1
|
Burts K, Plisko T, Penkova A, Ermakov S, Bildyukevich A. Influence of PEG-PPG-PEG Block Copolymer Concentration and Coagulation Bath Temperature on the Structure Formation of Polyphenylsulfone Membranes. Polymers (Basel) 2024; 16:1349. [PMID: 38794542 PMCID: PMC11124811 DOI: 10.3390/polym16101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The effect of amphiphilic block copolymer polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG concentration in the polyphenylsulfone (PPSU) casting solution and coagulation bath temperature (CBT) on the structure, separation, and antifouling performance of PPSU ultrafiltration membranes was studied for the first time. According to the phase diagram obtained, PPSU/PEG-PPG-PEG/N-methyl-2-pyrrolidone (NMP) systems are characterized by a narrow miscibility gap. It was found that 20 wt.% PPSU solutions in NMP with the addition of 5-15 wt.% of PEG-PPG-PEG block copolymer feature upper critical solution temperature, gel point, and lower critical solution temperature. Membrane composition and structure were studied by Fourier-transform infrared spectroscopy, scanning electron and atomic force microscopies, and water contact angle measurements. The addition of PEG-PPG-PPG to the PPSU casting solution was found to increase the hydrophilicity of the membrane surface (water contact angle decreased from 78° for the reference PPSU membrane down to 50° for 20 wt.%PPSU/15 wt.% PEG-PPG-PEG membrane). It was revealed that the pure water flux increased with the rise of CBT from 18-20 L·m-2·h-1 for the reference PPSU membrane up to 38-140 L·m-2·h-1 for 20 wt.% PPSU/10-15 wt.% PEG-PPG-PEG membranes. However, the opposite trend was observed for 20 wt.% PPSU/5-7 wt.% PEG-PPG-PEG membranes: pure water flux decreased with an increase in CBT. This is due to the differences in the mechanism of phase separation (non-solvent-induced phase separation (NIPS) or a combination of NIPS and temperature-induced phase separation (TIPS)). It was shown that 20 wt.% PPSU/10 wt.% PEG-PPG-PEG membranes were characterized by significantly higher antifouling performance (FRR-81-89%, DRr-26-32%, DRir-10-20%, DT-33-45%) during the ultrafiltration of bovine serum albumin solutions compared to the reference PPSU membrane prepared at different CBTs (FRR-29-38%, DRr-6-14%, DRir-74-89%, DT-88-94%).
Collapse
Affiliation(s)
- Katsiaryna Burts
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Tatiana Plisko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Surganov Str., 13, 220072 Minsk, Belarus
| |
Collapse
|
2
|
Ioan M, Anghel DF, Gifu IC, Alexandrescu E, Petcu C, Diţu LM, Sanda GA, Bala D, Cinteza LO. Novel Microemulsions with Essential Oils for Environmentally Friendly Cleaning of Copper Cultural Heritage Artifacts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2430. [PMID: 37686938 PMCID: PMC10490116 DOI: 10.3390/nano13172430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Cleaning represents an important and challenging operation in the conservation of cultural heritage, and at present, a key issue consists in the development of more sustainable, "green" materials and methods to perform it. In the present work, a novel xylene-in-water microemulsion based on nonionic surfactants with low toxicity was obtained, designed as low-impact cleaning agent for metallic historic objects. Phase diagram of the mixtures containing polyoxyethylene-polyoxypropilene triblock copolymer Pluronic P84 and D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) as surfactants, water, ethanol and xylene was studied, and a microemulsion with low surfactant content was selected as suitable cleaning nanosystem. Essential oils (EOs) from thyme and cinnamon leaf were added to the selected microemulsion in order to include other beneficial properties such as anticorrosive and antifungal protection. The microemulsions with or without EOs were characterized by size, size distribution and zeta potential. The cleaning efficacy of the tested microemulsions was assessed based on their ability to remove two types of artificial dirt by using X-ray energy dispersion spectrometry (EDX), scanning electron microscopy (SEM), contact angle measurements and color analysis. Microemulsions exhibit high capacity to remove artificial dirt from model copper coupons in spite of very low content of the organic solvent. Both thyme and cinnamon oil loading microemulsions prove to significantly reduce the corrosion rate of treated metallic plates compared to those of bare copper. The antifungal activity of the novel type of microemulsion was evaluated against Aspergillus niger, reported as main treat in biocorrosion of historic copper artifacts. Application of microemulsion with small amounts of EOs on Cu plates inhibits the growth of fungi, providing a good fungicidal effect.
Collapse
Affiliation(s)
- Mihaela Ioan
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.I.); (D.F.A.)
| | - Dan Florin Anghel
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.I.); (D.F.A.)
| | - Ioana Catalina Gifu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.C.G.); (E.A.)
| | - Elvira Alexandrescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.C.G.); (E.A.)
| | - Cristian Petcu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.C.G.); (E.A.)
| | - Lia Mara Diţu
- Microbiology Department, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania;
| | - Georgiana Alexandra Sanda
- Physical Chemistry Department, University of Bucharest, 4–12 Blv. Regina Elisabeta, 030018 Bucharest, Romania; (G.A.S.); (D.B.)
| | - Daniela Bala
- Physical Chemistry Department, University of Bucharest, 4–12 Blv. Regina Elisabeta, 030018 Bucharest, Romania; (G.A.S.); (D.B.)
| | - Ludmila Otilia Cinteza
- Physical Chemistry Department, University of Bucharest, 4–12 Blv. Regina Elisabeta, 030018 Bucharest, Romania; (G.A.S.); (D.B.)
| |
Collapse
|
3
|
Plisko T, Burts K, Penkova A, Dmitrenko M, Kuzminova A, Ermakov S, Bildyukevich A. Effect of the Addition of Polyacrylic Acid of Different Molecular Weights to Coagulation Bath on the Structure and Performance of Polysulfone Ultrafiltration Membranes. Polymers (Basel) 2023; 15:polym15071664. [PMID: 37050278 PMCID: PMC10097043 DOI: 10.3390/polym15071664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Membrane fouling is a serious issue in membrane technology which cannot be completely avoided but can be diminished. The perspective technique of membrane modification is the introduction of hydrophilic polymers or polyelectrolytes into the coagulation bath during membrane preparation via non-solvent-induced phase separation. The influence of polyacrylic acid (PAA) molecular weight (100,000, 250,000 and 450,000 g·mol−1) added to the aqueous coagulation bath (0.4–2.0 wt.%) on the polysulfone membrane structure, surface roughness, water contact angle and zeta potential of the selective layer, as well as the separation and antifouling performance, was systematically studied. It was found that membranes obtained via the addition of PAA with higher molecular weight feature smaller pore size and porosity, extremely high hydrophilicity and higher values of negative charge of membrane surface. It was shown that the increase in PAA concentration from 0.4 wt.% to 2.0 wt.% for all studied PAA molecular weights yielded a substantial decrease in water contact angle compared with the reference membrane (65 ± 2°) (from 27 ± 2° to 17 ± 2° for PAA with Mn = 100,000 g·mol−1; from 25 ± 2° to 16 ± 2° for PAA with Mn = 250,000 g·mol−1; and from 19 ± 2° to 10 ± 2° for PAA with Mn = 450,000 g·mol−1). An increase in PAA molecular weight from 100,000 to 450,000 g·mol−1 led to a decrease in membrane permeability, an increase in rejection and tailoring excellent antifouling performance in the ultrafiltration of humic acid solutions. The fouling recovery ratio increased from 73% for the reference membrane up to 91%, 100% and 136% for membranes modified with the addition to the coagulation bath of 1.5 wt.% of PAA with molecular weights of 100,000 g·mol−1, 250,000 g·mol−1 and 450,000 g·mol−1, respectively. Overall, the addition of PAA of different molecular weights to the coagulation bath is an efficient tool to adjust membrane separation and antifouling properties for different separation tasks.
Collapse
Affiliation(s)
- Tatiana Plisko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
- Correspondence:
| | - Katsiaryna Burts
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| |
Collapse
|
4
|
Nanofiltration Mixed Matrix Membranes from Cellulose Modified with Zn-Based Metal–Organic Frameworks for the Enhanced Water Treatment from Heavy Metal Ions. Polymers (Basel) 2023; 15:polym15061341. [PMID: 36987122 PMCID: PMC10052156 DOI: 10.3390/polym15061341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Nowadays, nanofiltration is actively used for water softening and disinfection, pre-treatment, nitrate, and color removal, in particular, for heavy metal ions removal from wastewater. In this regard, new, effective materials are required. In the present work, novel sustainable porous membranes from cellulose acetate (CA) and supported membranes consisting of CA porous substrate with a thin dense selective layer from carboxymethyl cellulose (CMC) modified with first-time synthesized Zn-based metal–organic frameworks (Zn(SEB), Zn(BDC)Si, Zn(BIM)) were developed to increase the efficiency of nanofiltration for the removal of heavy metal ions. Zn-based MOFs were characterized by sorption measurements, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The obtained membranes were studied by the spectroscopic (FTIR), standard porosimetry and microscopic (SEM and AFM) methods, and contact angle measurement. The CA porous support was compared with other, prepared in the present work, porous substrates from poly(m-phenylene isophthalamide) and polyacrylonitrile. Membrane performance was tested in the nanofiltration of the model and real mixtures containing heavy metal ions. The improvement of the transport properties of the developed membranes was achieved through Zn-based MOF modification due to their porous structure, hydrophilic properties, and different particle shapes.
Collapse
|
5
|
Long M, Jiang Y, Yang C, Xu Z, Zhang R, Yuan J, Zhang S, Zhang M, Wu H, Jiang Z. In-situ assembly of polyelectrolyte via surface segregation of titanium oxide for antifouling membranes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Maggay IV, Yu ML, Wang DM, Chiang CH, Chang Y, Venault A. Strategy to prepare skin-free and macrovoid-free polysulfone membranes via the NIPS process. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Development of Novel Membranes Based on Polyvinyl Alcohol Modified by Pluronic F127 for Pervaporation Dehydration of Isopropanol. SUSTAINABILITY 2022. [DOI: 10.3390/su14063561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Membrane methods are environmentally friendly and can significantly improve the design and development of new energy consumption processes that are very important nowadays. However, their effective use requires advanced membrane materials. This study aims to improve the performance of pervaporation polyvinyl alcohol (PVA)-based membrane for isopropanol dehydration. To achieve this goal, two methods were applied: (1) bulk modification of PVA by Pluronic F127 and (2) development of supported PVA-based membrane using polyphenylene isophthalamide (PA) as a substrate with a various porosity. Developed membranes were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy (SEM), contact angle measurement, and swelling experiments. The concentration influence of PA casting solution (12–20 wt.%) on the performance of porous PA membranes (substrates) was investigated in ultrafiltration of pure water and bovine serum albumin (BSA) solution as well as by microscopic methods (SEM and atomic force microscopy). The developed dense and supported PVA-based membranes were tested in the pervaporation dehydration of isopropanol. Optimal transport characteristics were obtained for a supported membrane with a PVA-based selective layer containing 3 wt.% Pluronic F127 onto an ultrafiltration PA (17 wt.%) substrate: improved permeation flux 0.100–1.164 kg/(m2 h) and 98.8–84.6 wt.% water content in the permeate in pervaporation dehydration of isopropanol (12–80 wt.% water).
Collapse
|
8
|
Burts KS, Plisko TV, Sjölin M, Rodrigues G, Bildyukevich AV, Lipnizki F, Ulbricht M. Development of Antifouling Polysulfone Membranes by Synergistic Modification with Two Different Additives in Casting Solution and Coagulation Bath: Synperonic F108 and Polyacrylic Acid. MATERIALS (BASEL, SWITZERLAND) 2022; 15:359. [PMID: 35009502 PMCID: PMC8746107 DOI: 10.3390/ma15010359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
This study deals with the development of antifouling ultrafiltration membranes based on polysulfone (PSF) for wastewater treatment and the concentration and purification of hemicellulose and lignin in the pulp and paper industry. The efficient simple and reproducible technique of PSF membrane modification to increase antifouling performance by simultaneous addition of triblock copolymer polyethylene glycol-polypropylene glycol-polyethylene glycol (Synperonic F108, Mn =14 × 103 g mol-1) to the casting solution and addition of polyacrylic acid (PAA, Mn = 250 × 103 g mol-1) to the coagulation bath is proposed for the first time. The effect of the PAA concentration in the aqueous solution on the PSF/Synperonic F108 membrane structure, surface characteristics, performance, and antifouling stability was investigated. PAA concentrations were varied from 0.35 to 2.0 wt.%. Membrane composition, structure, and topology were investigated by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The addition of PAA into the coagulation bath was revealed to cause the formation of a thicker and denser selective layer with decreasing its pore size and porosity; according to the structural characterization, an interpolymer complex of the two additives was formed on the surface of the PSF membrane. Hydrophilicity of the membrane selective layer surface was shown to increase significantly. The selective layer surface charge was found to become more negative in comparison to the reference membrane. It was shown that PSF/Synperonic F108/PAA membranes are characterized by better antifouling performance in ultrafiltration of humic acid solution and thermomechanical pulp mill (ThMP) process water. Membrane modification with PAA results in higher ThMP process water flux, fouling recovery ratio, and hemicellulose and total lignin rejection compared to the reference PSF/Synperonic F108 membrane. This suggests the possibility of applying the developed membranes for hemicellulose concentration and purification.
Collapse
Affiliation(s)
- Katsiaryna S. Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
| | - Tatiana V. Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
| | - Mikael Sjölin
- Department of Chemical Engineering, Lund University, 221 00 Lund, Sweden; (M.S.); (G.R.); (F.L.)
| | - Goncalo Rodrigues
- Department of Chemical Engineering, Lund University, 221 00 Lund, Sweden; (M.S.); (G.R.); (F.L.)
- Department of Bioengineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
| | - Alexandr V. Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
| | - Frank Lipnizki
- Department of Chemical Engineering, Lund University, 221 00 Lund, Sweden; (M.S.); (G.R.); (F.L.)
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45141 Essen, Germany;
| |
Collapse
|
9
|
Shen C, Zhang Q, Meng Q. PSU-g-SBMA hollow fiber membrane for treatment of oily wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3576-3585. [PMID: 34928827 DOI: 10.2166/wst.2021.363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrafiltration membranes can intercept oil particles smaller than 10 μm, but the membranes are easily contaminated by oil due to their hydrophobicity. To treat various oily wastewaters, we prepared a hydrophilic hollow fiber membrane (HFM) with anti-fouling property by grafting sulfobetaine methacrylate (SBMA) onto polysulfone (PSU). For six simulated wastewaters containing emulsified oil at 1,000 mg/L, the PSU-g-SBMA HFM was able to remove 98.5-99.7% of oil, higher than that of PSU HFM at 91.1-98.9%. The oil concentration in filtrate was less than 15 mg/L, which could meet the discharge standard of wastewater. The water flux of PSU-g-SBMA HFM can be completely recovered after being washed by rhamnolipid and alkali solution, while the same cleaning process could not recover the PSU HFM. As found, the contact angles of oil droplets on the PSU-g-SBMA membrane were larger than those on PSU membrane, which indicated the improved hydrophilicity by PSU-g-SBMA. For 48 h of filtration to soybean and diesel oil/water emulsion, the effect of PSU-g-SBMA HFM was stable and the flux could be completely recovered by cleaning. Therefore, we provided a new method for oily wastewater treatment, which can efficiently and energy-saving remove various oil substances in wastewater.
Collapse
Affiliation(s)
- Chong Shen
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, PR China
| | - Qian Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, PR China
| | - Qin Meng
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, P.R. China E-mail:
| |
Collapse
|
10
|
Formation of Polysulfone Hollow Fiber Membranes Using the Systems with Lower Critical Solution Temperature. FIBERS 2021. [DOI: 10.3390/fib9050028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study deals with the investigation of the phase state of the polymer systems from polysulfone (PSF) with the addition of polyethylene glycol (PEG-400, Mn = 400 g·mol−1) and polyvinylpyrrolidone (PVP K-30, Mn = 40,000 g·mol−1) in N,N-dimethylacetamide (DMA), which feature lower critical solution temperatures (LCSTs). A fragment of the phase state diagram of the system PSF —PEG-400—PVP K-30—DMA was experimentally constructed in the following range of component concentrations: PSF 20–24 wt.%, PEG-400—35–38 wt.% and PVP—0–8 wt.%. It has been established that PVP addition substantially reduces the phase separation temperature down to 50–60 °C. Based on the obtained phase diagrams, a method for preparation of highly permeable hollow fiber membranes from PSF, which involves the processing of the dope solution at a temperature close to the LCST and the temperature of the bore fluid above the LCST, was proposed. Hollow fiber membranes with pure water flux of 1200 L·m−2·h−1 and a sponge-like macrovoid-free structure were obtained via LCST-thermally induced phase separation by free fall spinning technique.
Collapse
|