1
|
Şahin E, Ruggiero R, Tatullo M, Paduano F, Alp M, Şeref A. Design and characterization of β-tricalcium phosphate-based self-passivating coatings on magnesium alloys. J Mater Chem B 2024; 12:11477-11490. [PMID: 39397647 DOI: 10.1039/d4tb01214c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background: Magnesium alloys degrade rapidly in salt solutions, which limits their use without passivating treatments. AZ31 alloy is particularly promising for implant applications owing to its biodegradability and mechanical properties, necessitating effective corrosion-resistant coatings. Aim: In this study, a self-passivating reactive coating was designed and evaluated for AZ31 magnesium alloy plates using β-tricalcium phosphate (TCP) to enhance corrosion resistance and biocompatibility. Methods: Solutions of TCP, trisodium citrate, magnesium nitrate, hydroxyethyl cellulose (HEC), and sodium chloride were used to dip-coat AZ31 plates. The coated samples were immersed in 3.5 wt% NaCl solution. Phase evolution was analysed using gravimetry, X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The biological response of the coated samples was evaluated through MTT and resazurin assays. Results: The coating formed a stable TCP/HEC layer that gradually dissolved over two weeks, converting the surface to magnesium hydroxide, magnesium oxychloride, and magnesium phosphate phases. The formation of brucite, responsible for passivation in the long term, was observed. The coating effectively prevented excessive magnesium oxychloride formation and stabilised magnesium hydroxide after one week. Biological characterization indicated that the coating on AZ31 is safe on the Saos-2 and L929 cell lines. Conclusion: The TCP-based coating enhances the corrosion resistance of AZ31 alloy in salt solutions, promoting passivating phases and limiting corrosive products, thereby ameliorating biocompatibility issues. This coating demonstrates substantial potential for extending the longevity and functionality of magnesium alloy implants.
Collapse
Affiliation(s)
- Erdem Şahin
- Department of Metallurgical and Materials Engineering, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye
| | - Roberta Ruggiero
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy.
| | - Marco Tatullo
- Department of Translational Biomedicine and Neuroscience, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Paduano
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy.
| | - Meltem Alp
- Department of Metallurgical and Materials Engineering, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye
| | - Ahmed Şeref
- Department of Metallurgical and Materials Engineering, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye
| |
Collapse
|
2
|
Mir TA, Ganie SA, Ali A, Assiri MA, Imtiyaz K, Rizvi MMA, Mazumdar N, Rather LJ. Gamma-Irradiated Gum Arabic Grafted with 2-Hydroxyethyl Methacrylate: A Novel Superabsorbent Polymer for Controlled Folic Acid Release. Macromol Rapid Commun 2024; 45:e2400258. [PMID: 39018482 DOI: 10.1002/marc.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/22/2024] [Indexed: 07/19/2024]
Abstract
This study explores the synthesis and characterization of superabsorbent hydrogels derived from chemically modified gum Arabic, designed for controlled folic acid release. The synthesis involves a two-step process: carboxymethylation followed by grafting with 2-hydroxyethyl methacrylate via gamma irradiation. The resulting hydrogels exhibit enhanced mechanical strength and controlled diffusivity, essential for nutrient delivery systems. Key factors such as copolymer composition and irradiation dose are investigated, affecting the synthesis process. Systematic studies of swelling behaviors reveal that the hydrogel achieves a maximum swelling of 888.1% at 40 °C. The hydrogels are loaded with folic acid, and in vitro, sustained release profiles are examined under various pH conditions. The maximum release of 83.3% is observed after 24 h at pH 7.0, following a Korsmeyer-Peppas release mechanism. Different characterization techniques, confirm the successful synthesis and unique properties of the superabsorbent hydrogels. Rheological behavior analysis, scanning electron microscopy, and biocompatibility assessments provide a comprehensive understanding of the hydrogel structures. Gamma irradiation ensures a homogeneous network structure, crucial for optimal swelling behavior and mechanical properties. This research highlights the potential of eco-friendly biopolymer hydrogels in precise drug delivery applications, leveraging the safety and process control benefits of gamma irradiation.
Collapse
Affiliation(s)
- Tariq Ahmad Mir
- Material (Polymer) Research laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Showkat Ali Ganie
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, P. R. China
| | - Akbar Ali
- Department of Chemistry, Kargil Campus, University of Ladakh, Kargil, 194103, India
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Khalid Imtiyaz
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - M Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Nasreen Mazumdar
- Material (Polymer) Research laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Luqman Jameel Rather
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
3
|
Thewanjutiwong S, Phokasem P, Disayathanoowat T, Juntrapirom S, Kanjanakawinkul W, Chaiyana W. Development of Film-Forming Gel Formulations Containing Royal Jelly and Honey Aromatic Water for Cosmetic Applications. Gels 2023; 9:816. [PMID: 37888389 PMCID: PMC10606181 DOI: 10.3390/gels9100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
This study aimed to develop a film-forming gel containing honey aromatic water (HW) and royal jelly (RJ) for cosmetic applications as a facial peel-off mask. HW, which is industrial waste from the water-reduction process of honey, was sterilized by autoclaving and filtration through a 0.22 µm membrane. The film-forming gels were developed using various types of film-forming polymers, including polyvinyl alcohol (PVA 117), carboxymethyl cellulose (CMC), and hydroxyethyl cellulose (HEC). The gel formulations were characterized in terms of their external appearance, viscosity, pH, and drying time, whereas the films generated were characterized by a texture analyzer, microscopic investigation, Fourier transform infrared, and an X-ray diffractometer. The findings highlighted that HW has short storage shelf life due to microbial contamination. Sterilizations were required before further product development. The film-forming gel was created by using the combination of PVA 117, CMC, and HEC. HW and RJ were successfully incorporated into the film-forming gel. However, HW resulted in a decrease in the gel viscosity and mechanical properties of its film. Interestingly, the drying time was dramatically decreased, which would be more desirable for its use as a peel-off mask. Furthermore, incorporation of royal jelly enhanced the viscosity of the gels as well as improved the mechanical properties of the film. No effect on the chemical and crystal structure of the films was detected after the incorporation. Therefore, the film-forming gels containing HW and RJ, possessing aesthetic attributes that extended to both the gels themselves and the resultant films, were suitable for use as a peel-off mask.
Collapse
Affiliation(s)
- Sirawut Thewanjutiwong
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Patcharin Phokasem
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals: SMART BEE SDGs, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saranya Juntrapirom
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Phlu Ta Luang, Sattahip, Chon Buri 20180, Thailand; (S.J.); (W.K.)
| | - Watchara Kanjanakawinkul
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Phlu Ta Luang, Sattahip, Chon Buri 20180, Thailand; (S.J.); (W.K.)
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals: SMART BEE SDGs, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
El-Sayed NS, Hashem AH, Khattab TA, Kamel S. New antibacterial hydrogels based on sodium alginate. Int J Biol Macromol 2023; 248:125872. [PMID: 37482158 DOI: 10.1016/j.ijbiomac.2023.125872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Nowadays, the combined knowledge and experience in biomedical research and material sciences results in the innovation of smart materials that could efficiently overcome the problems of microbial contaminations. Herein, a new drug delivery platform prepared by grafting sodium alginate with β-carboxyethyl acrylate and acrylamide was described and characterized. 9-Aminoacridine (9-AA), and kanamycin sulfate (KS) were separately loaded into the hydrogel in situ during graft polymerization. The grafting efficiency for the resulting hydrogels was 70.01-78.08 %. The chemical structure of the hydrogels, thermogravimetric analysis, and morphological features were investigated. The swelling study revealed that the hydrogel without drugs achieved a superior swelling rate compared to drug-loaded hydrogels. The hydrogel tuned the drug-release rate in a pH-dependent manner. Furthermore, the antibacterial study suggested that the hydrogels encapsulating 9-AA (88.6 %) or KS (89.3 %) exhibited comparable antibacterial activity against Gram-positive and Gram-negative bacterial strains. Finally, the cytocompatibility study conducted on normal lung cell line (Vero cells) demonstrated neglectable to tolerable toxicity for the drug-loaded hydrogel. More interestingly, the cell viability for the blank hydrogel was 92.5 %, implying its suitability for biomedical applications.
Collapse
Affiliation(s)
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo, P.O. 12622, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, Cairo, P.O. 12622, Egypt
| |
Collapse
|
5
|
Zafar N, Mahmood A, Ilyas S, Ijaz H, Muhammad Sarfraz R, Mahdi WA, Salem-Bekhit MM, Ibrahim MA, Benguerba Y, Ernst B. Novel Natrosol/Pectin-co-poly (acrylate) based pH-responsive polymeric carrier system for controlled delivery of Tapentadol Hydrochloride. Saudi Pharm J 2023; 31:101671. [PMID: 37484541 PMCID: PMC10362361 DOI: 10.1016/j.jsps.2023.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Background & Objectives This study aimed to create a controlled delivery system for Tapentadol Hydrochloride by developing interpenetrating networks (IPNs) of Natrosol-Pectin copolymerized with Acrylic Acid and Methylene bisacrylamide, and to analyze the effects of various ingredients on the physical and chemical characteristics of the IPNs. Methods Novel Tapentadol Hydrochloride-loaded Natrosol-Pectin based IPNs were formulated by using the free radical polymerization technique. Co-polymerization of Acrylic Acid (AA) with Natrosol and Pectin was performed by using Methylene bisacrylamide (MBA). Ammonium persulfate (APS) was used as the initiator of crosslinking process. The impact of ingredients i.e. Natrosol, Pectin, MBA, and Acrylic Acid on the gel fraction, porosity, swelling (%), drug loading, and drug release was investigated. FTIR, DSC, TGA, SEM and EDX studies were conducted to confirm the grafting of polymers and to evaluate the thermal stability and surface morphology of the developed IPNs. Results Swelling studies exhibited an increase in swelling percentage from 84.27 to 91.17% upon increasing polymer (Natrosol and Pectin) contents. An increase in MBA contents resulted in a decrease in swelling from 85 to 67.63%. Moreover, the swelling was also observed to increase with higher AA contents. Significant drug release was noted at higher pH instead of gastric pH value. Oral toxicological studies revealed the nontoxic and biocompatible nature of Natrosol-Pectin IPNs. Interpretation & Conclusion The developed IPNs were found to be an excellent system for the controlled delivery of Tapentadol Hydrochloride.
Collapse
Affiliation(s)
- Nadiah Zafar
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal, Pakistan
| | - Sehar Ilyas
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Hira Ijaz
- Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur 22620, Pakistan
| | | | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LPBT), Ferhat Abbas Setif 1 University, Setif, Algeria
| | - Barbara Ernst
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, F-67000, Strasbourg, France
| |
Collapse
|
6
|
Saeed S, Barkat K, Ashraf MU, Shabbir M, Anjum I, Badshah SF, Aamir M, Malik NS, Tariq A, Ullah R. Flexible Topical Hydrogel Patch Loaded with Antimicrobial Drug for Accelerated Wound Healing. Gels 2023; 9:567. [PMID: 37504446 PMCID: PMC10379216 DOI: 10.3390/gels9070567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
A hydrogel topical patch of neomycin was developed by using sodium alginate (SA) and hydroxyethylcellulose (HEC) as polymers. Free radical polymerization in an aqueous medium was initiated by using acrylic acid (AA) and N,N'-methylenebisacrylamide (MBA). Prepared hydrogels were characterized for pH sensitivity and sol-gel analysis. In addition, the effect of reactant contents on the developed formulation was evaluated by swelling behavior. SEM assay showed the rough structure of the hydrogel-based polymeric matrix, which directly enhances the ability to uptake fluid. FTIR spectra revealed the formation of a new polymeric network between reactant contents. TGA and DSC verified that fabricated polymeric patches were more thermodynamically stable than pure components. Gel fractions increased with increases in polymer, monomer, and cross-linker contents. The swelling study showed the pH-dependent swelling behavior of patches at pH 5.5, 6.5, and 7.4. The release pattern of the drug followed zero-order kinetics, with diffusion-controlled drug release patterns according to the Korsmeyer-Peppas (KP) model. Ex vivo studies across excised rabbit skin verified the drug retention in the skin layers. The hydrogel patch effectively healed the wounds produced on the rabbit skin, whereas the formulation showed no sign of irritation on intact skin. Therefore, neomycin hydrogel patches can be a potential candidate for controlled delivery for efficient wound healing.
Collapse
Affiliation(s)
- Sana Saeed
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | | | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | | | - Muhammad Aamir
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan
| | - Akash Tariq
- Xinjiang Institute of Ecology and Geography, Chines Academy of Sciences, Urumqi 830011, China
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Özdemir Y, Birtane H, Çiğil AB. An evaluation of antibacterial properties and cytotoxicity of UV-curable biocompatible films containing hydroxyethyl cellulose and silver nanoparticles. Int J Biol Macromol 2023:125516. [PMID: 37353126 DOI: 10.1016/j.ijbiomac.2023.125516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The present study aimed to develop biocompatible film materials with antibacterial and anticancer properties that can be cured with UV rays depending on the thiol-en click reaction mechanism. The synthesized m-Ag NPs were added to formulations containing acrylate functionality HEC, pentaerythritol tetrarkis(3-mercaptopropionate), and photoinitiator at different rates (0, 20, 40, and 60 parts per hundred (phr)). The antibacterial activity of the films was evaluated against S. aureus, P. aeruginosa and E. coli by the disk diffusion test. The antibacterial effect of the films did not form an inhibition zone for the control formulation (CmAg0) against bacteria whereas the antibacterial property increased as the Ag NPs content increased in formulations containing m-Ag NPs. The strongest resistance film against the three bacterial species was observed in the CmAg60 formulation with 60 phr silver content, and the inhibition zones for S. aureus, P. aeruginosa, and E. coli were measured as 16.5 ± 0.7, 16.5 ± 2.1, and 16 ± 1.4, respectively. The cytotoxicity of the films against healthy cells and breast cancer cell (MCF-7) lines was investigated with MTT, and it was observed that all films did not cause any inhibition in the structure of the living cell but killed the cells at a high rate in the MCF-7 line. It was mainly observed that the CmAg60 formulation showed 95.576 % cell inhibition against MCF-7. According to these results, it has been predicted that the prepared films will play a vital role in the next generation of cancer treatments.
Collapse
Affiliation(s)
- Yusuf Özdemir
- Amasya University, Institute of Science, Department of Chemistry, Amasya, Turkey
| | - Hatice Birtane
- Marmara University, Department of Chemistry, Istanbul, Turkey.
| | - Aslı Beyler Çiğil
- Gazi University, Department of Chemistry and Chemical Process Technology, Ankara, Turkey.
| |
Collapse
|
8
|
Tohamy HAS, El-Sakhawy M, Strachota B, Strachota A, Pavlova E, Mares Barbosa S, Kamel S. Temperature- and pH-Responsive Super-Absorbent Hydrogel Based on Grafted Cellulose and Capable of Heavy Metal Removal from Aqueous Solutions. Gels 2023; 9:gels9040296. [PMID: 37102908 PMCID: PMC10138026 DOI: 10.3390/gels9040296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
In this work, we prepared highly swelling, stimuli-responsive hydrogels capable of the highly efficient adsorption of inorganic pollutants. The hydrogels were based on hydroxypropyl methyl cellulose (HPMC) grafted with acrylamide (AM) and 3-sulfopropyl acrylate (SPA) and were synthesized via the growth (radical polymerization) of the grafted copolymer chains on HPMC, which was activated by radical oxidation. These grafted structures were crosslinked to an infinite network by a small amount of di-vinyl comonomer. HPMC was chosen as a cheap hydrophilic and naturally sourced polymer backbone, while AM and SPA were employed to preferentially bond coordinating and cationic inorganic pollutants, respectively. All the gels displayed a pronounced elastic character, as well as considerably high values of stress at break (several hundred %). The gel with the highest fraction of the ionic comonomer SPA (with an AM/SPA ratio = 0.5) displayed the highest equilibrium swelling ratio (12,100%), the highest volume response to temperature and pH, and the fastest swelling kinetics, but also the lowest modulus. The other gels (with AM/SPA = 1 and 2) displayed several times higher moduli but more modest pH responses and only very modest temperature sensitivity. Cr(VI) adsorption tests indicated that the prepared hydrogels removed this species from water very efficiently: between 90 and 96% in one step. The hydrogels with AM/SPA ratios of 0.5 and 1 appeared to be promising regenerable (via pH) materials for repeated Cr(VI) adsorption.
Collapse
Affiliation(s)
- Hebat-Allah S. Tohamy
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed El-Sakhawy
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Beata Strachota
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Praha, Czech Republic
| | - Adam Strachota
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Praha, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Praha, Czech Republic
| | - Silvia Mares Barbosa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Praha, Czech Republic
| | - Samir Kamel
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
9
|
Waresindo WX, Luthfianti HR, Priyanto A, Hapidin DA, Edikresnha D, Aimon AH, Suciati T, Khairurrijal K. Freeze–thaw hydrogel fabrication method: basic principles, synthesis parameters, properties, and biomedical applications. MATERIALS RESEARCH EXPRESS 2023; 10:024003. [DOI: 10.1088/2053-1591/acb98e] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Hydrogel is being broadly studied due to their tremendous properties, such as swelling behavior and biocompatibility. Numerous review articles have discussed hydrogel polymer types, hydrogel synthesis methods, hydrogel properties, and hydrogel applications. Hydrogel can be synthesized by physical and chemical cross-linking methods. One type of the physical cross-linking method is freeze-thaw (F–T), which works based on the crystallization process of the precursor solution to form a physical cross-link. To date, there has been no review paper which discusses the F–T technique specifically and comprehensively. Most of the previous review articles that exposed the hydrogel synthesis method usually mentioned the F–T process as a small part of the physical cross-linking method. This review attempts to discuss the F–T hydrogel specifically and comprehensively. In more detail, this review covers the basic principles of hydrogel formation in an F–T way, the parameters that influence hydrogel formation, the properties of the hydrogel, and its application in the biomedical field.
Collapse
|
10
|
Polysaccharides-Based Injectable Hydrogels: Preparation, Characteristics, and Biomedical Applications. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polysaccharides-based injectable hydrogels are a unique group of biodegradable and biocompatible materials that have shown great potential in the different biomedical fields. The biomolecules or cells can be simply blended with the hydrogel precursors with a high loading capacity by homogenous mixing. The different physical and chemical crosslinking approaches for preparing polysaccharide-based injectable hydrogels are reviewed. Additionally, the review highlights the recent work using polysaccharides-based injectable hydrogels as stimuli-responsive delivery vehicles for the controlled release of different therapeutic agents and viscoelastic matrix for cell encapsulation. Moreover, the application of polysaccharides-based injectable hydrogel in regenerative medicine as tissue scaffold and wound healing dressing is covered.
Collapse
|
11
|
High performance hydrogel electrodes based on sodium alginate-g-poly(AM-c o-ECA-co-AMPS for supercapacitor application. Int J Biol Macromol 2022; 218:420-430. [PMID: 35872319 DOI: 10.1016/j.ijbiomac.2022.07.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/23/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022]
Abstract
Electrochemical conductive hydrogels are being extensively explored in the fabrication of portable batteries and high-performance supercapacitors. Herein, the rational design of a new polyanionic electrically conductive hydrogels based on sodium alginate-g-poly(AM-co-ECA-co-AMPS) are described. rGO was incorporated into the hydrogel during the polymerization process generating rGO@ sodium alginate-g-poly(AM-co-ECA-co-AMPS) composite hydrogels to study the impact of rGO on the performance of the hydrogels. FT-IR, XRD, and SEM-EDX characterized the chemical composition, crystalline, and morphological structure of the new synthesized hydrogels. The electrochemical performance of as-synthesized hydrogels was investigated by cyclic voltammetry, galvanostatic, charge-discharge rate, and electrochemical impedance spectroscopy. The supercapacitor performance for ECH2.5 composite hydrogel showed a capacitance of 753 F. g-1 at 1 A. g-1 with good rate capability and cycling stability up to 5000 cycles. Thus, ECH2.5 hydrogel is a good candidate as electrode material in supercapacitor applications.
Collapse
|
12
|
El-Sayed NS, Hashem AH, Kamel S. Preparation and characterization of Gum Arabic Schiff's bases based on 9-aminoacridine with in vitro evaluation of their antimicrobial and antitumor potentiality. Carbohydr Polym 2022; 277:118823. [PMID: 34893240 DOI: 10.1016/j.carbpol.2021.118823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 01/24/2023]
Abstract
The conjugation between drug and biopolymers through an easily hydrolysable bond such as ester linkage, disulfide linkage, or imine-bond have been extensively employed to control the drug release pattern and improve its bioavailability. This work described the conjugation of 9-aminoacridine (9-AA) to Gum Arabic (GA) via Schiff's base, as a pH-responsive bond. First, GA was oxidized to Arabic Gum dialdehyde (AGDA), then a different amount of 9-AA (10, 25, and 50 mg 9-AA) was coupled to defined amount of AGDA, the coupling was confirmed by elemental analysis and different spectroscopic tools. In addition, the physical features of Schiff's base conjugates including surface morphology, thermal stability, and crystalline structure were examined. The thermogravimetric analysis revealed that the incorporation of 9-AA slightly improved the thermal stability. The coupling of 9-AA to AGDA dramatically enhanced its in vitro antimicrobial and antitumor activities. All conjugates exhibited broad-spectrum activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, and Candida albicans. Moreover, AGA 25 and AGA 50 demonstrated promising capability to suppress the proliferation of human colon cancer cell line (Caco-2), with IC50 190.10 and 180.80 μg/mL respectively.
Collapse
Affiliation(s)
- Naglaa Salem El-Sayed
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St. Former (El-Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | - Samir Kamel
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St. Former (El-Tahrir St.), Dokki, Giza, P.O. 12622, Egypt.
| |
Collapse
|
13
|
Hasanin MS, El-Sakhawy M, Ahmed HY, Kamel S. Hydroxypropyl methylcellulose/graphene oxide composite as drug carrier system for5-Fluorouracil. Biotechnol J 2021; 17:e2100183. [PMID: 34499787 DOI: 10.1002/biot.202100183] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/21/2021] [Accepted: 09/03/2021] [Indexed: 11/08/2022]
Abstract
AIM This study aims to prepare green nanocomposite (HPMC/5-FL@GO) from the most biocompatible materials, hydroxypropyl methylcellulose (HPMC) and graphene oxide (GO), to enhance the drug activity of immobilized 5- Fluorouracil (5-FU) with decreasing the side effect of long-run treatment protocols with highly efficient drug-drug activity. METHOD AND RESULTS Different samples were characterized by ATR-FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), Thermogravimetric analysis (TGA), and dynamic light scattering (DLS) along with cytotoxicity and anticancer study. A homogenous and compatible nanocomposite structure with a homogenous drug distribution was confirmed. The results suggested that the prepared nanocomposite has a low cytotoxicity effect against normal Vero cell lines compared with 5-FU. The antitumor activities of the same nanocomposite (20.4 and 74.3 μg/ml on A549 and HepG-2) were lower than that of 5-FU (54.1and 103 μg/ml on A549 and HepG-2). CONCLUSION AND IMPLICATIONS According to the attained results, the HPMC/5-FL@GO can be expected to be widely applied in a biomedical application such as cancer therapy with the unique biocompatible to human cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str., Dokki Giza, P.O. 12622, Egypt
| | - Mohamed El-Sakhawy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str., Dokki Giza, P.O. 12622, Egypt
| | - Hanaa Y Ahmed
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str., Dokki Giza, P.O. 12622, Egypt
| |
Collapse
|
14
|
Abstract
A critical review on the synthesis, characterization, and modeling of polymer grafting is presented. Although the motivation stemmed from grafting synthetic polymers onto lignocellulosic biopolymers, a comprehensive overview is also provided on the chemical grafting, characterization, and processing of grafted materials of different types, including synthetic backbones. Although polymer grafting has been studied for many decades—and so has the modeling of polymer branching and crosslinking for that matter, thereby reaching a good level of understanding in order to describe existing branching/crosslinking systems—polymer grafting has remained behind in modeling efforts. Areas of opportunity for further study are suggested within this review.
Collapse
|
15
|
Kamel S, A. Khattab T. Recent Advances in Cellulose-Based Biosensors for Medical Diagnosis. BIOSENSORS 2020; 10:E67. [PMID: 32560377 PMCID: PMC7345568 DOI: 10.3390/bios10060067] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Cellulose has attracted much interest, particularly in medical applications such as advanced biosensing devices. Cellulose could provide biosensors with enhanced biocompatibility, biodegradability and non-toxicity, which could be useful for biosensors. Thus, they play a significant role in environmental monitoring, medical diagnostic tools, forensic science, and foodstuff processing safety applications. This review summarizes the recent developments in cellulose-based biosensors targeting the molecular design principles toward medical detection purposes. The recognition/detection mechanisms of cellulose-based biosensors demonstrate two major classes of measurable signal generation, including optical and electrochemical cellulosic biosensors. As a result of their simplicity, high sensitivity, and low cost, cellulose-based optical biosensors are particularly of great interest for including label-free and label-driven (fluorescent and colorimetric) biosensors. There have been numerous types of cellulose substrates employed in biosensors, including several cellulose derivatives, nano-cellulose, bacterial cellulose, paper, gauzes, and hydrogels. These kinds of cellulose-based biosensors were discussed according to their preparation procedures and detection principle. Cellulose and its derivatives with their distinctive chemical structure have demonstrated to be versatile materials, affording a high-quality platform for accomplishing the immobilization process of biologically active molecules into biosensors. Cellulose-based biosensors exhibit a variety of desirable characteristics, such as sensitivity, accuracy, convenience, quick response, and low-cost. For instance, cellulose paper-based biosensors are characterized as being low-cost and easy to operate, while nano-cellulose biosensors are characterized as having a good dispersion, high absorbance capacity, and large surface area. Cellulose and its derivatives have been promising materials in biosensors which could be employed to monitor various bio-molecules, such as urea, glucose, cell, amino acid, protein, lactate, hydroquinone, gene, and cholesterol. The future interest will focus on the design and construction of multifunctional, miniaturized, low-cost, environmentally friendly, and integrated biosensors. Thus, the production of cellulose-based biosensors is very important.
Collapse
Affiliation(s)
- Samir Kamel
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt;
| | - Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|