using FT-IR spectroscopy and Scanning Electron Microscope (SEM) respectively. The swelling and swelling equilibrium were performed at varies pH (4.0-10.0). Further, the effects of IA, EG and AA on swelling properties have also been investigated. Thermal stability of synthesized hydrogels have been investigated by TGA, DTA and DSC. The synthesized hydrogels have shown good ability to uptake a Cationic dye. The Methylene blue has been chosen as a model cationic dye. The results of dye removal using IA hydrogels found to have excellent dye removal capacity. Such kind of IA based hydrogels may be recommended for eco-friendly environmental application. viz., removal of dyes and metal ions and sewage water treatment, purification of water etc.
Collapse
Affiliation(s)
- M Sakthivel
- Research and Development Centre, Bharathiar University, Coimbatore 641046, India.
| | - D S Franklin
- Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam 632509, India.
| | - S Guhanathan
- PG & Research Department of Chemistry, Muthurangam Government Arts College, Vellore 632002, Tamil Nadu, India.
| |
Collapse
|
28
|
A Smart pH-responsive Nano-Carrier as a Drug Delivery System: A hybrid system comprised of mesoporous nanosilica MCM-41 (as a nano-container) & a pH-sensitive polymer (as smart reversible gatekeepers): Preparation, characterization and in vitro release studies of an anti-cancer drug. Eur J Pharm Sci 2016; 93:64-73. [PMID: 27497878 DOI: 10.1016/j.ejps.2016.08.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/09/2016] [Accepted: 08/02/2016] [Indexed: 01/27/2023]
|
29
|
Kalaba S, Gerhard E, Winder JS, Pauli EM, Haluck RS, Yang J. Design Strategies and Applications of Biomaterials and Devices for Hernia Repair. Bioact Mater 2016; 1:2-17. [PMID: 28349130 PMCID: PMC5365083 DOI: 10.1016/j.bioactmat.2016.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/10/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022] Open
Abstract
Hernia repair is one of the most commonly performed surgical procedures worldwide, with a multi-billion dollar global market. Implant design remains a critical challenge for the successful repair and prevention of recurrent hernias, and despite significant progress, there is no ideal mesh for every surgery. This review summarizes the evolution of prostheses design toward successful hernia repair beginning with a description of the anatomy of the disease and the classifications of hernias. Next, the major milestones in implant design are discussed. Commonly encountered complications and strategies to minimize these adverse effects are described, followed by a thorough description of the implant characteristics necessary for successful repair. Finally, available implants are categorized and their advantages and limitations elucidated, including non-absorbable and absorbable (synthetic and biologically derived) prostheses, composite prostheses, and coated prostheses. This review not only summarizes the state of the art in hernia repair, but also suggests future research directions toward improved hernia repair utilizing novel materials and fabrication methods.
Collapse
Affiliation(s)
- Surge Kalaba
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joshua S. Winder
- Department of Surgery, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Eric M. Pauli
- Department of Surgery, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Randy S. Haluck
- Department of Surgery, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
30
|
Sudarsan S, Franklin D, Sakthivel M, Guhanathan S. Non toxic, antibacterial, biodegradable hydrogels with pH-stimuli sensitivity: Investigation of swelling parameters. Carbohydr Polym 2016; 148:206-15. [DOI: 10.1016/j.carbpol.2016.04.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 01/13/2023]
|
31
|
Abbaszad Rafi A, Fakheri F, Mahkam M. Synthesis and preparation of new pH-sensitive nanocomposite and nanocapsule based on “MCM-41/poly methacrylic acid” as drug carriers. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1627-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Sakthivel M, Franklin DS, Sudarsan S, Chitra G, Guhanathan S. Investigation on pH-switchable (itaconic acid/ethylene glycol/acrylic acid) based polymeric biocompatible hydrogel. RSC Adv 2016. [DOI: 10.1039/c6ra21043k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new variety of pH-sensitive polymeric hydrogels (IAE) have been developed and evaluated as biocompatible hydrogels using synergetic combinations of itaconic acid (IA), acrylic acid (AA), and ethylene glycol (EG) in water medium by free radical polymerization.
Collapse
Affiliation(s)
- M. Sakthivel
- Research and Development Centre
- Bharathiar University
- Coimbatore-641046
- India
| | - D. S. Franklin
- Department of Chemistry
- C. Abdul Hakeem College of Engineering and Technology
- India
| | - S. Sudarsan
- Department of Chemistry
- Periyar University
- Salem-636011
- India
| | - G. Chitra
- Department of Chemistry
- Periyar University
- Salem-636011
- India
| | - S. Guhanathan
- PG & Research Department of Chemistry
- Muthurangam Government Arts College
- Vellore 632002
- India
| |
Collapse
|
33
|
Franklin DS, Guhanathan S. Investigation of citric acid-glycerol based pH-sensitive biopolymeric hydrogels for dye removal applications: A green approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 121:80-86. [PMID: 25982408 DOI: 10.1016/j.ecoenv.2015.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
Hydrogels are three dimensional polymeric structure with segments of hydrophilic groups. The special structure of hydrogels facilitates the diffusion of solutes into the interior network and possess numerous ionic and non-ionic functional groups, which can absorb or trap ionic dyes from waste water. The present investigation was devoted to the synthesis of a series of citric acid and glycerol based pH sensitive biopolymeric hydrogels using a solventless green approach via condensation polymerization in the presence of acidic medium. The formations of hydrogels were confirmed using various spectral investigations viz., FT-IR, (1)H and (13)C NMR. The thermal properties of various hydrogels have been studied using TGA, DTA and DSC analysis. The rationalized relationship was noticed with increasing of pH from 4.0 to 10.0. The surface morphologies of hydrogels were analyzed using SEM technique which was well supported from the results of swelling studies. Methylene blue has been selected as a cationic dye for its removal from various environmental sources using pH-sensitive biopolymeric hydrogels. The results of dye removal revealed that glycerol based biopolymeric hydrogels have shown an excellent dye removal capacity. Hence, the synthesized pH sensitive biopolymeric hydrogels have an adaptability with pH tuned properties might have greater potential opening in various environmental applications viz., metal ion removal, agrochemical release, purification of water, dye removal etc.
Collapse
Affiliation(s)
- D S Franklin
- Department of Chemistry, Sacred Heart College (Autonomous), Tirupattur 635601, Tamilnadu, India.
| | - S Guhanathan
- PG & Research Department of Chemistry, Muthurangam Government Arts College (Autonomous), Vellore 632002, Tamilnadu, India.
| |
Collapse
|
34
|
Farjami T, Madadlou A, Labbafi M. Characteristics of the bulk hydrogels made of the citric acid cross-linked whey protein microgels. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Tran RT, Yang J, Ameer GA. Citrate-Based Biomaterials and Their Applications in Regenerative Engineering. ANNUAL REVIEW OF MATERIALS RESEARCH 2015; 45:277-310. [PMID: 27004046 PMCID: PMC4798247 DOI: 10.1146/annurev-matsci-070214-020815] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Advances in biomaterials science and engineering are crucial to translating regenerative engineering, an emerging field that aims to recreate complex tissues, into clinical practice. In this regard, citrate-based biomaterials have become an important tool owing to their versatile material and biological characteristics including unique antioxidant, antimicrobial, adhesive, and fluorescent properties. This review discusses fundamental design considerations, strategies to incorporate unique functionality, and examples of how citrate-based biomaterials can be an enabling technology for regenerative engineering.
Collapse
Affiliation(s)
- Richard T. Tran
- Department of Biomedical Engineering, Materials Research Institute, and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Guillermo A. Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois 60208
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
36
|
Simple, convenient, low-cost, and solventless greener way to pH-responsive polymeric hydrogels: Synthesis and characterization. J Appl Polym Sci 2015. [DOI: 10.1002/app.41921] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Feng D, Bai B, Wang H, Suo Y. Thermo-chemical modification to produce citric acid–yeast superabsorbent composites for ketoprofen delivery. RSC Adv 2015. [DOI: 10.1039/c5ra23577d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The native yeast microbes were used to prepare a novel eco-friendly superabsorbent composite through thermo-chemical modification of yeast with citric acid in semi-dry conditions for ketoprofen delivery.
Collapse
Affiliation(s)
- Diejing Feng
- College of Environmental Science and Engineering
- Chang’an University
- Xi’an
- P. R. China
| | - Bo Bai
- Key Laboratory of Tibetan Medicine Research
- Northwest Plateau Institute of Biology
- Chinese Academy of Sciences
- Xining
- P. R. China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research
- Northwest Plateau Institute of Biology
- Chinese Academy of Sciences
- Xining
- P. R. China
| | - Yourui Suo
- Key Laboratory of Tibetan Medicine Research
- Northwest Plateau Institute of Biology
- Chinese Academy of Sciences
- Xining
- P. R. China
| |
Collapse
|
38
|
Taktak F, Yildiz M, Sert H, Soykan C. A Novel Triple-Responsive Hydrogels Based on 2-(Dimethylamino) Ethyl Methacrylate by Copolymerization With 2-(N-morpholino) Ethyl Methacrylate. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2014. [DOI: 10.1080/10601325.2014.976747] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Franklin DS, Guhanathan S. Performance of silane-coupling agent-treated hydroxyapatite/diethylene glycol-based pH-sensitive biocomposite hydrogels. IRANIAN POLYMER JOURNAL 2014. [DOI: 10.1007/s13726-014-0278-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Franklin DS, Guhanathan S. Influence of chain length of diol on the swelling behavior of citric acid based pH sensitive polymeric hydrogels: A green approach. J Appl Polym Sci 2014. [DOI: 10.1002/app.41403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David S. Franklin
- Department of Chemistry; Manonmaniam Sundaranar University; Tirunelveli 627012 Tamil Nadu India
- Department of Chemistry; C. Abdul Hakeem College of Engineering and Technology; Melvisharam 632509 Tamil Nadu India
| | - Selvam Guhanathan
- PG & Research Department of Chemistry; Muthurangam Government Arts College; Vellore 632002 Tamil Nadu India
| |
Collapse
|