1
|
Madhuranthakam CMR, Abudaqqa WSK, Fowler M. Advances in Polyvinyl Alcohol-Based Membranes for Fuel Cells: A Comprehensive Review on Types, Synthesis, Modifications, and Performance Optimization. Polymers (Basel) 2024; 16:1775. [PMID: 39000631 PMCID: PMC11243812 DOI: 10.3390/polym16131775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Fuel cell technology is at the forefront of sustainable energy solutions, and polyvinyl alcohol (PVA) membranes play an important role in improving performance. This article thoroughly investigates the various varieties of PVA membranes, their production processes, and the numerous modification tactics used to solve inherent problems. Various methods were investigated, including chemical changes, composite blending, and the introduction of nanocomposites. The factors impacting PVA membranes, such as proton conductivity, thermal stability, and selectivity, were investigated to provide comprehensive knowledge. By combining various research threads, this review aims to completely investigate the current state of PVA membranes in fuel cell applications, providing significant insights for both academic researchers and industry practitioners interested in efficient and sustainable energy conversion technologies. The transition from traditional materials such as Nafion to PVA membranes has been prompted by limitations associated with the former, such as complex synthesis procedures, reduced ionic conductivity at elevated temperatures, and prohibitively high costs, which have hampered their widespread adoption. As a result, modern research efforts are increasingly focused on the creation of alternative membranes that can compete with conventional technical efficacy and economic viability in the context of fuel cell technologies.
Collapse
Affiliation(s)
| | - Weam S K Abudaqqa
- Chemical Engineering Department, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Michael Fowler
- Chemical Engineering Department, University of Waterloo, Waterloo, ON N2L 3G5, Canada
| |
Collapse
|
2
|
Li Q, Song D, Gao W, Wu D, Zhang N, Gao X, Che Q. Construction of Successive Proton Conduction Channels to Accelerate the Proton Conduction Process in Flexible Proton Exchange Membranes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422459 DOI: 10.1021/acsami.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Successive proton conduction channels are constructed with the spin coating method in flexible proton exchange membranes (PEMs). In this research, phosphoric acid (PA) molecules are immobilized in the multilayered microstructure of Kevlar nanofibers and polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) polymer molecular chains. As a result, successive proton conduction channels can accelerate the proton conduction process in the prepared membrane with the multilayered microstructure. Additionally, the microstructure fractures of the composite membranes from the external force of folding and stretching operations are modified by the inner PA molecules. Notably, numerous PA molecules are further combined through formed intermolecular hydrogen bonding. The stretched membrane absorbs more PA molecules owing to the arrangement of PA molecules, Kevlar nanofibers, and SEBS molecular chains. The stretched membrane thus exhibits the enhanced proton conduction ability, such as the through-plane proton conductivity of 1.81 × 10-1 S cm-1 at 160 °C and that of 4.53 × 10-2 S cm-1 at 120 °C lasting for 600 h. Furthermore, the tensile stress of PA-doped stretched membranes reaches (3.91 ± 0.40)-(6.15 ± 0.43) MPa. A single proton exchange membrane fuel cell exhibits a peak power density of 483.3 mW cm-2 at 120 °C.
Collapse
Affiliation(s)
- Qingquan Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Di Song
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Weimin Gao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Dan Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Niuniu Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xinna Gao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Quantong Che
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
3
|
Tai MH, Thiam HS, Tee SF, Lim YS, Saw LH, Lai SO. Self-Healing Sulfonated Poly(ether ether ketone)-Based Polymer Electrolyte Membrane for Direct Methanol Fuel Cells: Effect of Solvent Content. Polymers (Basel) 2023; 15:4641. [PMID: 38139893 PMCID: PMC10747481 DOI: 10.3390/polym15244641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Proton exchange membranes (PEMs) with superior characteristics are needed to advance fuel cell technology. Nafion, the most used PEM in direct methanol fuel cells (DMFCs), has excellent proton conductivity but suffers from high methanol permeability and long-term performance degradation. Thus, this study aimed to create a healable PEM with improved durability and methanol barrier properties by combining sulfonated poly(ether ether ketone) (SPEEK) and poly-vinyl alcohol (PVA). The effect of changing the N,N-dimethylacetamide (DMAc) solvent concentration during membrane casting was investigated. Lower DMAc concentrations improved water absorption and, thus, membrane proton conductivity, but methanol permeability increased correspondingly. For the best trade-off between these two characteristics, the blend membrane with a 10 wt% DMAc solvent (SP10) exhibited the highest selectivity. SP10 also showed a remarkable self-healing capacity by regaining 88% of its pre-damage methanol-blocking efficiency. The ability to self-heal decreased with the increasing solvent concentration because of the increased crosslinking density and structure compactness, which reduced chain mobility. Optimizing the solvent concentration during membrane preparation is therefore an important factor in improving membrane performance in DMFCs. With its exceptional methanol barrier and self-healing characteristics, the pioneering SPEEK/PVA blend membrane may contribute to efficient and durable fuel cell systems.
Collapse
Affiliation(s)
- Mae Hwa Tai
- Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia; (M.H.T.); (S.F.T.); (Y.S.L.); (L.H.S.); (S.O.L.)
| | - Hui San Thiam
- Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia; (M.H.T.); (S.F.T.); (Y.S.L.); (L.H.S.); (S.O.L.)
- Centre for Advanced and Sustainable Materials Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia
| | - Shiau Foon Tee
- Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia; (M.H.T.); (S.F.T.); (Y.S.L.); (L.H.S.); (S.O.L.)
| | - Yun Seng Lim
- Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia; (M.H.T.); (S.F.T.); (Y.S.L.); (L.H.S.); (S.O.L.)
| | - Lip Huat Saw
- Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia; (M.H.T.); (S.F.T.); (Y.S.L.); (L.H.S.); (S.O.L.)
| | - Soon Onn Lai
- Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia; (M.H.T.); (S.F.T.); (Y.S.L.); (L.H.S.); (S.O.L.)
| |
Collapse
|
4
|
Al-Senani GM, Zayed M, Nasr M, Ali SS, Shaban M, Mohamed F. Flexible Electrode Based on PES/GO Mixed Matrix Woven Membrane for Efficient Photoelectrochemical Water Splitting Application. MEMBRANES 2023; 13:653. [PMID: 37505019 PMCID: PMC10384634 DOI: 10.3390/membranes13070653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
We introduced, for the first time, a membrane composed of nanostructured self-polyether sulphone (PES) filled with graphene oxide (GO) applied to photoelectrochemical (PEC) water splitting. This membrane was fabricated through the phase inversion method. A variety of characteristics analysis of GO and its composite with PES including FTIR, XRD, SEM, and optical properties was studied. Its morphology was completely modified from macro voids for bare PES into uniform layers with a random distribution of GO structure which facilitated the movement of electrons between these layers for hydrogen production. The composite membrane photocathode brought a distinct photocurrent generation (5.7 mA/cm2 at 1.6 V vs. RHE). The optimized GO ratio in the membrane was investigated to be PG2 (0.008 wt.% GO). The conversion efficiencies of PEC were assessed for this membrane. Its incident photon-to-current efficiency (IPCE) was calculated to be 14.4% at λ = 390 nm beside the applied bias photon-to-current conversion efficiency (ABPE) that was estimated to be 7.1% at -0.4 V vs. RHE. The stability of the PG2 membrane after six cycles was attributed to high thermal and mechanical stability and excellent ionic conductivity. The number of hydrogen moles was calculated quantitively to be 0.7 mmol h-1 cm-2. Finally, we designed an effective cost membrane with high performance for hydrogen generation.
Collapse
Affiliation(s)
- Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Zayed
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mervat Nasr
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Sahar S Ali
- Chemical Engineering and Pilot-Plant Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Physics, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia
| | - Fatma Mohamed
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Materials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
5
|
Sreenath S, Sreelatha NP, Pawar CM, Dave V, Bhatt B, Borle NG, Nagarale RK. Proton Conducting Organic-Inorganic Composite Membranes for All-Vanadium Redox Flow Battery. MEMBRANES 2023; 13:574. [PMID: 37367778 DOI: 10.3390/membranes13060574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
The quest for a cost-effective, chemically-inert, robust and proton conducting membrane for flow batteries is at its paramount. Perfluorinated membranes suffer severe electrolyte diffusion, whereas conductivity and dimensional stability in engineered thermoplastics depend on the degree of functionalization. Herein, we report surface-modified thermally crosslinked polyvinyl alcohol-silica (PVA-SiO2) membranes for the vanadium redox flow battery (VRFB). Hygroscopic, proton-storing metal oxides such as SiO2, ZrO2 and SnO2 were coated on the membranes via the acid-catalyzed sol-gel strategy. The membranes of PVA-SiO2-Si, PVA-SiO2-Zr and PVA-SiO2-Sn demonstrated excellent oxidative stability in 2 M H2SO4 containing 1.5 M VO2+ ions. The metal oxide layer had good influence on conductivity and zeta potential values. The observed trend for conductivity and zeta potential values was PVA-SiO2-Sn > PVA-SiO2-Si > PVA-SiO2-Zr. In VRFB, the membranes showcased higher Coulombic efficiency than Nafion-117 and stable energy efficiencies over 200 cycles at the 100 mA cm-2 current density. The order of average capacity decay per cycle was PVA-SiO2-Zr < PVA-SiO2-Sn < PVA-SiO2-Si < Nafion-117. PVA-SiO2-Sn had the highest power density of 260 mW cm-2, while the self-discharge for PVA-SiO2-Zr was ~3 times higher than Nafion-117. VRFB performance reflects the potential of the facile surface modification technique to design advanced membranes for energy device applications.
Collapse
Affiliation(s)
- Sooraj Sreenath
- Electro Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nayanthara P Sreelatha
- Electro Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Chetan M Pawar
- Electro Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vidhiben Dave
- Electro Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavana Bhatt
- Electro Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Nitin G Borle
- Electro Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Rajaram Krishna Nagarale
- Electro Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Modified Cellulose Proton-Exchange Membranes for Direct Methanol Fuel Cells. Polymers (Basel) 2023; 15:polym15030659. [PMID: 36771960 PMCID: PMC9920170 DOI: 10.3390/polym15030659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
A direct methanol fuel cell (DMFC) is an excellent energy device in which direct conversion of methanol to energy occurs, resulting in a high energy conversion rate. For DMFCs, fluoropolymer copolymers are considered excellent proton-exchange membranes (PEMs). However, the high cost and high methanol permeability of commercial membranes are major obstacles to overcome in achieving higher performance in DMFCs. Novel developments have focused on various reliable materials to decrease costs and enhance DMFC performance. From this perspective, cellulose-based materials have been effectively considered as polymers and additives with multiple concepts to develop PEMs for DMFCs. In this review, we have extensively discussed the advances and utilization of cost-effective cellulose materials (microcrystalline cellulose, nanocrystalline cellulose, cellulose whiskers, cellulose nanofibers, and cellulose acetate) as PEMs for DMFCs. By adding cellulose or cellulose derivatives alone or into the PEM matrix, the performance of DMFCs is attained progressively. To understand the impact of different structures and compositions of cellulose-containing PEMs, they have been classified as functionalized cellulose, grafted cellulose, acid-doped cellulose, cellulose blended with different polymers, and composites with inorganic additives.
Collapse
|
7
|
Highly conductive SPEEK proton exchange membrane through novel halloysite nanotubes functionalized by polydopamine and phosphotungstic acid for microbial fuel cell applications. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
V PN. Influence of sulfonated SBA - 15 on fuel cell performance of sulfonated polysulfone electrolyte membranes. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221144257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prepared mesoporous SBA-15 (Santa Barbara Amorphous-15) was sulfonated and used as filler for the preparation of sulfonated polysulfone based composite electrolyte membranes. The SBA-15 and polysulfone were sulfonated using 3-mercaptopropyl trimethoxysilane and trimethylsilyl chlorosulfonate, respectively. The different weight percentages (1, 3, and 5 wt%) of sulfonated SBA-15 (SSBA-15) were used to prepare composite electrolyte membranes. Water uptake, ion exchange capacity, swelling ratio and proton conductivity of the composite membranes were studied for assessing the suitability of the electrolyte membranes for use in fuel cells. Characterization techniques such as FT-IR, XRD, SEM, TEM and Brunauer–Emmett– Teller were used to study the physico-chemical properties of the electrolyte membranes. TEM and BET analysis showed that SBA -15 retained its mesoporous structure even after sulfonation process. The prepared membranes were then tested in an in-house built single-cell fuel cell using hydrogen as fuel and oxygen as the oxidant. The fuel cell study showed that the presence of Sulfonated SBA-15 in the polymer matrix provided additional ion exchange sites and retained water for proton transfer which resulted in higher power density of 815 mW/cm2 with SPSU + 3% SSBA-15 membrane as compared with Nafion 117®.
Collapse
Affiliation(s)
- Prabhu N V
- Department of Chemistry, Easwari Engineering College, Chennai, India
| |
Collapse
|
9
|
Development of chitosan-based hybrid membrane modified with ionic-liquid and carbon nanotubes for direct methanol fuel cell operating at moderate temperature. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|