1
|
Li J, Chen Y, Gao Y, Mo Y, Long T, Yao B, Li Y. Engineering Trichoderma reesei for the hyperproduction of cellulose induced protein 1 (Cip1) on a sophorose-containing inducer to efficiently saccharify alkali-pretreated corn stover. Prep Biochem Biotechnol 2022:1-11. [PMID: 36563056 DOI: 10.1080/10826068.2022.2158469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Trichoderma reesei was induced to produce cellulase by a combination of glucose and β-disaccharide; however, lower levels of auxiliary proteins for degrading lignocellulosic biomass were detected by iTRAQ analysis compared with cellulose as an inducer, especially cellulose induced protein 1 (CIP1). In this study, A pdc1 promoter-driven overexpression of the endogenous Trcip1 gene was observed in T. reesei Rut C30, and the Trcip1 transcription levels of the two transformants, T. reesei OE-cip1-1 and OE-cip1-2, demonstrated 31.2- and 164.6-fold increases, respectively, but there was no significant change in cellobiohydrolase, endoglucanase and filter paper activity at 48 h. The crude enzyme was then used to hydrolyze corn stover. For T. reesei OE-cip1-1 and OE-cip1-2, the hydrolysis efficiency increased by 25.0 and 28.6% with a solid loading of 5% at 2 h, respectively. Simultaneously, 85.5 and 85.2 g/L glucose were released using a cellulase cocktail at high solid loading (20%), and these glucose release rates were significantly greater than that of T. reesei Rut C30 cellulase (77.4 g/L) at 120 h. Furthermore, scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that the enhanced hydrolysis efficiency was primarily triggered by the decrease in the crystallinity of lignocellulose, and the fiber structure had varying degrees of loosening and disintegration.
Collapse
Affiliation(s)
- Jianghong Li
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Yudian Chen
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Yushan Gao
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Yi Mo
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Tingting Long
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Bo Yao
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Yonghao Li
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
2
|
Schalamun M, Schmoll M. Trichoderma - genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1002161. [PMID: 37746224 PMCID: PMC10512326 DOI: 10.3389/ffunb.2022.1002161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 09/26/2023]
Abstract
The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
|
4
|
Pang AP, Zhang F, Hu X, Luo Y, Wang H, Durrani S, Wu FG, Li BZ, Zhou Z, Lu Z, Lin F. Glutamine involvement in nitrogen regulation of cellulase production in fungi. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:199. [PMID: 34645509 PMCID: PMC8513308 DOI: 10.1186/s13068-021-02046-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/23/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Cellulase synthesized by fungi can environment-friendly and sustainably degrades cellulose to fermentable sugars for producing cellulosic biofuels, biobased medicine and fine chemicals. Great efforts have been made to study the regulation mechanism of cellulase biosynthesis in fungi with the focus on the carbon sources, while little attention has been paid to the impact and regulation mechanism of nitrogen sources on cellulase production. RESULTS Glutamine displayed the strongest inhibition effect on cellulase biosynthesis in Trichoderma reesei, followed by yeast extract, urea, tryptone, ammonium sulfate and L-glutamate. Cellulase production, cell growth and sporulation in T. reesei RUT-C30 grown on cellulose were all inhibited with the addition of glutamine (a preferred nitrogen source) with no change for mycelium morphology. This inhibition effect was attributed to both L-glutamine itself and the nitrogen excess induced by its presence. In agreement with the reduced cellulase production, the mRNA levels of 44 genes related to the cellulase production were decreased severely in the presence of glutamine. The transcriptional levels of genes involved in other nitrogen transport, ribosomal biogenesis and glutamine biosynthesis were decreased notably by glutamine, while the expression of genes relevant to glutamate biosynthesis, amino acid catabolism, and glutamine catabolism were increased noticeably. Moreover, the transcriptional level of cellulose signaling related proteins ooc1 and ooc2, and the cellular receptor of rapamycin trFKBP12 was increased remarkably, whose deletion exacerbated the cellulase depression influence of glutamine. CONCLUSION Glutamine may well be the metabolite effector in nitrogen repression of cellulase synthesis, like the role of glucose plays in carbon catabolite repression. Glutamine under excess nitrogen condition repressed cellulase biosynthesis significantly as well as cell growth and sporulation in T. reesei RUT-C30. More importantly, the presence of glutamine notably impacted the transport and metabolism of nitrogen. Genes ooc1, ooc2, and trFKBP12 are associated with the cellulase repression impact of glutamine. These findings advance our understanding of nitrogen regulation of cellulase production in filamentous fungi, which would aid in the rational design of strains and fermentation strategies for cellulase production in industry.
Collapse
Affiliation(s)
- Ai-Ping Pang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Funing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xin Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yongsheng Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Haiyan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Samran Durrani
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhihua Zhou
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Hinterdobler W, Schuster A, Tisch D, Özkan E, Bazafkan H, Schinnerl J, Brecker L, Böhmdorfer S, Schmoll M. The role of PKAc1 in gene regulation and trichodimerol production in Trichoderma reesei. Fungal Biol Biotechnol 2019; 6:12. [PMID: 31528353 PMCID: PMC6734591 DOI: 10.1186/s40694-019-0075-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichoderma reesei represents a model system for investigation of plant cell wall degradation and its connection to light response. The cyclic adenosine monophosphate pathway (cAMP pathway) plays an important role in both physiological outputs, being crucial for regulation of photoreceptor function as well as for cellulase regulation on different carbon sources. Phosphorylation of photoreceptors and of the carbon catabolite repressor CRE1 was shown in ascomycetes, indicating a relevance of protein kinase A in regulation of the target genes of these transcription factors as well as an impact on regulation of induction specific genes. Moreover, the cAMP pathway impacts growth and development. RESULTS Here, we investigated gene regulation by the catalytic subunit of protein kinase A (PKAc1) upon growth on cellulose. We found distinct gene sets for regulation upon growth in light and darkness with an overlap of only 13 genes. PKAc1 regulates metabolic genes as well as transport and defense functions. The overlap of gene regulation by PKAc1 with the genes representing the cAMP dependent regulatory output of the photoreceptor ENV1 indicates an involvement of PKA in this pathway, which counteracts its effects by contrasting regulation. Moreover, we found considerable overlap with the gene sets regulated under cellulase inducing conditions and by the carbon catabolite repressor CRE1. Our analysis also showed that PKAc1 regulates the genes of the SOR cluster associated with the biosynthesis of sorbicillinoids. The homologue of gin4, encoding a CAMK type kinase, which is regulated by PKAc1, CRE1 and YPR2 showed a moderate impact on trichodimerol production. We isolated trichodimerol as representative sorbicillin compound and established a method for its quantification in large sample sets using high performance thin layer chromatography (HPTLC), which can be broadly applied for secondary metabolite screening of mutants or different growth conditions. Due to the high expression levels of the SOR cluster under conditions of sexual development we crosschecked the relevance of PKAc1 under these conditions. We could show that PKAc1 impacts biosynthesis of trichodimerol in axenic growth and upon mating. CONCLUSIONS We conclude that PKAc1 is involved in light dependent regulation of plant cell wall degradation, including carbon catabolite repression as well as secondary metabolism and development in T. reesei.
Collapse
Affiliation(s)
- Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - André Schuster
- Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Doris Tisch
- Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Ezgi Özkan
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Hoda Bazafkan
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - Johann Schinnerl
- Chemodiversity Research Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Stefan Böhmdorfer
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| |
Collapse
|
6
|
Dattenböck C, Tisch D, Schuster A, Monroy AA, Hinterdobler W, Schmoll M. Gene regulation associated with sexual development and female fertility in different isolates of Trichoderma reesei. Fungal Biol Biotechnol 2018; 5:9. [PMID: 29785273 PMCID: PMC5952832 DOI: 10.1186/s40694-018-0055-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/12/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Trichoderma reesei is one of the most frequently used filamentous fungi in industry for production of homologous and heterologous proteins. The ability to use sexual crossing in this fungus was discovered several years ago and opens up new perspectives for industrial strain improvement and investigation of gene regulation. RESULTS Here we investigated the female sterile strain QM6a in comparison to the fertile isolate CBS999.97 and backcrossed derivatives of QM6a, which have regained fertility (FF1 and FF2 strains) in both mating types under conditions of sexual development. We found considerable differences in gene regulation between strains with the CBS999.97 genetic background and the QM6a background. Regulation patterns of QM6a largely clustered with the backcrossed FF1 and FF2 strains. Differential regulation between QM6a and FF1/FF2 as well as clustering of QM6a patterns with those of CBS999.97 strains was also observed. Consistent mating type dependent regulation was limited to mating type genes and those involved in pheromone response, but included also nta1 encoding a putative N-terminal amidase previously not associated with development. Comparison of female sterile QM6a with female fertile strains showed differential expression in genes encoding several transcription factors, metabolic genes and genes involved in secondary metabolism. CONCLUSIONS Evaluation of the functions of genes specifically regulated under conditions of sexual development and of genes with highest levels of transcripts under these conditions indicated a relevance of secondary metabolism for sexual development in T. reesei. Among others, the biosynthetic genes of the recently characterized SOR cluster are in this gene group. However, these genes are not essential for sexual development, but rather have a function in protection and defence against competitors during reproduction.
Collapse
Affiliation(s)
- Christoph Dattenböck
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | - Doris Tisch
- Institute of Chemical Engineering, Research Area Molecular Biotechnology, TU Wien, 1060 Vienna, Austria
| | - Andre Schuster
- Institute of Chemical Engineering, Research Area Molecular Biotechnology, TU Wien, 1060 Vienna, Austria
| | - Alberto Alonso Monroy
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | - Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| |
Collapse
|
7
|
Antoniêto ACC, de Paula RG, Castro LDS, Silva-Rocha R, Persinoti GF, Silva RN. Trichoderma reesei CRE1-mediated Carbon Catabolite Repression in Re-sponse to Sophorose Through RNA Sequencing Analysis. Curr Genomics 2016; 17:119-31. [PMID: 27226768 PMCID: PMC4864841 DOI: 10.2174/1389202917666151116212901] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 01/10/2023] Open
Abstract
Carbon catabolite repression (CCR) mediated by CRE1 in Trichoderma reesei emerged as a mechanism by which the fungus could adapt to new environments. In the presence of readily available carbon sources such as glucose, the fungus activates this mechanism and inhibits the production of cellulolytic complex enzymes to avoid unnecessary energy expenditure. CCR has been well described for the growth of T. reesei in cellulose and glucose, however, little is known about this process when the carbon source is sophorose, one of the most potent inducers of cellulase production. Thus, we performed high-throughput RNA sequencing to better understand CCR during cellulase formation in the presence of sophorose, by comparing the mutant ∆cre1 with its parental strain, QM9414. Of the 9129 genes present in the genome of T. reesei, 184 were upregulated and 344 downregulated in the mutant strain ∆cre1 compared to QM9414. Genes belonging to the CAZy database, and those encoding transcription factors and transporters are among the gene classes that were repressed by CRE1 in the presence of sophorose; most were possible indirectly regulated by CRE1. We also observed that CRE1 activity is carbon-dependent. A recent study from our group showed that in cellulose, CRE1 repress different groups of genes when compared to sophorose. CCR differences between these carbon sources may be due to the release of cellodextrins in the cellulose polymer, resulting in different targets of CRE1 in both carbon sources. These results contribute to a better understanding of CRE1-mediated CCR in T. reesei when glucose comes from a potent inducer of cellulase production such as sophorose, which could prove useful in improving cellulase production by the biotechnology sector.
Collapse
Affiliation(s)
- Amanda Cristina Campos Antoniêto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo 14049-900, Ribeirão Preto, SP, Brazil
| | - Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo 14049-900, Ribeirão Preto, SP, Brazil
| | - Lílian Dos Santos Castro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo 14049-900, Ribeirão Preto, SP, Brazil
| | - Rafael Silva-Rocha
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo 14049-900, Ribeirão Preto, SP, Brazil
| | - Gabriela Felix Persinoti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional, de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo 14049-900, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30. Enzyme Microb Technol 2016; 82:8-14. [DOI: 10.1016/j.enzmictec.2015.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/16/2015] [Accepted: 08/18/2015] [Indexed: 11/23/2022]
|
9
|
Häkkinen M, Sivasiddarthan D, Aro N, Saloheimo M, Pakula TM. The effects of extracellular pH and of the transcriptional regulator PACI on the transcriptome of Trichoderma reesei. Microb Cell Fact 2015; 14:63. [PMID: 25925231 PMCID: PMC4446002 DOI: 10.1186/s12934-015-0247-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 04/20/2015] [Indexed: 11/21/2022] Open
Abstract
Background Extracellular pH is one of the several environmental factors affecting protein production by filamentous fungi. Regulatory mechanisms ensure that extracellular enzymes are produced under pH-conditions in which the enzymes are active. In filamentous fungi, the transcriptional regulation in different ambient pH has been studied especially in Aspergilli, whereas the effects of pH in the industrial producer of hydrolytic enzymes, Trichoderma reesei, have mainly been studied at the protein level. In this study, the pH-dependent expression of T. reesei genes was investigated by genome-wide transcriptional profiling and by analysing the effects of deletion of the gene encoding the transcriptional regulator pac1, the orthologue of Aspergillus nidulans pacC gene. Results Transcriptional analysis revealed the pH-responsive genes of T. reesei, and functional classification of the genes identified the activities most affected by changing pH. A large number of genes encoding especially transporters, signalling-related proteins, extracellular enzymes and proteins involved in different metabolism-related functions were found to be pH-responsive. Several cellulase- and hemicellulase-encoding genes were found among the pH-responsive genes. Especially, genes encoding hemicellulases with the similar type of activity were shown to include both genes up-regulated at low pH and genes up-regulated at high pH. However, relatively few of the cellulase- and hemicellulase-encoding genes showed direct PACI-mediated regulation, indicating the importance of other regulatory mechanisms affecting expression in different pH conditions. New information was gained on the effects of pH on the genes involved in ambient pH-signalling and on the known and candidate regulatory genes involved in regulation of cellulase and hemicellulase encoding genes. In addition, co-regulated genomic clusters responding to change of ambient pH were identified. Conclusions Ambient pH was shown to be an important determinant of T. reesei gene expression. The pH-responsive genes, including those affected by the regulator of ambient pH sensing, were identified, and novel information on the activity of genes encoding carbohydrate active enzymes at different pH was gained. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0247-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mari Häkkinen
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Dhinakaran Sivasiddarthan
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Nina Aro
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Tiina M Pakula
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| |
Collapse
|
10
|
Tisch D, Kubicek CP, Schmoll M. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei. BMC Genomics 2011; 12:613. [PMID: 22182583 PMCID: PMC3267782 DOI: 10.1186/1471-2164-12-613] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/19/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the biotechnological workhorse Trichoderma reesei (Hypocrea jecorina) transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Components of the heterotrimeric G-protein pathway interact with light-dependent signals, rendering this pathway a key regulator of cellulase gene expression. RESULTS As regulators of heterotrimeric G-protein signaling, class I phosducin-like proteins, are assumed to act as co-chaperones for G-protein beta-gamma folding and exert their function in response to light in higher eukaryotes. Our results revealed light responsive transcription of the T. reesei class I phosducin-like protein gene phlp1 and indicate a light dependent function of PhLP1 also in fungi. We showed the functions of PhLP1, GNB1 and GNG1 in the same pathway, with one major output being the regulation of transcription of glycoside hydrolase genes including cellulase genes in T. reesei. We found no direct correlation between the growth rate and global regulation of glycoside hydrolases, which suggests that regulation of growth does not occur only at the level of substrate degradation efficiency.Additionally, PhLP1, GNB1 and GNG1 are all important for proper regulation of light responsiveness during long term exposure. In their absence, the amount of light regulated genes increased from 2.7% in wild type to 14% in Δphlp1. Besides from the regulation of degradative enzymes, PhLP1 was also found to impact on the transcription of genes involved in sexual development, which was in accordance with decreased efficiency of fruiting body formation in Δphlp1. The lack of GNB1 drastically diminished ascospore discharge in T. reesei. CONCLUSIONS The heterotrimeric G-protein pathway is crucial for the interconnection of nutrient signaling and light response of T. reesei, with the class I phosducin-like protein PhLP1, GNB1 and GNG1 acting as important nodes, which influence light responsiveness, glycoside hydrolase gene transcription and sexual development.
Collapse
Affiliation(s)
- Doris Tisch
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, A-1060 Wien, Austria
| | - Christian P Kubicek
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, A-1060 Wien, Austria
| | - Monika Schmoll
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, A-1060 Wien, Austria
| |
Collapse
|
11
|
Limón MC, Pakula T, Saloheimo M, Penttilä M. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30. Microb Cell Fact 2011; 10:40. [PMID: 21609467 PMCID: PMC3126698 DOI: 10.1186/1475-2859-10-40] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 05/24/2011] [Indexed: 01/31/2023] Open
Abstract
Background Cellulase and hemicellulase genes in the fungus Trichoderma reesei are repressed by glucose and induced by lactose. Regulation of the cellulase genes is mediated by the repressor CRE1 and the activator XYR1. T. reesei strain Rut-C30 is a hypercellulolytic mutant, obtained from the natural strain QM6a, that has a truncated version of the catabolite repressor gene, cre1. It has been previously shown that bacterial mutants lacking phosphoglucose isomerase (PGI) produce more nucleotide precursors and amino acids. PGI catalyzes the second step of glycolysis, the formation of fructose-6-P from glucose-6-P. Results We deleted the gene pgi1, encoding PGI, in the T. reesei strain Rut-C30 and we introduced the cre1 gene in a Δpgi1 mutant. Both Δpgi1 and cre1+Δpgi1 mutants showed a pellet-like and growth as well as morphological alterations compared with Rut-C30. None of the mutants grew in media with fructose, galactose, xylose, glycerol or lactose but they grew in media with glucose, with fructose and glucose, with galactose and fructose or with lactose and fructose. No growth was observed in media with xylose and glucose. On glucose, Δpgi1 and cre1+Δpgi1 mutants showed higher cellulase activity than Rut-C30 and QM6a, respectively. But in media with lactose, none of the mutants improved the production of the reference strains. The increase in the activity did not correlate with the expression of mRNA of the xylanase regulator gene, xyr1. Δpgi1 mutants were also affected in the extracellular β-galactosidase activity. Levels of mRNA of the glucose 6-phosphate dehydrogenase did not increase in Δpgi1 during growth on glucose. Conclusions The ability to grow in media with glucose as the sole carbon source indicated that Trichoderma Δpgi1 mutants were able to use the pentose phosphate pathway. But, they did not increase the expression of gpdh. Morphological characteristics were the result of the pgi1 deletion. Deletion of pgi1 in Rut-C30 increased cellulase production, but only under repressing conditions. This increase resulted partly from the deletion itself and partly from a genetic interaction with the cre1-1 mutation. The lower cellulase activity of these mutants in media with lactose could be attributed to a reduced ability to hydrolyse this sugar but not to an effect on the expression of xyr1.
Collapse
Affiliation(s)
- M Carmen Limón
- VTT, P,O, Box 1000, (Tietotie 2, Espoo), FIN-02044 VTT, Finland.
| | | | | | | |
Collapse
|
12
|
Dehydrogenase GRD1 represents a novel component of the cellulase regulon in Trichoderma reesei (Hypocrea jecorina). Appl Environ Microbiol 2011; 77:4553-63. [PMID: 21602376 DOI: 10.1128/aem.00513-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trichoderma reesei (Hypocrea jecorina) is nowadays the most important industrial producer of cellulase and hemicellulase enzymes, which are used for pretreatment of cellulosic biomass for biofuel production. In this study, we introduce a novel component, GRD1 (glucose-ribitol dehydrogenase 1), which shows enzymatic activity on cellobiose and positively influences cellulase gene transcription, expression, and extracellular endo-1,4-β-D-glucanase activity. grd1 is differentially transcribed upon growth on cellulose and the induction of cellulase gene expression by sophorose. The transcription of grd1 is coregulated with that of cel7a (cbh1) under inducing conditions. GRD1 is further involved in carbon source utilization on several carbon sources, such as those involved in lactose and D-galactose catabolism, in several cases in a light-dependent manner. We conclude that GRD1 represents a novel enhancer of cellulase gene expression, which by coregulation with the major cellulase may act via optimization of inducing mechanisms.
Collapse
|
13
|
Montero-Barrientos M, Hermosa R, Cardoza RE, Gutiérrez S, Monte E. Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl Environ Microbiol 2011; 77:3009-16. [PMID: 21421791 PMCID: PMC3126390 DOI: 10.1128/aem.02486-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 03/04/2011] [Indexed: 12/25/2022] Open
Abstract
The synthesis of reactive oxygen species (ROS) is one of the first events following pathogenic interactions in eukaryotic cells, and NADPH oxidases are involved in the formation of such ROS. The nox1 gene of Trichoderma harzianum was cloned, and its role in antagonism against phytopathogens was analyzed in nox1-overexpressed transformants. The increased levels of nox1 expression in these transformants were accompanied by an increase in ROS production during their direct confrontation with Pythium ultimum. The transformants displayed an increased hydrolytic pattern, as determined by comparing protease, cellulase, and chitinase activities with those for the wild type. In confrontation assays against P. ultimum the nox1-overexpressed transformants were more effective than the wild type, but not in assays against Botrytis cinerea or Rhizoctonia solani. A transcriptomic analysis using a Trichoderma high-density oligonucleotide (HDO) microarray also showed that, compared to gene expression for the interaction of wild-type T. harzianum and P. ultimum, genes related to protease, cellulase, and chitinase activities were differentially upregulated in the interaction of a nox1-overexpressed transformant with this pathogen. Our results show that nox1 is involved in T. harzianum ROS production and antagonism against P. ultimum.
Collapse
Affiliation(s)
- M. Montero-Barrientos
- Spanish-Portuguese Center for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Campus of Villamayor, Río Duero 12, 37185 Salamanca, Spain
| | - R. Hermosa
- Spanish-Portuguese Center for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Campus of Villamayor, Río Duero 12, 37185 Salamanca, Spain
| | - R. E. Cardoza
- Area de Microbiología, Escuela Universitaria de Ciencias de la Salud, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24400 Ponferrada, Spain
| | - S. Gutiérrez
- Area de Microbiología, Escuela Universitaria de Ciencias de la Salud, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24400 Ponferrada, Spain
| | - E. Monte
- Spanish-Portuguese Center for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Campus of Villamayor, Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
14
|
Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 2010; 87:787-99. [PMID: 20461510 PMCID: PMC2886115 DOI: 10.1007/s00253-010-2632-1] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/16/2010] [Accepted: 04/17/2010] [Indexed: 01/01/2023]
Abstract
Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.
Collapse
|