1
|
Takasaki T, Utsumi R, Shimada E, Bamba A, Hagihara K, Satoh R, Sugiura R. Atg1, a key regulator of autophagy, functions to promote MAPK activation and cell death upon calcium overload in fission yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:133-140. [PMID: 37275474 PMCID: PMC10236205 DOI: 10.15698/mic2023.06.798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Autophagy promotes or inhibits cell death depending on the environment and cell type. Our previous findings suggested that Atg1 is genetically involved in the regulation of Pmk1 MAPK in fission yeast. Here, we showed that Δatg1 displays lower levels of Pmk1 MAPK phosphorylation than did the wild-type (WT) cells upon treatment with a 1,3-β-D-glucan synthase inhibitor micafungin or CaCl2, both of which activate Pmk1. Moreover, the overproduction of Atg1, but not that of the kinase inactivating Atg1D193A activates Pmk1 without any extracellular stimuli, suggesting that Atg1 may promote Pmk1 MAPK signaling activation. Notably, the overproduction of Atg1 induces a toxic effect on the growth of WT cells and the deletion of Pmk1 failed to suppress the cell death induced by Atg1, indicating that the Atg1-mediated cell death requires additional mechanism(s) other than Pmk1 activation. Moreover, atg1 gene deletion induces tolerance to micafungin and CaCl2, whereas pmk1 deletion induces severe sensitivities to these compounds. The Δatg1Δpmk1 double mutants display intermediate sensitivities to these compounds, showing that atg1 deletion partly suppressed growth inhibition induced by Δpmk1. Thus, Atg1 may act to promote cell death upon micafungin and CaCl2 stimuli regardless of Pmk1 MAPK activity. Since micafungin and CaCl2 are intracellular calcium inducers, our data reveal a novel role of the autophagy regulator Atg1 to induce cell death upon calcium overload independent of its role in Pmk1 MAPK activation.
Collapse
Affiliation(s)
- Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Ryosuke Utsumi
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Erika Shimada
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Asuka Bamba
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Kanako Hagihara
- Laboratory of Hygienic Science, Department of Pharmacy, Hyogo Medical University, Kobe, 650-8530, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| |
Collapse
|
2
|
Shi H, Ruan L, Chen Z, Liao Y, Wu W, Liu L, Xu X. Sulfur, sterol and trehalose metabolism in the deep-sea hydrocarbon seep tubeworm Lamellibrachia luymesi. BMC Genomics 2023; 24:175. [PMID: 37020304 PMCID: PMC10077716 DOI: 10.1186/s12864-023-09267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Lamellibrachia luymesi dominates cold sulfide-hydrocarbon seeps and is known for its ability to consume bacteria for energy. The symbiotic relationship between tubeworms and bacteria with particular adaptations to chemosynthetic environments has received attention. However, metabolic studies have primarily focused on the mechanisms and pathways of the bacterial symbionts, while studies on the animal hosts are limited. RESULTS Here, we sequenced the transcriptome of L. luymesi and generated a transcriptomic database containing 79,464 transcript sequences. Based on GO and KEGG annotations, we identified transcripts related to sulfur metabolism, sterol biosynthesis, trehalose synthesis, and hydrolysis. Our in-depth analysis identified sulfation pathways in L. luymesi, and sulfate activation might be an important detoxification pathway for promoting sulfur cycling, reducing byproducts of sulfide metabolism, and converting sulfur compounds to sulfur-containing organics, which are essential for symbiotic survival. Moreover, sulfide can serve directly as a sulfur source for cysteine synthesis in L. luymesi. The existence of two pathways for cysteine synthesis might ensure its participation in the formation of proteins, heavy metal detoxification, and the sulfide-binding function of haemoglobin. Furthermore, our data suggested that cold-seep tubeworm is capable of de novo sterol biosynthesis, as well as incorporation and transformation of cycloartenol and lanosterol into unconventional sterols, and the critical enzyme involved in this process might have properties similar to those in the enzymes from plants or fungi. Finally, trehalose synthesis in L. luymesi occurs via the trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) pathways. The TPP gene has not been identified, whereas the TPS gene encodes a protein harbouring conserved TPS/OtsA and TPP/OtsB domains. The presence of multiple trehalases that catalyse trehalose hydrolysis could indicate the different roles of trehalase in cold-seep tubeworms. CONCLUSIONS We elucidated several molecular pathways of sulfate activation, cysteine and cholesterol synthesis, and trehalose metabolism. Contrary to the previous analysis, two pathways for cysteine synthesis and the cycloartenol-C-24-methyltransferase gene were identified in animals for the first time. The present study provides new insights into particular adaptations to chemosynthetic environments in L. luymesi and can serve as the basis for future molecular studies on host-symbiont interactions and biological evolution.
Collapse
Affiliation(s)
- Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China.
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China.
- College of Marine Biology, Xiamen ocean vocational college, 361100, Xiamen, People's Republic of China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, People's Republic of China.
| | - Zimeng Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
| | - Yifei Liao
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
- School of Advanced Manufacturing, Fuzhou University, Fuzhou, 362200, People's Republic of China
| | - Wenhao Wu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, People's Republic of China
| | - Linmin Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
| | - Xun Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
| |
Collapse
|
3
|
Salazar OR, N. Arun P, Cui G, Bay LK, van Oppen MJH, Webster NS, Aranda M. The coral Acropora loripes genome reveals an alternative pathway for cysteine biosynthesis in animals. SCIENCE ADVANCES 2022; 8:eabq0304. [PMID: 36149959 PMCID: PMC9506716 DOI: 10.1126/sciadv.abq0304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
The metabolic capabilities of animals have been derived from well-studied model organisms and are generally considered to be well understood. In animals, cysteine is an important amino acid thought to be exclusively synthesized through the transsulfuration pathway. Corals of the genus Acropora have lost cystathionine β-synthase, a key enzyme of the transsulfuration pathway, and it was proposed that Acropora relies on the symbiosis with dinoflagellates of the family Symbiodiniaceae for the acquisition of cysteine. Here, we identify the existence of an alternative pathway for cysteine biosynthesis in animals through the analysis of the genome of the coral Acropora loripes. We demonstrate that these coral proteins are functional and synthesize cysteine in vivo, exhibiting previously unrecognized metabolic capabilities of animals. This pathway is also present in most animals but absent in mammals, arthropods, and nematodes, precisely the groups where most of the animal model organisms belong to, highlighting the risks of generalizing findings from model organisms.
Collapse
Affiliation(s)
- Octavio R. Salazar
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Prasanna N. Arun
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Guoxin Cui
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicole S. Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Australia
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Australia
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Jiang G, Liu Q, Kato T, Miao H, Gao X, Liu K, Chen S, Sakamoto N, Kuno T, Fang Y. Role of mitochondrial complex III/IV in the activation of transcription factor Rst2 in Schizosaccharomyces pombe. Mol Microbiol 2021; 115:1323-1338. [PMID: 33400299 DOI: 10.1111/mmi.14678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 11/30/2022]
Abstract
Mitochondria play essential roles in eukaryotic cells for glucose metabolism to produce ATP. In Schizosaccharomyces pombe, transcription factor Rst2 can be activated upon glucose deprivation. However, the link between Rst2 and mitochondrial function remains elusive. Here, we monitored Rst2 transcriptional activity in living cells using a Renilla luciferase reporter system, and found that inhibition of mitochondrial complex III/IV caused cells to produce reactive oxygen species (ROS) and nitric oxide (NO), which in turn activated Rst2. Furthermore, Rst2-GFP was observed to translocate from cytoplasm to nucleus upon mitochondrial complex III/IV inhibitors treatment, and deletion of genes associated with complex III/IV resulted in delayed process of Rst2-GFP nuclear exportation under glucose-rich condition. In particular, we found that Rst2 was phosphorylated following the treatment of complex III/IV inhibitors or SNAP. Altogether, our findings suggest that mitochondrial complex III/IV participates in the activation of Rst2 through ROS and NO generation in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Guanglie Jiang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Toshiaki Kato
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hao Miao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xiang Gao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Kun Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China.,Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Miao H, Liu Q, Jiang G, Zhang W, Liu K, Gao X, Huo Y, Chen S, Kato T, Sakamoto N, Kuno T, Fang Y. AMPKα Subunit Ssp2 and Glycogen Synthase Kinases Gsk3/Gsk31 are involved in regulation of sterol regulatory element-binding protein (SREBP) activity in fission yeast. PLoS One 2020; 15:e0228845. [PMID: 32053662 PMCID: PMC7018046 DOI: 10.1371/journal.pone.0228845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/23/2020] [Indexed: 11/23/2022] Open
Abstract
Sterol regulatory element-binding protein (SREBP), a highly conserved family of membrane-bound transcription factors, is an essential regulator for cellular cholesterol and lipid homeostasis in mammalian cells. Sre1, the homolog of SREBP in the fission yeast Schizosaccharomyces pombe (S. pombe), regulates genes involved in the transcriptional responses to low sterol as well as low oxygen. Previous study reported that casein kinase 1 family member Hhp2 phosphorylated the Sre1 N-terminal transcriptional factor domain (Sre1N) and accelerated Sre1N degradation, and other kinases might exist for regulating the Sre1 function. To gain insight into the mechanisms underlying the Sre1 activity and to identify additional kinases involved in regulation of Sre1 function, we developed a luciferase reporter system to monitor the Sre1 activity through its binding site called SRE2 in living yeast cells. Here we showed that both ergosterol biosynthesis inhibitors and hypoxia-mimic CoCl2 caused a dose-dependent increase in the Sre1 transcription activity, concurrently, these induced transcription activities were almost abolished in Δsre1 cells. Surprisingly, either AMPKα Subunit Ssp2 deletion or Glycogen Synthase Kinases Gsk3/Gsk31 double deletion significantly suppressed ergosterol biosynthesis inhibitors- or CoCl2-induced Sre1 activity. Notably, the Δssp2Δgsk3Δgsk31 mutant showed further decreased Sre1 activity when compared with their single or double deletion. Consistently, the Δssp2Δgsk3Δgsk31 mutant showed more marked temperature sensitivity than any of their single or double deletion. Moreover, the fluorescence of GFP-Sre1N localized at the nucleus in wild-type cells, but significantly weaker nuclear fluorescence of GFP-Sre1N was observed in Δssp2, Δgsk3Δgsk31, Δssp2Δgsk3, Δssp2Δgsk31 or Δssp2Δgsk3Δgsk31 cells. On the other hand, the immunoblot showed a dramatic decrease in GST-Sre1N levels in the Δgsk3Δgsk31 or the Δssp2Δgsk3Δgsk31 cells but not in the Δssp2 cells. Altogether, our findings suggest that Gsk3/Gsk31 may regulate Sre1N degradation, while Ssp2 may regulate not only the degradation of Sre1N but also its translocation to the nucleus.
Collapse
Affiliation(s)
- Hao Miao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Guanglie Jiang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Wen Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Kun Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Xiang Gao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Yujie Huo
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Toshiaki Kato
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
- * E-mail:
| |
Collapse
|
6
|
Fluorinated Phenylalanine Precursor Resistance in Yeast. FERMENTATION 2018. [DOI: 10.3390/fermentation4020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Novel biosynthetic pathway for sulfur amino acids in Cryptococcus neoformans. Curr Genet 2017; 64:681-696. [PMID: 29159425 DOI: 10.1007/s00294-017-0783-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022]
Abstract
We elucidated a unique feature of sulfur metabolism in Cryptococcus neoformans. C. neoformans produces cysteine solely by the O-acetylserine pathway that consists of serine-O-acetyl transferase and cysteine synthase. We designated the gene encoding the former enzyme CYS2 (locus tag CNE02740) and the latter enzyme CYS1 (locus tag CNL05880). The cys1Δmutant strain was found to be avirulent in a murine infection model. Methionine practically does not support growth of the cys1Δ strain, and cysteine does not serve as a methionine source, indicating that the transsulfuration pathway does not contribute to sulfur amino acid synthesis in C. neoformans. Among the genes encoding enzymes catalyzing the reactions from homoserine to methionine, the gene corresponding to the Saccharomyces cerevisiae MET17 encoding O-acetylhomoserine sulfhydrylase (Met17p) had remained to be identified in C. neoformans. By genetic analysis of Met- mutants obtained by Agrobacterium tumefaciens-mediated mutagenesis, we concluded that Cnc01220, most similar to Str2p (36% identity), cystathionine-γ-synthase, in the Saccharomyces genome, is the C. neoformans version of O-acetylhomoserine sulfhydrylase. We designated CNC01220 as MET17. The C. neoformans met3Δ mutant defective in the first step of the sulfate assimilation pathway, sulfate adenylyltransferase, barely uses methionine as a sulfur source, whereas it uses cysteine efficiently. The poor utilization of methionine by the met3Δ mutant is most probably due to the absence of the transsulfuration pathway, causing an incapability of C. neoformans to produce cysteine and hydrogen sulfide from methionine. When cysteine is used as a sulfur source, methionine is likely produced de novo by using hydrogen sulfide derived from cysteine via an unidentified pathway. Altogether, the unique features of sulfur amino acid metabolism in C. neoformans will make this fungus a valuable experimental system to develop anti-fungal agents and to investigate physiology of hydrogen sulfide.
Collapse
|
8
|
Abstract
In this introduction we discuss some basic genetic tools and techniques that are used with the fission yeast Schizosaccharomyces pombe Genes commonly used for selection or as reporters are discussed, with an emphasis on genes that permit counterselection, intragenic complementation, or colony-color assays. S. pombe is most stable as a haploid organism. We describe its mating-type system, how to perform genetic crosses and methods for selecting and propagating diploids. We discuss the relative merits of tetrad dissection and random spore preparation in strain construction and genetic analyses. Finally, we present several types of mutant screens, with an evaluation of their respective strengths and limitations in the light of emerging technologies such as next-generation sequencing.
Collapse
Affiliation(s)
- Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm SE-141 83, Sweden;
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
9
|
Bastard K, Perret A, Mariage A, Bessonnet T, Pinet-Turpault A, Petit JL, Darii E, Bazire P, Vergne-Vaxelaire C, Brewee C, Debard A, Pellouin V, Besnard-Gonnet M, Artiguenave F, Médigue C, Vallenet D, Danchin A, Zaparucha A, Weissenbach J, Salanoubat M, de Berardinis V. Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis. Nat Chem Biol 2017; 13:858-866. [PMID: 28581482 DOI: 10.1038/nchembio.2397] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
Abstract
Experimental validation of enzyme function is crucial for genome interpretation, but it remains challenging because it cannot be scaled up to accommodate the constant accumulation of genome sequences. We tackled this issue for the MetA and MetX enzyme families, phylogenetically unrelated families of acyl-L-homoserine transferases involved in L-methionine biosynthesis. Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively. We determined the enzymatic activities of 100 enzymes from diverse species, and interpreted the results by structural classification of active sites based on protein structure modeling. We predict that >60% of the 10,000 sequences from these families currently present in databases are incorrectly annotated, and suggest that acetyl-CoA was originally the sole substrate of these isofunctional enzymes, which evolved to use exclusively succinyl-CoA in the most recent bacteria. We also uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases.
Collapse
Affiliation(s)
- Karine Bastard
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Alain Perret
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Aline Mariage
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Thomas Bessonnet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Agnès Pinet-Turpault
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Jean-Louis Petit
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Ekaterina Darii
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Pascal Bazire
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Carine Vergne-Vaxelaire
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Clémence Brewee
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Adrien Debard
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Virginie Pellouin
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Marielle Besnard-Gonnet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | | | - Claudine Médigue
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - David Vallenet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Antoine Danchin
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Anne Zaparucha
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Jean Weissenbach
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Marcel Salanoubat
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Véronique de Berardinis
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| |
Collapse
|
10
|
Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast. G3-GENES GENOMES GENETICS 2016; 6:3317-3333. [PMID: 27558664 PMCID: PMC5068951 DOI: 10.1534/g3.116.033829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms.
Collapse
|
11
|
Ma N, Ma Y, Nakashima A, Kikkawa U, Furuyashiki T. The Loss of Lam2 and Npr2-Npr3 Diminishes the Vacuolar Localization of Gtr1-Gtr2 and Disinhibits TORC1 Activity in Fission Yeast. PLoS One 2016; 11:e0156239. [PMID: 27227887 PMCID: PMC4881991 DOI: 10.1371/journal.pone.0156239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
In mammalian cells, mTORC1 activity is regulated by Rag GTPases. It is thought that the Ragulator complex and the GATOR (GAP activity towards Rags) complex regulate RagA/B as its GDP/GTP exchange factor (GEF) and GTPase-activating protein (GAP), respectively. However, the functions of components in these complexes remain elusive. Using fission yeast as a model organism, here we found that the loss of Lam2 (SPBC1778.05c), a homolog of a Ragulator component LAMTOR2, as well as the loss of Gtr1 or Gtr2 phenocopies the loss of Npr2 or Npr3, homologs of GATOR components Nprl2 or Nprl3, respectively. These phenotypes were rescued by TORC1 inhibition using pharmacological or genetic means, and the loss of Lam2, Gtr1, Gtr2, Npr2 or Npr3 disinhibited TORC1 activity under nitrogen depletion, as measured by Rps6 phosphorylation. Consistently, overexpression of GDP-locked Gtr1S20L or GTP-locked Gtr2Q60L, which suppress TORC1 activity in budding yeast, rescued the growth defect of Δgtr1 cells or Δgtr2 cells, respectively, and the loss of Lam2, Npr2 or Npr3 similarly diminished the vacuolar localization and the protein levels of Gtr1 and Gtr2. Furthermore, Lam2 physically interacted with Npr2 and Gtr1. These findings suggest that Lam2 and Npr2-Npr3 function together as a tether for GDP-bound Gtr1 to the vacuolar membrane, thereby suppressing TORC1 activity for multiple cellular functions.
Collapse
Affiliation(s)
- Ning Ma
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yan Ma
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan
- * E-mail:
| | | | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Kobe, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
12
|
Abstract
The field of fluorescent proteins (FPs) is constantly developing. The use of FPs changed the field of life sciences completely, starting a new era of direct observation and quantification of cellular processes. The broad spectrum of FPs (see Fig. 1) with a wide range of characteristics allows their use in many different experiments. This review discusses the use of FPs for imaging in budding yeast (Saccharomyces cerevisiae) and fission yeast Schizosaccharomyces pombe). The information included in this review is relevant for both species unless stated otherwise.
Collapse
Affiliation(s)
- Maja Bialecka-Fornal
- Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Tatyana Makushok
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - Susanne M Rafelski
- Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
A nutritional conditional lethal mutant due to pyridoxine 5'-phosphate oxidase deficiency in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2014; 4:1147-54. [PMID: 24739647 PMCID: PMC4065258 DOI: 10.1534/g3.114.011130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The concept of auxotrophic complementation has been proposed as an approach to identify genes in essential metabolic pathways in Drosophila melanogaster. However, it has achieved limited success to date, possibly due to the low probability of finding mutations fit with the chemically defined profile. Instead of using the chemically defined culture media lacking specific nutrients, we used bare minimum culture medium, i.e., 4% sucrose, for adult Drosophila. We identified a nutritional conditional lethal mutant and localized a c.95C > A mutation in the Drosophila pyridoxine 5'-phosphate oxidase gene [dPNPO or sugarlethal (sgll)] using meiotic recombination mapping, deficiency mapping, and whole genome sequencing. PNPO converts dietary vitamin B6 such as pyridoxine to its active form pyridoxal 5'-phosphate (PLP). The missense mutation (sgll(95)) results in the substitution of alanine to aspartate (p.Ala32Asp). The sgll(95) flies survive well on complete medium but all die within 6 d on 4% sucrose only diet, which can be rescued by pyridoxine or PLP supplement, suggesting that the mutation does not cause the complete loss of PNPO activity. The sgll knockdown further confirms its function as the Drosophila PNPO. Because better tools for positional cloning and cheaper whole genome sequencing have made the identification of point mutations much easier than before, alleviating the necessity to pinpoint specific metabolic pathways before gene identification, we propose that nutritional conditional screens based on bare minimum growth media like ours represent promising approaches for discovering important genes and mutations in metabolic pathways, thereby accelerating the establishment of in vivo models that recapitulate human metabolic diseases.
Collapse
|
14
|
Wang H, Wang H, Wang M, Zhang L, Wang R, Mei Y, Shao W. Identification and refinement of two strong constitutive promoters for gene expression system of Schizosaccharomyces pombe. World J Microbiol Biotechnol 2014; 30:1809-17. [PMID: 24452856 DOI: 10.1007/s11274-014-1603-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/12/2014] [Indexed: 10/25/2022]
Abstract
Fission yeast Schizosaccharomyces pombe shares various important properties with higher eukaryotes and is now considered a useful host for elevated production of mammalian proteins for medicinal applications. The full-length nmt1 promoter has been widely used as a strong promoter in S. pombe expression system. In the present study, the promoters of the eno101 and gpd3 genes in S. pombe were identified as strong constitutive promoters. For convenient applications in the plasmids of S. pombe, these promoters were refined to 276-bp eno and 273-bp gpd promoters by deleting undesired sequences and examining the expression of reporter genes including lacZ and xynA. Both the refined eno and gpd promoters provided approximately 1.5-fold higher expression of LacZ than nmt1 promoter. Furthermore, gene expression under the control of the eno or gpd promoter was not repressed by the components of YES medium while nmt1 promoter was inhibited by thiamine in yeast extract. Therefore, both eno and gpd promoters offer opportunities for efficient production of recombinant proteins by S. pombe in high cell-density fermentation.
Collapse
Affiliation(s)
- Hongcheng Wang
- Institute of Microbiology and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
15
|
García-Santamarina S, Boronat S, Ayté J, Hidalgo E. Methionine sulphoxide reductases revisited: free methionine as a primary target of H₂O₂stress in auxotrophic fission yeast. Mol Microbiol 2013; 90:1113-24. [PMID: 24118096 DOI: 10.1111/mmi.12420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 11/26/2022]
Abstract
Amino acid methionine can suffer reversible oxidation to sulphoxide and further irreversible over-oxidation to methionine sulphone. As part of the cellular antioxidant scavenging activities are the methionine sulphoxide reductases (Msrs), with a reported role in methionine sulphoxide reduction, both free and in proteins. Three families of Msrs have been described, but the fission yeast genome only includes one representative for two of these families: MsrA/Mxr1 and MsrB/Mxr2. We have investigated their role in methionine reduction and H2 O2 sensitivity. We show here that MsrA/Mxr1 is able to reduce free oxidized methionine. Cells lacking each one of the genes are not significantly sensitive to different types of oxidative stresses, neither display altered life span. However, only when deletion of msrA/mxr1 is combined with deletion of met6, which confers methionine auxotrophy, the survival upon H2 O2 stress decreases by 100-fold. In fact, cells lacking only Met6, and which therefore require addition of methionine to the growth media, are extremely sensitive to H2 O2 stress. These and other evidences suggest that oxidation of free methionine is a primary target of peroxide toxicity in cells devoid of methionine biosynthetic capacity, and that an important role of Msrs is to recycle this oxidized free amino acid.
Collapse
Affiliation(s)
- Sarela García-Santamarina
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, E-08003, Barcelona, Spain
| | | | | | | |
Collapse
|
16
|
Kato T, Zhou X, Ma Y. Possible involvement of nitric oxide and reactive oxygen species in glucose deprivation-induced activation of transcription factor rst2. PLoS One 2013; 8:e78012. [PMID: 24155978 PMCID: PMC3796501 DOI: 10.1371/journal.pone.0078012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/07/2013] [Indexed: 11/18/2022] Open
Abstract
Glucose is one of the most important sources of cellular nutrition and glucose deprivation induces various cellular responses. In Schizosaccharomyces pombe, zinc finger protein Rst2 is activated upon glucose deprivation, and regulates gene expression via the STREP (stress response element of Schizosaccharomyces pombe) motif. However, the activation mechanism of Rst2 is not fully understood. We monitored Rst2 transcriptional activity in living cells using a Renilla luciferase reporter system. Hydrogen peroxide (H2O2) enhanced Rst2 transcriptional activity upon glucose deprivation and free radical scavenger inhibited Rst2 transcriptional activity upon glucose deprivation. In addition, deletion of the trx2 (+) gene encoding mitochondrial thioredoxin enhanced Rst2 transcriptional activity. Notably, nitric oxide (NO) generators enhanced Rst2 transcriptional activity upon glucose deprivation as well as under glucose-rich conditions. Furthermore, NO specific scavenger inhibited Rst2 transcriptional activity upon glucose deprivation. Altogether, our data suggest that NO and reactive oxygen species may be involved in the activation of transcription factor Rst2.
Collapse
Affiliation(s)
- Toshiaki Kato
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Xin Zhou
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- The First Affiliated Hospital of Liaoning Medical University, Jinzhou City, Liaoning Province, China
| | - Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| |
Collapse
|
17
|
Studies on the roles of clathrin-mediated membrane trafficking and zinc transporter Cis4 in the transport of GPI-anchored proteins in fission yeast. PLoS One 2012; 7:e41946. [PMID: 22848669 PMCID: PMC3405024 DOI: 10.1371/journal.pone.0041946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/29/2012] [Indexed: 11/30/2022] Open
Abstract
We previously identified Cis4, a zinc transporter belonging to the cation diffusion facilitator protein family, and we demonstrated that Cis4 is implicated in Golgi membrane trafficking in fission yeast. Here, we identified three glycosylphosphatidylinositol (GPI)-anchored proteins, namely Ecm33, Aah3, and Gaz2, as multicopy suppressors of the MgCl2-sensitive phenotype of cis4-1 mutant. The phenotypes of ecm33, aah3 and gaz2 deletion cells were distinct from each other, and Cis4 overexpression suppressed Δecm33 phenotypes but did not suppress Δaah3 defects. Notably, green fluorescent protein-tagged Ecm33, which was observed at the cell surface in wild-type cells, mostly localized as intracellular dots that are presumed to be the Golgi and endosomes in membrane-trafficking mutants, including Δapm1, ypt3-i5, and chc1-1 mutants. Interestingly, all these membrane-trafficking mutants showed hypersensitivity to BE49385A, an inhibitor of Its8 that is involved in GPI-anchored protein synthesis. Taken together, these results suggest that GPI-anchored proteins are transported through a clathrin-mediated post-Golgi membrane trafficking pathway and that zinc transporter Cis4 may play roles in membrane trafficking of GPI-anchored proteins in fission yeast.
Collapse
|
18
|
Ma Y, Sugiura R, Koike A, Ebina H, Sio SO, Kuno T. Transient receptor potential (TRP) and Cch1-Yam8 channels play key roles in the regulation of cytoplasmic Ca2+ in fission yeast. PLoS One 2011; 6:e22421. [PMID: 21811607 PMCID: PMC3139647 DOI: 10.1371/journal.pone.0022421] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/23/2011] [Indexed: 12/02/2022] Open
Abstract
The regulation of cytoplasmic Ca2+ is crucial for various cellular processes. Here, we examined the cytoplasmic Ca2+ levels in living fission yeast cells by a highly sensitive bioluminescence resonance energy transfer-based assay using GFP-aequorin fusion protein linked by 19 amino acid. We monitored the cytoplasmic Ca2+ level and its change caused by extracellular stimulants such as CaCl2 or NaCl plus FK506 (calcineurin inhibitor). We found that the extracellularly added Ca2+ caused a dose-dependent increase in the cytoplasmic Ca2+ level and resulted in a burst-like peak. The overexpression of two transient receptor potential (TRP) channel homologues, Trp1322 or Pkd2, markedly enhanced this response. Interestingly, the burst-like peak upon TRP overexpression was completely abolished by gene deletion of calcineurin and was dramatically decreased by gene deletion of Prz1, a downstream transcription factor activated by calcineurin. Furthermore, 1 hour treatment with FK506 failed to suppress the burst-like peak. These results suggest that the burst-like Ca2+ peak is dependent on the transcriptional activity of Prz1, but not on the direct TRP dephosphorylation. We also found that extracellularly added NaCl plus FK506 caused a synergistic cytosolic Ca2+ increase that is dependent on the inhibition of calcineurin activity, but not on the inhibition of Prz1. The synergistic Ca2+ increase is abolished by the addition of the Ca2+ chelator BAPTA into the media, and is also abolished by deletion of the gene encoding a subunit of the Cch1-Yam8 Ca2+ channel complex, indicating that the synergistic increase is caused by the Ca2+ influx from the extracellular medium via the Cch1-Yam8 complex. Furthermore, deletion of Pmk1 MAPK abolished the Ca2+ influx, and overexpression of the constitutively active Pek1 MAPKK enhanced the influx. These results suggest that Pmk1 MAPK and calcineurin positively and negatively regulate the Cch1-Yam8 complex, respectively, via modulating the balance between phosphorylation and dyphosphorylation state.
Collapse
Affiliation(s)
- Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Zeocin for selection of bleMX6 resistance in fission yeast. Biotechniques 2011; 51:57-60. [DOI: 10.2144/000113706] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/20/2011] [Indexed: 11/23/2022] Open
Abstract
Complementation of auxotrophic nutrient deficiencies in minimal media is widely used for selection of exogenous gene introduction to fission yeast. However, only a limited number of such selection markers are available. Antibiotic resistance markers are good alternatives, but they typically work well in complete rich medium but not in minimal defined Edinburgh minimal medium (EMM). It would be ideal if both the auxotrophic and antibiotic resistance markers can be used together for molecular genetic analysis. Here we describe the use of Zeocin in Pombe minimal glutamate (PMG) media for selection and maintenance of bleMX6 resistance with a LEU2 auxotrophic marker in fission yeast.
Collapse
|
20
|
Zhou X, Ma Y, Sugiura R, Kobayashi D, Suzuki M, Deng L, Kuno T. MAP kinase kinase kinase (MAPKKK)-dependent and -independent activation of Sty1 stress MAPK in fission yeast. J Biol Chem 2010; 285:32818-32823. [PMID: 20729203 DOI: 10.1074/jbc.m110.135764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In fission yeast, the Sty1/Spc1/Phh1 mitogen-activated protein kinase (MAPK) pathway is known to be involved in multiple-stress responses. It is currently thought that the Sty1 MAPK cascade is mediated by histidine kinases and phosphorelay proteins in response to oxidative stress signals. However, studies of the exact transduction mechanism of multiple-stress responses are lacking. Thus, in response to various stimuli, we monitored the Sty1 MAPK pathway through the downstream transcription factor Atf1 in living cells using a highly sensitive luciferase reporter gene. Surprisingly, in cadmium and low glucose (LG) medium, Atf1 activation was observed even in the absence of all of the four fission yeast MAPK kinase kinases (MAPKKKs); whereas in osmotic stress, Atf1 activation was abolished. Thus, the osmotic stress likely mediates the MAPK activation via MAPKKKs, whereas a cadmium or LG condition activates the MAPK in a MAPKKK-independent manner. On the other hand, knockout of tyrosine phosphatase gene pyp1(+) abolished the Atf1 response to cadmium and LG, but not to osmotic stress, suggesting that Pyp1 is a sensor for cadmium and LG.
Collapse
Affiliation(s)
- Xin Zhou
- From the Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan
| | - Yan Ma
- From the Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka, 577-8502, Japan
| | - Daiki Kobayashi
- From the Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan
| | - Masahiro Suzuki
- From the Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan
| | - Lu Deng
- From the Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan
| | - Takayoshi Kuno
- From the Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
21
|
Ma Y, Sugiura R, Zhang L, Zhou X, Takeuchi M, He Y, Kuno T. Isolation of a fission yeast mutant that is sensitive to valproic acid and defective in the gene encoding Ric1, a putative component of Ypt/Rab-specific GEF for Ryh1 GTPase. Mol Genet Genomics 2010; 284:161-71. [PMID: 20623139 DOI: 10.1007/s00438-010-0550-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/10/2010] [Indexed: 01/08/2023]
Abstract
Valproic acid (VPA) causes various therapeutic and biological effects, but the exact mechanisms underlying these effects, however, remain elusive. To gain insights into the molecular mechanisms of VPA action, we performed in fission yeast a genetic screen for mutants that show VPA hypersensitivity and have identified several membrane-trafficking mutants including vas1-1/vps45 and vas2-1/aps1. Here, we describe the isolation and characterization of vas3-1/ric1-v3, a mutant allele of the ric1 (+) gene encoding a fission yeast homolog of the budding yeast Ric1p, a component of Ypt/Rab-specific guanyl-nucleotide exchange factor (GEF). The Rab GTPase Ryh1 knockout (Deltaryh1) cells and Deltaric1 cells exhibited similar phenotypes. The double knockout Deltaric1Deltaryh1 cells did not display synthetic growth defects. These results are consistent with the notion that Ric1 may be a component of the GEF complex for Ryh1. Overexpression of wild-type Ryh1 and the constitutively active Ryh1Q70L only partially suppressed the phenotypes of ric1-v3 and Deltaric1 cells, and they failed to localize to the Golgi/endosomes in ric1-v3 and Deltaric1 cells. Furthermore, we isolated vps15 (+) gene, encoding a serine/threonine protein kinase, as a dosage-dependent suppressor of the temperature-sensitive phenotype of ric1-v3 mutant, but not that of Deltaric1 cells. Our results showed that the ric1-v3 mutant allele has some residual functional activity and suggest that Vps15 plays a role in the regulation of Ric1 function. In conclusion, Ric1 is a putative component of GEF for Ryh1 and might be regulated by Vps15. Further studies are needed to reveal the mechanism underlying the regulation.
Collapse
Affiliation(s)
- Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mercier A, Labbé S. Iron-dependent remodeling of fungal metabolic pathways associated with ferrichrome biosynthesis. Appl Environ Microbiol 2010; 76:3806-3817. [PMID: 20435771 PMCID: PMC2893484 DOI: 10.1128/aem.00659-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 04/21/2010] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe excretes and accumulates the hydroxamate-type siderophore ferrichrome. The sib1(+) and sib2(+) genes encode, respectively, a siderophore synthetase and an l-ornithine N(5)-oxygenase that participate in ferrichrome biosynthesis. In the present report, we demonstrate that sib1(+) and sib2(+) are repressed by the GATA-type transcriptional repressor Fep1 in response to high levels of iron. We further found that the loss of Fep1 results in increased ferrichrome production. We showed that a sib1Delta sib2Delta mutant strain exhibits a severe growth defect on iron-poor media. We determined that two metabolic pathways are involved in biosynthesis of ornithine, an obligatory precursor of ferrichrome. Ornithine is produced by hydrolysis of arginine by the Car1 and Car3 proteins. Although car3(+) was constitutively expressed, car1(+) transcription levels were repressed upon exposure to iron, with a concomitant decrease of Car1 arginase activity. Ornithine is also generated by transformation of glutamate, which itself is produced by two separate biosynthetic pathways which are transcriptionally regulated by iron in an opposite fashion. In one pathway, the glutamate dehydrogenase Gdh1, which produces glutamate from 2-ketoglutarate, was repressed under iron-replete conditions in a Fep1-dependent manner. The other pathway involves two coupled enzymes, glutamine synthetase Gln1 and Fe-S cluster-containing glutamate synthase Glt1, which were both repressed under iron-limiting conditions but were expressed under iron-replete conditions. Collectively, these results indicate that under conditions of iron deprivation, yeast remodels metabolic pathways linked to ferrichrome synthesis in order to limit iron utilization without compromising siderophore production and its ability to sequester iron from the environment.
Collapse
Affiliation(s)
- Alexandre Mercier
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
23
|
Production of heterologous proteins using the fission-yeast (Schizosaccharomyces pombe) expression system. Biotechnol Appl Biochem 2009; 53:227-35. [PMID: 19531030 DOI: 10.1042/ba20090048] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is a particularly useful model for studying the function and regulation of genes from higher eukaryotes. The genome of Sc. pombe has been sequenced, and DNA microarray, proteome and transcriptome analyses have been carried out. Among the well-characterized yeast species, Sc. pombe is considered an attractive host for the production of heterologous proteins. Expression vectors for high-level expression in Sc. pombe have been developed and many foreign proteins have been successfully expressed. However, further improvements in the protein-expressing host systems are still required for the production of heterologous proteins involved in post-translational modification, metabolism and intracellular trafficking. This minireview focuses on recent advances in heterologous protein production by use of engineered fission-yeast strains.
Collapse
|
24
|
Zhou J, Dong Z, Liu L, Du G, Chen J. A reusable method for construction of non-marker large fragment deletion yeast auxotroph strains: A practice in Torulopsis glabrata. J Microbiol Methods 2009; 76:70-4. [DOI: 10.1016/j.mimet.2008.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 09/02/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
|
25
|
A novel series of vectors for chromosomal integration in fission yeast. Biochem Biophys Res Commun 2008; 374:315-9. [DOI: 10.1016/j.bbrc.2008.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/03/2008] [Indexed: 11/24/2022]
|
26
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
27
|
Fang Y, Sugiura R, Ma Y, Yada-Matsushima T, Umeno H, Kuno T. Cation diffusion facilitator Cis4 is implicated in Golgi membrane trafficking via regulating zinc homeostasis in fission yeast. Mol Biol Cell 2008; 19:1295-303. [PMID: 18199682 DOI: 10.1091/mbc.e07-08-0805] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We screened for mutations that confer sensitivities to the calcineurin inhibitor FK506 and to a high concentration of MgCl(2) and isolated the cis4-1 mutant, an allele of the gene encoding a cation diffusion facilitator (CDF) protein that is structurally related to zinc transporters. Consistently, the addition of extracellular Zn(2+) suppressed the phenotypes of the cis4 mutant cells. The cis4 mutants and the mutant cells of another CDF-encoding gene SPBC16E9.14c (we named zrg17(+)) shared common and nonadditive zinc-suppressible phenotypes, and Cis4 and Zrg17 physically interacted. Cis4 localized at the cis-Golgi, suggesting that Cis4 is responsible for Zn(2+) uptake to the cis-Golgi. The cis4 mutant cells showed phenotypes such as weak cell wall and decreased acid phosphatase secretion that are thought to be resulting from impaired membrane trafficking. In addition, the cis4 deletion cells showed synthetic growth defects with all the four membrane-trafficking mutants tested, namely ypt3-i5, ryh1-i6, gdi1-i11, and apm1-1. Interestingly, the addition of extracellular Zn(2+) significantly suppressed the phenotypes of the ypt3-i5 and apm1-1 mutant cells. These results suggest that Cis4 forms a heteromeric functional complex with Zrg17 and that Cis4 is implicated in Golgi membrane trafficking through the regulation of zinc homeostasis in fission yeast.
Collapse
Affiliation(s)
- Yue Fang
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|