1
|
Ma S, Wang Q, Wang H, Yang Q, Li C, Yu Y, Xie Y, Shi X, Wang S. Investigation of the mechanism of Bark of Ailanthus altissima in the treatment of ulcerative colitis based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118916. [PMID: 39393560 DOI: 10.1016/j.jep.2024.118916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bark of Ailanthus altissima (Mill.) Swingle (BAA), a widely used Chinese medicinal herb in traditional remedies for bowel disorders, has yet to be explored in the context of ulcerative colitis (UC), and its therapeutic mechanisms remain unclear. AIM OF THE STUDY This study integrated network pharmacology and experimental validation to investigate the effects and underlying mechanisms of BAA in treating UC. MATERIALS AND METHODS First, UPLC-MS/MS analysis was employed to identify the chemical constituents of BAA. Network pharmacology was then applied to analyze the potential mechanisms of BAA based on these identified compounds. Lastly, a dextran sulfate sodium (DSS)-induced UC mouse model was utilized to assess BAA's therapeutic efficacy, with Western blotting performed to examine changes in protein expression within the key pathway influenced by BAA. RESULTS UPLC-MS/MS and SwissADME analysis identified 223 active compounds in BAA. Network pharmacology suggested that the PI3K/AKT pathway may serve as a primary mechanism by which BAA exerts its anti-UC effects. In the DSS-induced UC mouse model, BAA significantly mitigated colonic injury, reduced DAI scores, and promoted weight recovery in mice. Additionally, BAA downregulated pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, thereby suppressing inflammatory responses in the colon. Western blot analysis further demonstrated that BAA primarily inhibited the PI3K/AKT pathway in UC mouse colon tissue. CONCLUSION This study highlights that BAA effectively reduces colonic inflammation and preserves intestinal mucosal integrity, likely through the inhibition of PI3K/AKT pathway activity, positioning it as a potential treatment for UC.
Collapse
Affiliation(s)
- Shanbo Ma
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Qianru Wang
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Haiqin Wang
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Qian Yang
- Department of Chinese Materia Medica and Natural Medicines, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Chengwen Li
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Yuanyuan Yu
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Yanhua Xie
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| | - Siwang Wang
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Liu J, Liu J, Tong X, Peng W, Wei S, Sun T, Wang Y, Zhang B, Li W. Network Pharmacology Prediction and Molecular Docking-Based Strategy to Discover the Potential Pharmacological Mechanism of Huai Hua San Against Ulcerative Colitis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3255-3276. [PMID: 34349502 PMCID: PMC8326529 DOI: 10.2147/dddt.s319786] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
Background Huai Hua San (HHS), a famous Traditional Chinese Medicine (TCM) formula, has been widely applied in treating ulcerative colitis (UC). However, the interaction of bioactives from HHS with the targets involved in UC has not been elucidated yet. Aim A network pharmacology-based approach combined with molecular docking and in vitro validation was performed to determine the bioactives, key targets, and potential pharmacological mechanism of HHS against UC. Materials and Methods Bioactives and potential targets of HHS, as well as UC-related targets, were retrieved from public databases. Crucial bioactive ingredients, potential targets, and signaling pathways were acquired through bioinformatics analysis, including protein-protein interaction (PPI), as well as the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Subsequently, molecular docking was carried out to predict the combination of active compounds with core targets. Lastly, in vitro experiments were conducted to further verify the findings. Results A total of 28 bioactive ingredients of HHS and 421 HHS-UC-related targets were screened. Bioinformatics analysis revealed that quercetin, luteolin, and nobiletin may be potential candidate agents. JUN, TP53, and ESR1 could become potential therapeutic targets. PI3K-AKT signaling pathway might play an important role in HHS against UC. Moreover, molecular docking suggested that quercetin, luteolin, and nobiletin combined well with JUN, TP53, and ESR1, respectively. Cell experiments showed that the most important ingredient of HHS, quercetin, could inhibit the levels of inflammatory factors and phosphorylated c-Jun, as well as PI3K-Akt signaling pathway in LPS-induced RAW264.7 cells, which further confirmed the prediction by network pharmacology strategy and molecular docking. Conclusion Our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of HHS against UC. It also provided a promising strategy to uncover the scientific basis and therapeutic mechanism of TCM formulae in treating diseases.
Collapse
Affiliation(s)
- Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Xiaoliang Tong
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Yikun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China
| |
Collapse
|
3
|
Hirsch D. [Colorectal tumor evolution in inflammatory bowel disease : Dynamics of genomic alterations and potential molecular markers to predict malignant progression]. DER PATHOLOGE 2019; 40:232-238. [PMID: 31811372 DOI: 10.1007/s00292-019-00709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inflammatory bowel diseases (IBDs) increase the risk for colorectal cancer (CRC). In IBD, the evolution of potential tumor clones occurs long before neoplastic lesions become evident and these clones can be undetectable by endoscopy and histology at early stages. The spectrum of genomic alterations in IBD-associated colorectal carcinogenesis is distinct from the changes observed in the sporadic adenoma-carcinoma sequence. Predominant alterations include aneuploidies and mutations of TP53, which both occur early in IBD-related tumorigenesis. In some IBD patients, genomic alterations can already be detected in colonic mucosa without any histologic signs of dysplasia. Genomic analysis of multiregional samples from colectomy specimens of IBD patients revealed distinct tumor evolutionary patterns. This suggests an increased genomic instability in the chronically inflamed bowel that enables the emergence of multiple, phylogenetically unrelated neoplastic lesions within the colorectum of a single IBD patient. This article summarizes the genomic alterations underlying IBD-associated colorectal tumorigenesis and the evolutionary patterns from inflamed, not yet dysplastic epithelium to CRC. Furthermore, it is discussed how this knowledge can eventually be exploited for early detection of malignant progression of IBD and thus help to improve the clinical management and surveillance schedule of IBD patients.
Collapse
Affiliation(s)
- D Hirsch
- Institut für Pathologie, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland. .,Genetics Branch, National Cancer Institute, National Institutes of Health, 50 South Drive, 20892, Bethesda, MD, USA.
| |
Collapse
|