1
|
Wadi L, El Jarkass HT, Tran TD, Islah N, Luallen RJ, Reinke AW. Genomic and phenotypic evolution of nematode-infecting microsporidia. PLoS Pathog 2023; 19:e1011510. [PMID: 37471459 PMCID: PMC10393165 DOI: 10.1371/journal.ppat.1011510] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/24/2023] [Indexed: 07/22/2023] Open
Abstract
Microsporidia are a large phylum of intracellular parasites that can infect most types of animals. Species in the Nematocida genus can infect nematodes including Caenorhabditis elegans, which has become an important model to study mechanisms of microsporidia infection. To understand the genomic properties and evolution of nematode-infecting microsporidia, we sequenced the genomes of nine species of microsporidia, including two genera, Enteropsectra and Pancytospora, without any previously sequenced genomes. Core cellular processes, including metabolic pathways, are mostly conserved across genera of nematode-infecting microsporidia. Each species encodes unique proteins belonging to large gene families that are likely used to interact with host cells. Most strikingly, we observed one such family, NemLGF1, is present in both Nematocida and Pancytospora species, but not any other microsporidia. To understand how Nematocida phenotypic traits evolved, we measured the host range, tissue specificity, spore size, and polar tube length of several species in the genus. Our phylogenetic analysis shows that Nematocida is composed of two groups of species with distinct traits and that species with longer polar tubes infect multiple tissues. Together, our work details both genomic and trait evolution between related microsporidia species and provides a useful resource for further understanding microsporidia evolution and infection mechanisms.
Collapse
Affiliation(s)
- Lina Wadi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Tuan D Tran
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Nizar Islah
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Robert J Luallen
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Mascarenhas Dos Santos AC, Julian AT, Liang P, Juárez O, Pombert JF. Telomere-to-Telomere genome assemblies of human-infecting Encephalitozoon species. BMC Genomics 2023; 24:237. [PMID: 37142951 PMCID: PMC10158259 DOI: 10.1186/s12864-023-09331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Microsporidia are diverse spore forming, fungal-related obligate intracellular pathogens infecting a wide range of hosts. This diversity is reflected at the genome level with sizes varying by an order of magnitude, ranging from less than 3 Mb in Encephalitozoon species (the smallest known in eukaryotes) to more than 50 Mb in Edhazardia spp. As a paradigm of genome reduction in eukaryotes, the small Encephalitozoon genomes have attracted much attention with investigations revealing gene dense, repeat- and intron-poor genomes characterized by a thorough pruning of molecular functions no longer relevant to their obligate intracellular lifestyle. However, because no Encephalitozoon genome has been sequenced from telomere-to-telomere and since no methylation data is available for these species, our understanding of their overall genetic and epigenetic architectures is incomplete. METHODS In this study, we sequenced the complete genomes from telomere-to-telomere of three human-infecting Encephalitozoon spp. -E. intestinalis ATCC 50506, E. hellem ATCC 50604 and E. cuniculi ATCC 50602- using short and long read platforms and leveraged the data generated as part of the sequencing process to investigate the presence of epigenetic markers in these genomes. We also used a mixture of sequence- and structure-based computational approaches, including protein structure prediction, to help identify which Encephalitozoon proteins are involved in telomere maintenance, epigenetic regulation, and heterochromatin formation. RESULTS The Encephalitozoon chromosomes were found capped by TTAGG 5-mer telomeric repeats followed by telomere associated repeat elements (TAREs) flanking hypermethylated ribosomal RNA (rRNA) gene loci featuring 5-methylcytosines (5mC) and 5-hemimethylcytosines (5hmC), themselves followed by lesser methylated subtelomeres and hypomethylated chromosome cores. Strong nucleotide biases were identified between the telomeres/subtelomeres and chromosome cores with significant changes in GC/AT, GT/AC and GA/CT contents. The presence of several genes coding for proteins essential to telomere maintenance, epigenetic regulation, and heterochromatin formation was further confirmed in the Encephalitozoon genomes. CONCLUSION Altogether, our results strongly support the subtelomeres as sites of heterochromatin formation in Encephalitozoon genomes and further suggest that these species might shutdown their energy-consuming ribosomal machinery while dormant as spores by silencing of the rRNA genes using both 5mC/5hmC methylation and facultative heterochromatin formation at these loci.
Collapse
Affiliation(s)
| | | | - Pingdong Liang
- Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Oscar Juárez
- Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | | |
Collapse
|
3
|
Williams BAP, Williams TA, Trew J. Comparative Genomics of Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:43-69. [PMID: 35543998 DOI: 10.1007/978-3-030-93306-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The microsporidia are a phylum of intracellular parasites that represent the eukaryotic cell in a state of extreme reduction, with genomes and metabolic capabilities embodying eukaryotic cells in arguably their most streamlined state. Over the past 20 years, microsporidian genomics has become a rapidly expanding field starting with sequencing of the genome of Encephalitozoon cuniculi, one of the first ever sequenced eukaryotes, to the current situation where we have access to the data from over 30 genomes across 20+ genera. Reaching back further in evolutionary history, to the point where microsporidia diverged from other eukaryotic lineages, we now also have genomic data for some of the closest known relatives of the microsporidia such as Rozella allomycis, Metchnikovella spp. and Amphiamblys sp. Data for these organisms allow us to better understand the genomic processes that shaped the emergence of the microsporidia as a group. These intensive genomic efforts have revealed some of the processes that have shaped microsporidian cells and genomes including patterns of genome expansions and contractions through gene gain and loss, whole genome duplication, differential patterns of invasion and purging of transposable elements. All these processes have been shown to occur across short and longer time scales to give rise to a phylum of parasites with dynamic genomes with a diversity of sizes and organisations.
Collapse
Affiliation(s)
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Jahcub Trew
- School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
4
|
Zhang Y, Koehler AV, Wang T, Gasser RB. Enterocytozoon bieneusi of animals-With an 'Australian twist'. ADVANCES IN PARASITOLOGY 2021; 111:1-73. [PMID: 33482973 DOI: 10.1016/bs.apar.2020.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enterocytozoon bieneusi is a microsporidian microorganism that causes intestinal disease in animals including humans. E. bieneusi is an obligate intracellular pathogen, typically causing severe or chronic diarrhoea, malabsorption and/or wasting. Currently, E. bieneusi is recognised as a fungus, although its exact classification remains contentious. The transmission of E. bieneusi can occur from person to person and/or animals to people. Transmission is usually via the faecal-oral route through E. bieneusi spore-contaminated water, environment or food, or direct contact with infected individuals. Enterocytozoon bieneusi genotypes are usually identified and classified by PCR-based sequencing of the internal transcribed spacer region (ITS) of nuclear ribosomal DNA. To date, ~600 distinct genotypes of E. bieneusi have been recorded in ~170 species of animals, including various orders of mammals and reptiles as well as insects in >40 countries. Moreover, E. bieneusi has also been found in recreational water, irrigation water, and treated raw- and waste-waters. Although many studies have been conducted on the epidemiology of E. bieneusi, prevalence surveys of animals and humans are scant in some countries, such as Australia, and transmission routes of individual genotypes and related risk factors are poorly understood. This article/chapter reviews aspects of the taxonomy, biology and epidemiology of E. bieneusi; the diagnosis, treatment and prevention of microsporidiosis; critically appraises the naming system for E. bieneusi genotypes as well as the phylogenetic relationships of these genotypes; provides new insights into the prevalence and genetic composition of E. bieneusi populations in animals in parts of Australia using molecular epidemiological tools; and proposes some areas for future research in the E. bieneusi/microsporidiosis field.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Liu H, Li M, Cai S, He X, Shao Y, Lu X. Ricin-B-lectin enhances microsporidia Nosema bombycis infection in BmN cells from silkworm Bombyx mori. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1050-1057. [PMID: 27649890 DOI: 10.1093/abbs/gmw093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022] Open
Abstract
Nosema bombycis is an obligate intracellular parasitic fungus that utilizes a distinctive mechanism to infect Bombyx mori Spore germination can be used for host cell invasion; however, the detailed mechanism remains to be elucidated. The ricin-B-lectin (RBL) gene is significantly differentially regulated after N. bombycis spore germination, and NbRBL might play roles in spore germination and infection. In this study, the biological function of NbRBL was examined. Protein sequence analysis showed that NbRBL is a secreted protein that attaches to carbohydrates. The relative expression level of the NbRBL gene was low during the first 30 h post-infection (hpi) in BmN cells, and high expression was detected from 42 hpi. Gene cloning, prokaryotic expression, and antibody preparation for NbRBL were performed. NbRBL was detected in total and secreted proteins using western blot analysis. Subcellular localization analysis showed that NbRBL is an intracellular protein. Spore adherence and infection assays showed that NbRBL could enhance spore adhesion to BmN cells; the proliferative activities of BmN cells incubated with anti-NbRBL were higher than those in negative control groups after N. bombycis infection; and the treatment groups showed less damage from spore invasion. We therefore, propose that NbRBL is released during spore germination, enhances spore adhesion to BmN cells, and contributes to spore invasion.
Collapse
Affiliation(s)
- Han Liu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingqian Li
- Cancer Institute of Integrative Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310058, China
| | - Shunfeng Cai
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongqi Shao
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingmeng Lu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Dia N, Lavie L, Faye N, Méténier G, Yeramian E, Duroure C, Toguebaye BS, Frutos R, Niang MN, Vivarès CP, Ben Mamoun C, Cornillot E. Subtelomere organization in the genome of the microsporidian Encephalitozoon cuniculi: patterns of repeated sequences and physicochemical signatures. BMC Genomics 2016; 17:34. [PMID: 26744270 PMCID: PMC4704409 DOI: 10.1186/s12864-015-1920-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/11/2015] [Indexed: 12/23/2022] Open
Abstract
Background The microsporidian Encephalitozoon cuniculi is an obligate intracellular eukaryotic pathogen with a small nuclear genome (2.9 Mbp) consisting of 11 chromosomes. Although each chromosome end is known to contain a single rDNA unit, the incomplete assembly of subtelomeric regions following sequencing of the genome identified only 3 of the 22 expected rDNA units. While chromosome end assembly remains a difficult process in most eukaryotic genomes, it is of significant importance for pathogens because these regions encode factors important for virulence and host evasion. Results Here we report the first complete assembly of E. cuniculi chromosome ends, and describe a novel mosaic structure of segmental duplications (EXT repeats) in these regions. EXT repeats range in size between 3.5 and 23.8 kbp and contain four multigene families encoding membrane associated proteins. Twenty-one recombination sites were identified in the sub-terminal region of E. cuniculi chromosomes. Our analysis suggests that these sites contribute to the diversity of chromosome ends organization through Double Strand Break repair mechanisms. The region containing EXT repeats at chromosome extremities can be differentiated based on gene composition, GC content, recombination sites density and chromosome landscape. Conclusion Together this study provides the complete structure of the chromosome ends of E. cuniculi GB-M1, and identifies important factors, which could play a major role in parasite diversity and host-parasite interactions. Comparison with other eukaryotic genomes suggests that terminal regions could be distinguished precisely based on gene content, genetic instability and base composition biais. The diversity of processes assciated with chromosome extremities and their biological consequences, as they are presented in the present study, emphasize the fact that great effort will be necessary in the future to characterize more carefully these regions during whole genome sequencing efforts. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1920-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ndongo Dia
- Unité de Virologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, B.P. 220, Dakar, Sénégal.
| | - Laurence Lavie
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes, Génome et Environnement, UMR 6023, CNRS, 63177, Aubière, France.
| | - Ngor Faye
- Laboratoire de Parasitologie Générale, Département de Biologie Animale, Faculté des Sciences et Technologies, Université Cheikh Anta Diop, Dakar, Sénégal.
| | - Guy Méténier
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes, Génome et Environnement, UMR 6023, CNRS, 63177, Aubière, France.
| | - Edouard Yeramian
- Unité de Bioinformatique Structurale, UMR 3528 CNRS, Institut Pasteur, 25-28, rue du Dr Roux, 75015, Paris, France.
| | - Christophe Duroure
- Laboratoire de Météorologie Physique, OPGC UMR 6016 CNRS-Université Blaise Pascal, 24 Avenue des Landais, 63177, Aubière Cedex, France.
| | - Bhen S Toguebaye
- Laboratoire de Parasitologie Générale, Département de Biologie Animale, Faculté des Sciences et Technologies, Université Cheikh Anta Diop, Dakar, Sénégal.
| | - Roger Frutos
- CIRAD, UMR 17, Cirad-Ird, TA-A17/G, Campus International de Baillarguet, 34398, Montpellier, France.
| | - Mbayame N Niang
- Unité de Virologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, B.P. 220, Dakar, Sénégal.
| | - Christian P Vivarès
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes, Génome et Environnement, UMR 6023, CNRS, 63177, Aubière, France.
| | - Choukri Ben Mamoun
- Section of Infectious Disease and Department of Microbial Pathogenesis, Winchester Building WWW403D, Yale School of Medicine, 15 York St., New Haven, CT, 06520, USA.
| | - Emmanuel Cornillot
- Institut de Recherche en Cancérologie de Montpellier, IRCM - INSERM U1194 & Université de Montpellier & ICM, Institut régional du Cancer Montpellier, Campus Val d'Aurelle, 34298, Montpellier cedex 5, France. .,Institut de Biologie Computationnelle, IBC, Campus Saint Priest, 34090, Montpellier, France.
| |
Collapse
|
7
|
Desjardins CA, Sanscrainte ND, Goldberg JM, Heiman D, Young S, Zeng Q, Madhani HD, Becnel JJ, Cuomo CA. Contrasting host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes. Nat Commun 2015; 6:7121. [PMID: 25968466 PMCID: PMC4435813 DOI: 10.1038/ncomms8121] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/07/2015] [Indexed: 12/14/2022] Open
Abstract
Obligate intracellular pathogens depend on their host for growth yet must also evade detection by host defenses. Here we investigate host adaptation in two Microsporidia, the specialist Edhazardia aedis and the generalist Vavraia culicis, pathogens of disease vector mosquitoes. Genomic analysis and deep RNA-Seq across infection time courses reveal fundamental differences between these pathogens. E. aedis retains enhanced cell surface modification and signalling capacity, upregulating protein trafficking and secretion dynamically during infection. V. culicis is less dependent on its host for basic metabolites and retains a subset of spliceosomal components, with a transcriptome broadly focused on growth and replication. Transcriptional profiling of mosquito immune responses reveals that response to infection by E. aedis differs dramatically depending on the mode of infection, and that antimicrobial defensins may play a general role in mosquito defense against Microsporidia. This analysis illuminates fundamentally different evolutionary paths and host interplay of specialist and generalist pathogens.
Collapse
Affiliation(s)
| | - Neil D Sanscrainte
- USDA, ARS, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, Florida 32608, USA
| | | | - David Heiman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, California 94158, USA
| | - James J Becnel
- USDA, ARS, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, Florida 32608, USA
| | - Christina A Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
8
|
Nakjang S, Williams TA, Heinz E, Watson AK, Foster PG, Sendra KM, Heaps SE, Hirt RP, Martin Embley T. Reduction and expansion in microsporidian genome evolution: new insights from comparative genomics. Genome Biol Evol 2014; 5:2285-303. [PMID: 24259309 PMCID: PMC3879972 DOI: 10.1093/gbe/evt184] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microsporidia are an abundant group of obligate intracellular parasites of other eukaryotes, including immunocompromised humans, but the molecular basis of their intracellular lifestyle and pathobiology are poorly understood. New genomes from a taxonomically broad range of microsporidians, complemented by published expression data, provide an opportunity for comparative analyses to identify conserved and lineage-specific patterns of microsporidian genome evolution that have underpinned this success. In this study, we infer that a dramatic bottleneck in the last common microsporidian ancestor (LCMA) left a small conserved core of genes that was subsequently embellished by gene family expansion driven by gene acquisition in different lineages. Novel expressed protein families represent a substantial fraction of sequenced microsporidian genomes and are significantly enriched for signals consistent with secretion or membrane location. Further evidence of selection is inferred from the gain and reciprocal loss of functional domains between paralogous genes, for example, affecting transport proteins. Gene expansions among transporter families preferentially affect those that are located on the plasma membrane of model organisms, consistent with recruitment to plug conserved gaps in microsporidian biosynthesis and metabolism. Core microsporidian genes shared with other eukaryotes are enriched in orthologs that, in yeast, are highly expressed, highly connected, and often essential, consistent with strong negative selection against further reduction of the conserved gene set since the LCMA. Our study reveals that microsporidian genome evolution is a highly dynamic process that has balanced constraint, reductive evolution, and genome expansion during adaptation to an extraordinarily successful obligate intracellular lifestyle.
Collapse
Affiliation(s)
- Sirintra Nakjang
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
The genome of Spraguea lophii and the basis of host-microsporidian interactions. PLoS Genet 2013; 9:e1003676. [PMID: 23990793 PMCID: PMC3749934 DOI: 10.1371/journal.pgen.1003676] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Microsporidia are obligate intracellular parasites with the smallest known eukaryotic genomes. Although they are increasingly recognized as economically and medically important parasites, the molecular basis of microsporidian pathogenicity is almost completely unknown and no genetic manipulation system is currently available. The fish-infecting microsporidian Spraguea lophii shows one of the most striking host cell manipulations known for these parasites, converting host nervous tissue into swollen spore factories known as xenomas. In order to investigate the basis of these interactions between microsporidian and host, we sequenced and analyzed the S. lophii genome. Although, like other microsporidia, S. lophii has lost many of the protein families typical of model eukaryotes, we identified a number of gene family expansions including a family of leucine-rich repeat proteins that may represent pathogenicity factors. Building on our comparative genomic analyses, we exploited the large numbers of spores that can be obtained from xenomas to identify potential effector proteins experimentally. We used complex-mix proteomics to identify proteins released by the parasite upon germination, resulting in the first experimental isolation of putative secreted effector proteins in a microsporidian. Many of these proteins are not related to characterized pathogenicity factors or indeed any other sequences from outside the Microsporidia. However, two of the secreted proteins are members of a family of RICIN B-lectin-like proteins broadly conserved across the phylum. These proteins form syntenic clusters arising from tandem duplications in several microsporidian genomes and may represent a novel family of conserved effector proteins. These computational and experimental analyses establish S. lophii as an attractive model system for understanding the evolution of host-parasite interactions in microsporidia and suggest an important role for lineage-specific innovations and fast evolving proteins in the evolution of the parasitic microsporidian lifecycle. Microsporidia are unusual intracellular parasites that infect a broad range of animal cells. In comparison to their fungal relatives, microsporidian genomes have shrunk during evolution, encoding as few as 2000 proteins. This minimal molecular repertoire makes them a reduced model system for understanding host-parasite interactions. A number of microsporidian genomes have now been sequenced, but the lack of a system for genetic manipulation makes it difficult to translate these data into a better understanding of microsporidian biology. Here we present a deep sequencing project of Spraguea lophii, a fish-infecting microsporidian that is abundantly available from environmental samples. We use our sequence data combined with germination protocols and complex-mix proteomics to identify proteins released by the cell at the earliest stage of germination, representing potential pathogenicity factors. We profile the RNA expression pattern of germinating cells and identify a set of highly transcribed hypothetical genes. Our study provides new insight into the importance of uncharacterized, lineage-specific and/or fast evolving proteins in microsporidia and provides new leads for the investigation of virulence factors in these enigmatic parasites.
Collapse
|
10
|
Abstract
Parasitism, aptly defined as one of the 'living-together' strategies (Trager, 1986), presents a dynamic system in which the parasite and its host are under evolutionary pressure to evolve new and specific adaptations, thus enabling the coexistence of the two closely interacting partners. Microsporidia are very frequently encountered obligatory intracellular protistan parasites that can infect both animals and some protists and are a consummate example of various aspects of the 'living-together' strategy. Microsporidia, relatives of fungi in the superkingdom Opisthokonta, belong to the relatively small group of parasites for which the host cell cytoplasm is the site of both reproduction and maturation. The structural and physiological reduction of their vegetative stage, together with the manipulation of host cell physiology, enables microsporidia to live in the cytosolic environment for most of their life cycle in a way resembling endocytobionts. The ability to form structurally complex spores and the invention and assembly of a unique injection mechanism enable microsporidia to disperse within host tissues and between host organisms, resulting in long-lasting infections. Microsporidia have adapted their genomes to the intracellular way of life, evolved strategies how to obtain nutrients directly from the host and how to manipulate not only the infected cells, but also the hosts themselves. The enormous variability of host organisms and their tissues provide microsporidian parasites a virtually limitless terrain for diversification and ecological expansion. This review attempts to present a general overview of microsporidia, emphasising some less known and/or more recently discovered facets of their biology.
Collapse
|
11
|
Spraguea lophii (Microsporidia) parasite of the teleost fish, Lophius piscatorius from Tunisian coasts: evidence for an extensive chromosome length polymorphism. Parasitol Int 2012; 62:66-74. [PMID: 23059913 DOI: 10.1016/j.parint.2012.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 09/14/2012] [Accepted: 09/25/2012] [Indexed: 11/21/2022]
Abstract
A microsporidian of the genus Spraguea was found parasitizing the nervous tissues of Lophius piscatorius collected from various localities in the Mediterranean coastal areas of Tunisia. The tissue localization, the infection focus aspect and sporal dimorphism are characteristics of Spraguea lophii species. Molecular data based on partial sequence of SSUrRNA encoding gene shows few nucleotide polymorphisms, compared to all described Spraguea isolates. Molecular karyotype obtained on pulsed field gel electrophoresis (1D-PFGE) shows a profile with 14 stained bands in the range of 230-880 kbp and a genome size estimated to 6.700 kbp. The rare cutter endonuclease MluI KARD 2-D-PFGE fingerprint shows an extensive chromosome length polymorphism, but the number of chromosome is unchanged and consists of 15 different molecules. The extensive chromosome length polymorphism is associated to a reduced number of genetic events.
Collapse
|
12
|
Peyretaillade E, El Alaoui H, Diogon M, Polonais V, Parisot N, Biron DG, Peyret P, Delbac F. Extreme reduction and compaction of microsporidian genomes. Res Microbiol 2011; 162:598-606. [PMID: 21426934 DOI: 10.1016/j.resmic.2011.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/21/2011] [Indexed: 12/19/2022]
Abstract
Microsporidia are fungi-related obligate intracellular parasites with a highly reduced and compact genome, as for Encephalitozoon species which harbor a genome smaller than 3 Mbp. Genome compaction is reflected by high gene density and, for larger microsporidian genomes, size variation is due to repeat elements that do not drastically affect gene density. Furthermore, these pathogens present strong host dependency illustrated by extensive gene loss. Such adaptations associated with genome compaction induced gene size reduction but also simplification of cellular processes such as transcription. Thus, microsporidia are excellent models for eukaryotic genome evolution and gene expression in the context of host-pathogen relationships.
Collapse
Affiliation(s)
- Eric Peyretaillade
- Clermont Université, Université d'Auvergne, Laboratoire Microorganismes Génome et Environnement, BP 10448, F-63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Corradi N, Pombert JF, Farinelli L, Didier ES, Keeling PJ. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat Commun 2010; 1:77. [PMID: 20865802 PMCID: PMC4355639 DOI: 10.1038/ncomms1082] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/25/2010] [Indexed: 12/20/2022] Open
Abstract
The genome of the microsporidia Encephalitozoon cuniculi is widely recognized as a model for extreme reduction and compaction. At only 2.9 Mbp, the genome encodes approximately 2,000 densely packed genes and little else. However, the nuclear genome of its sister, Encephalitozoon intestinalis, is even more reduced; at 2.3 Mbp, it represents a 20% reduction from an already severely compacted genome, raising the question, what else can be lost? In this paper, we describe the complete sequence of the E. intestinalis genome and its comparison with that of E. cuniculi. The two species share a conserved gene content, order and density over most of their genomes. The exceptions are the subtelomeric regions, where E. intestinalis chromosomes are missing large gene blocks of sequence found in E. cuniculi. In the remaining gene-dense chromosome 'cores', the diminutive intergenic sequences and introns are actually more highly conserved than the genes themselves, suggesting that they have reached the limits of reduction for a fully functional genome. A comparison of related genomes provides valuable information about how they evolve. Here, the complete sequence of the smallest known nuclear genome from the microsporidia E. intestinalis is described and compared with its larger sister E. cuniculi, revealing what parts are indispensable in even the most reduced genomes.
Collapse
Affiliation(s)
- Nicolas Corradi
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
14
|
Abstract
Microsporidia are intracellular parasites of all major animal lineages and have a described diversity of over 1200 species and an actual diversity that is estimated to be much higher. They are important pathogens of mammals, and are now one of the most common infections among immunocompromised humans. Although related to fungi, microsporidia are atypical in genomic biology, cell structure and infection mechanism. Host cell infection involves the rapid expulsion of a polar tube from a dormant spore to pierce the host cell membrane and allow the direct transfer of the spore contents into the host cell cytoplasm. This intimate relationship between parasite and host is unique. It allows the microsporidia to be highly exploitative of the host cell environment and cause such diverse effects as the induction of hypertrophied cells to harbour prolific spore development, host sex ratio distortion and host cell organelle and microtubule reorganization. Genome sequencing has revealed that microsporidia have achieved this high level of parasite sophistication with radically reduced proteomes and with many typical eukaryotic pathways pared-down to what appear to be minimal functional units. These traits make microsporidia intriguing model systems for understanding the extremes of reductive parasite evolution and host cell manipulation.
Collapse
Affiliation(s)
- Bryony A P Williams
- Centre for Eukaryotic Evolutionary Microbiology, School of Biosciences, Stocker Road, University of Exeter, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
15
|
Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, Desany B, Egholm M, Hutchison S, Pettis JS, Lipkin WI, Evans JD. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathog 2009; 5:e1000466. [PMID: 19503607 PMCID: PMC2685015 DOI: 10.1371/journal.ppat.1000466] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/05/2009] [Indexed: 11/19/2022] Open
Abstract
Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we present a draft assembly (7.86 MB) of the N. ceranae genome derived from pyrosequence data, including initial gene models and genomic comparisons with other members of this highly derived fungal lineage. N. ceranae has a strongly AT-biased genome (74% A+T) and a diversity of repetitive elements, complicating the assembly. Of 2,614 predicted protein-coding sequences, we conservatively estimate that 1,366 have homologs in the microsporidian Encephalitozoon cuniculi, the most closely related published genome sequence. We identify genes conserved among microsporidia that lack clear homology outside this group, which are of special interest as potential virulence factors in this group of obligate parasites. A substantial fraction of the diminutive N. ceranae proteome consists of novel and transposable-element proteins. For a majority of well-supported gene models, a conserved sense-strand motif can be found within 15 bases upstream of the start codon; a previously uncharacterized version of this motif is also present in E. cuniculi. These comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and will drive investigations into honey bee–Nosema interactions. Honey bee colonies are in decline in many parts of the world, in part due to pressures from a diverse assemblage of parasites and pathogens. The range and prevalence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we describe the N. ceranae genome, presenting genome traits, gene models and regulatory motifs. N. ceranae has an extremely reduced and AT-biased genome, yet one with substantial numbers of repetitive elements. We identify novel genes that appear to be conserved among microsporidia but undetected outside this phylum, which are of special interest as potential virulence factors for these obligate pathogens. A previously unrecognized motif is found upstream of many start codons and likely plays a role in gene regulation across the microsporidia. These and other comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and provide the first genetic tools for understanding how this pathogen interacts with honey bee hosts.
Collapse
Affiliation(s)
- R. Scott Cornman
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - Yan Ping Chen
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - Michael C. Schatz
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Craig Street
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Yan Zhao
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - Brian Desany
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Michael Egholm
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Stephen Hutchison
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Jeffery S. Pettis
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Jay D. Evans
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Williams BAP, Lee RCH, Becnel JJ, Weiss LM, Fast NM, Keeling PJ. Genome sequence surveys of Brachiola algerae and Edhazardia aedis reveal microsporidia with low gene densities. BMC Genomics 2008; 9:200. [PMID: 18445287 PMCID: PMC2387174 DOI: 10.1186/1471-2164-9-200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 04/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microsporidia are well known models of extreme nuclear genome reduction and compaction. The smallest microsporidian genomes have received the most attention, but genomes of different species range in size from 2.3 Mb to 19.5 Mb and the nature of the larger genomes remains unknown. RESULTS Here we have undertaken genome sequence surveys of two diverse microsporidia, Brachiola algerae and Edhazardia aedis. In both species we find very large intergenic regions, many transposable elements, and a low gene-density, all in contrast to the small, model microsporidian genomes. We also find no recognizable genes that are not also found in other surveyed or sequenced microsporidian genomes. CONCLUSION Our results demonstrate that microsporidian genome architecture varies greatly between microsporidia. Much of the genome size difference could be accounted for by non-coding material, such as intergenic spaces and retrotransposons, and this suggests that the forces dictating genome size may vary across the phylum.
Collapse
Affiliation(s)
- Bryony AP Williams
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Renny CH Lee
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - James J Becnel
- Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, Gainesville, FL 32608, USA
| | - Louis M Weiss
- Department of Pathology, Division of Tropical Medicine and Parasitology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Naomi M Fast
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|