1
|
Kumar S, Mutturi S. Alternative splicing regulates the α-glucosidase synthesis in Aspergillus neoniger NCIM 1400. Fungal Biol 2021; 125:658-665. [PMID: 34281659 DOI: 10.1016/j.funbio.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Aspergillus neoniger NCIM 1400 whose cell-free fraction was earlier established for transglycosylation activity conferred by α-glucosidase gene (agdA), was subjected to sequence analysis. Preliminary results revealed certain dynamics in the intron splicing mechanism, and to ascertain these molecular events, a detailed study was carried. The electrophoresis results from the cDNA portion (B-fragment) of agdA showed multiple bands, indicating the amplification of one or more fragments. The sequence results of cDNA cloned vector revealed the retention type of alternative splicing in the agdA. The splicing mechanism of agdA in NCIM 1400 was compared to different A. niger strains, which harbours agdA orthologues, using PCR. It was observed that effective intron splicing leads to higher α-glucosidase activity from these selected Aspergillus spp. To explore the dynamics of intron retention in A. neoniger NCIM 1400, time-course analysis of intron retention, enzyme activity, and sugar consumption were carried over a period of 168 h of fungal growth. RT-qPCR results revealed that introns retention was not detected during the initial growth phase when the maltose and its hydrolysed product, glucose were consumed. Here we demonstrate that exhaustion of maltose causes increase in retention of introns in the mRNA transcripts of agdA gene, and this could be the possible mode of regulating this gene.
Collapse
Affiliation(s)
- Sandeep Kumar
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India; AcSIR-Academy of Scientific & Innovative Research, Ghaziabad, UP, 201002, India
| | - Sarma Mutturi
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India; AcSIR-Academy of Scientific & Innovative Research, Ghaziabad, UP, 201002, India.
| |
Collapse
|
2
|
Effects of intron retention on properties of β-glucosidase in Aspergillus niger. Fungal Biol 2019; 123:465-470. [DOI: 10.1016/j.funbio.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/03/2019] [Accepted: 04/09/2019] [Indexed: 01/20/2023]
|
3
|
Jones RW, Perez FG. A Small Cellulose-Binding-Domain Protein (CBD1) in Phytophthora is Highly Variable in the Non-binding Amino Terminus. Curr Microbiol 2017; 74:1287-1293. [PMID: 28748272 PMCID: PMC5640731 DOI: 10.1007/s00284-017-1315-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/19/2017] [Indexed: 01/05/2023]
Abstract
The small cellulose-binding-domain protein CBD1 is tightly bound to the cellulosic cell wall of the plant pathogenic stramenopile Phytophthora infestans. Transgene expression of the protein in potato plants also demonstrated binding to plant cell walls. A study was undertaken using 47 isolates of P. infestans from a worldwide collection, along with 17 other Phytophthora species and a related pathogen Plasmopara halstedii, to determine if the critical cell wall protein is subject to amino acid variability. Within the amino acid sequence of the secreted portion of CBD 1, encoded by the P. infestans isolates, 30 were identical with each other, and with P. mirabilis. Four isolates had one amino acid difference, each in a different location, while one isolate had two amino acid substitutions. The remaining 13 isolates had five amino acid changes that were each in identical locations (D17/G, D31/G, I32/S, T43/A, and G50/A), suggesting a single origin. Comparison of P. infestans CBD1 with other Phytophthora species identified extensive amino acid variation among the 60 amino acids at the amino terminus of the protein, and a high level of conservation from G61, where the critical cellulose-binding domain sequences begin, to the end of the protein (L110). While the region needed to bind to cellulose is conserved, the region that is available to interact with other cell wall components is subject to considerable variation, a feature that is evident even in the related genus Plasmopara. Specific changes can be used in determining intra- and inter-species relatedness. Application of this information allowed for the design of species-specific primers for PCR detection of P. infestans and P. sojae, by combining primers from the highly conserved and variable regions of the CBD1 gene.
Collapse
Affiliation(s)
- Richard W Jones
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA.
| | - Frances G Perez
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| |
Collapse
|
4
|
Abstract
Most reviews of climate change are epidemiological, focusing on impact assessment and risk mapping. However, there are many reports of the effects of environmental stress factors on defense mechanisms in plants against pathogens. We review those representative of key climate change-related stresses to determine whether there are any patterns or trends in adaptation responses. We recognize the complexity of climate change itself and the multitrophic nature of the complex biological interactions of plants, microbes, soil, and the environment and, therefore, the difficulty of reductionist dissection approaches to resolving the problems. We review host defense genes, germplasm, and environmental interactions in different types of organisms but find no significant group-specific trends. Similarly, we review by host defense mechanism type and by host-pathogen trophic relationship but identify no dominating mechanism for stress response. However, we do identify core stress response mechanisms playing key roles in multiple response pathways whether to biotic or abiotic stress. We suggest that these should be central to mechanistic climate change plant defense research. We also recognize biodiversity, heterogeneity, and the need for understanding stress in a true systems biology approach as being essential components of progressing our understanding of and response to climate change.
Collapse
|
5
|
Horowitz BB, Ospina-Giraldo MD. The Pectin Methylesterase Gene Complement of Phytophthora sojae: Structural and Functional Analyses, and the Evolutionary Relationships with Its Oomycete Homologs. PLoS One 2015; 10:e0142096. [PMID: 26544849 PMCID: PMC4636286 DOI: 10.1371/journal.pone.0142096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/16/2015] [Indexed: 01/07/2023] Open
Abstract
Phytophthora sojae is an oomycete pathogen that causes the disease known as root and stem rot in soybean plants, frequently leading to massive economic damage. Additionally, P. sojae is increasingly being utilized as a model for phytopathogenic oomycete research. Despite the economic and scientific importance of P. sojae, the mechanism by which it penetrates the host roots is not yet fully understood. It has been found that oomycetes are not capable of penetrating the cell wall solely through mechanical force, suggesting that alternative factors facilitate breakdown of the host cell wall. Pectin methylesterases have been suggested to be important for Phytophthora pathogenicity, but no data exist on their role in the P. sojae infection process. We have scanned the newly revised version of the annotated P. sojae genome for the presence of putative pectin methylesterases genes and conducted a sequence analysis of all gene models found. We also searched for potential regulatory motifs in the promoter region of the proposed P. sojae models, and investigated the gene expression levels throughout the early course of infection on soybean plants. We found that P. sojae contains a large repertoire of pectin methylesterase-coding genes and that most of these genes display similar motifs in the promoter region, indicating the possibility of a shared regulatory mechanism. Phylogenetic analyses confirmed the evolutionary relatedness of the pectin methylesterase-coding genes within and across Phytophthora spp. In addition, the gene duplication events that led to the emergence of this gene family appear to have occurred prior to many speciation events in the genus Phytophthora. Our results also indicate that the highest levels of expression occurred in the first 24 hours post inoculation, with expression falling after this time. Our study provides evidence that pectin methylesterases may be important for the early action of the P. sojae infection process.
Collapse
Affiliation(s)
- Brent B. Horowitz
- Biology Department, Lafayette College, Easton, Pennsylvania, United States of America
| | | |
Collapse
|
6
|
Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites. Curr Genet 2015; 62:31-8. [PMID: 26194054 DOI: 10.1007/s00294-015-0506-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022]
Abstract
Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.
Collapse
|
7
|
Blackman LM, Cullerne DP, Hardham AR. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genomics 2014; 15:785. [PMID: 25214042 PMCID: PMC4176579 DOI: 10.1186/1471-2164-15-785] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022] Open
Abstract
Background A critical aspect of plant infection by the majority of pathogens is penetration of the plant cell wall. This process requires the production and secretion of a broad spectrum of pathogen enzymes that target and degrade the many complex polysaccharides in the plant cell wall. As a necessary framework for a study of the expression of cell wall degrading enzymes (CWDEs) produced by the broad host range phytopathogen, Phytophthora parasitica, we have conducted an in-depth bioinformatics analysis of the entire complement of genes encoding CWDEs in this pathogen’s genome. Results Our bioinformatic analysis indicates that 431 (2%) of the 20,825 predicted proteins encoded by the P. parasitica genome, are carbohydrate-active enzymes (CAZymes) involved in the degradation of cell wall polysaccharides. Of the 431 proteins, 337 contain classical N-terminal secretion signals and 67 are predicted to be targeted to the non-classical secretion pathway. Identification of CAZyme catalytic activity based on primary protein sequence is difficult, nevertheless, detailed comparisons with previously characterized enzymes has allowed us to determine likely enzyme activities and targeted substrates for many of the P. parasitica CWDEs. Some proteins (12%) contain more than one CAZyme module but, in most cases, multiple modules are from the same CAZyme family. Only 12 P. parasitica CWDEs contain both catalytically-active (glycosyl hydrolase) and non-catalytic (carbohydrate binding) modules, a situation that contrasts with that in fungal phytopathogens. Other striking differences between the complements of CWDEs in P. parasitica and fungal phytopathogens are seen in the CAZyme families that target cellulose, pectins or β-1,3-glucans (e.g. callose). About 25% of P. parasitica CAZymes are solely directed towards pectin degradation, with the majority coming from pectin lyase or carbohydrate esterase families. Fungal phytopathogens typically contain less than half the numbers of these CAZymes. The P. parasitica genome, like that of other Oomycetes, is rich in CAZymes that target β-1,3-glucans. Conclusions This detailed analysis of the full complement of P. parasitica cell wall degrading enzymes provides a framework for an in-depth study of patterns of expression of these pathogen genes during plant infection and the induction or repression of expression by selected substrates. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-785) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leila M Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT 0200, Australia.
| | | | | |
Collapse
|
8
|
Brouwer H, Coutinho PM, Henrissat B, de Vries RP. Carbohydrate-related enzymes of important Phytophthora plant pathogens. Fungal Genet Biol 2014; 72:192-200. [PMID: 25192612 DOI: 10.1016/j.fgb.2014.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/15/2014] [Accepted: 08/25/2014] [Indexed: 11/24/2022]
Abstract
Carbohydrate-Active enZymes (CAZymes) form particularly interesting targets to study in plant pathogens. Despite the fact that many CAZymes are pathogenicity factors, oomycete CAZymes have received significantly less attention than effectors in the literature. Here we present an analysis of the CAZymes present in the Phytophthora infestans, Ph. ramorum, Ph. sojae and Pythium ultimum genomes compared to growth of these species on a range of different carbon sources. Growth on these carbon sources indicates that the size of enzyme families involved in degradation of cell-wall related substrates like cellulose, xylan and pectin is not always a good predictor of growth on these substrates. While a capacity to degrade xylan and cellulose exists the products are not fully saccharified and used as a carbon source. The Phytophthora genomes encode larger CAZyme sets when compared to Py. ultimum, and encode putative cutinases, GH12 xyloglucanases and GH10 xylanases that are missing in the Py. ultimum genome. Phytophthora spp. also encode a larger number of enzyme families and genes involved in pectin degradation. No loss or gain of complete enzyme families was found between the Phytophthora genomes, but there are some marked differences in the size of some enzyme families.
Collapse
Affiliation(s)
- Henk Brouwer
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolecules Biologiques, UMR7257, CNRS, Univ. Aix-Marseille I & II, 163 Avenue de Luminy, 13288 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolecules Biologiques, UMR7257, CNRS, Univ. Aix-Marseille I & II, 163 Avenue de Luminy, 13288 Marseille, France; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ronald P de Vries
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
9
|
Transcriptome analysis of the entomopathogenic oomycete Lagenidium giganteum reveals putative virulence factors. Appl Environ Microbiol 2014; 80:6427-36. [PMID: 25107973 DOI: 10.1128/aem.02060-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A combination of 454 pyrosequencing and Sanger sequencing was used to sample and characterize the transcriptome of the entomopathogenic oomycete Lagenidium giganteum. More than 50,000 high-throughput reads were annotated through homology searches. Several selected reads served as seeds for the amplification and sequencing of full-length transcripts. Phylogenetic analyses inferred from full-length cellulose synthase alignments revealed that L giganteum is nested within the peronosporalean galaxy and as such appears to have evolved from a phytopathogenic ancestor. In agreement with the phylogeny reconstructions, full-length L. giganteum oomycete effector orthologs, corresponding to the cellulose-binding elicitor lectin (CBEL), crinkler (CRN), and elicitin proteins, were characterized by domain organizations similar to those of pathogenicity factors of plant-pathogenic oomycetes. Importantly, the L. giganteum effectors provide a basis for detailing the roles of canonical CRN, CBEL, and elicitin proteins in the infectious process of an oomycete known principally as an animal pathogen. Finally, phylogenetic analyses and genome mining identified members of glycoside hydrolase family 5 subfamily 27 (GH5_27) as putative virulence factors active on the host insect cuticle, based in part on the fact that GH5_27 genes are shared by entomopathogenic oomycetes and fungi but are underrepresented in nonentomopathogenic genomes. The genomic resources gathered from the L. giganteum transcriptome analysis strongly suggest that filamentous entomopathogens (oomycetes and fungi) exhibit convergent evolution: they have evolved independently from plant-associated microbes, have retained genes indicative of plant associations, and may share similar cores of virulence factors, such as GH5_27 enzymes, that are absent from the genomes of their plant-pathogenic relatives.
Collapse
|
10
|
De novo pyrimidine biosynthesis in the oomycete plant pathogen Phytophthora infestans. Gene 2014; 537:312-21. [DOI: 10.1016/j.gene.2013.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/21/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022]
|
11
|
Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 2012; 12:186. [PMID: 22992189 PMCID: PMC3526467 DOI: 10.1186/1471-2148-12-186] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/13/2012] [Indexed: 12/02/2022] Open
Abstract
Background The large Glycoside Hydrolase family 5 (GH5) groups together a wide range of enzymes acting on β-linked oligo- and polysaccharides, and glycoconjugates from a large spectrum of organisms. The long and complex evolution of this family of enzymes and its broad sequence diversity limits functional prediction. With the objective of improving the differentiation of enzyme specificities in a knowledge-based context, and to obtain new evolutionary insights, we present here a new, robust subfamily classification of family GH5. Results About 80% of the current sequences were assigned into 51 subfamilies in a global analysis of all publicly available GH5 sequences and associated biochemical data. Examination of subfamilies with catalytically-active members revealed that one third are monospecific (containing a single enzyme activity), although new functions may be discovered with biochemical characterization in the future. Furthermore, twenty subfamilies presently have no characterization whatsoever and many others have only limited structural and biochemical data. Mapping of functional knowledge onto the GH5 phylogenetic tree revealed that the sequence space of this historical and industrially important family is far from well dispersed, highlighting targets in need of further study. The analysis also uncovered a number of GH5 proteins which have lost their catalytic machinery, indicating evolution towards novel functions. Conclusion Overall, the subfamily division of GH5 provides an actively curated resource for large-scale protein sequence annotation for glycogenomics; the subfamily assignments are openly accessible via the Carbohydrate-Active Enzyme database at
http://www.cazy.org/GH5.html.
Collapse
Affiliation(s)
- Henrik Aspeborg
- Division of Glycoscience, School of Biotechnology, KTH - Royal Institute of Technology, AlbaNova University Center, Stockholm SE-106 91, Sweden
| | | | | | | | | |
Collapse
|
12
|
Savory EA, Zou C, Adhikari BN, Hamilton JP, Buell CR, Shiu SH, Day B. Alternative splicing of a multi-drug transporter from Pseudoperonospora cubensis generates an RXLR effector protein that elicits a rapid cell death. PLoS One 2012; 7:e34701. [PMID: 22496844 PMCID: PMC3320632 DOI: 10.1371/journal.pone.0034701] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/05/2012] [Indexed: 12/31/2022] Open
Abstract
Pseudoperonospora cubensis, an obligate oomycete pathogen, is the causal agent of cucurbit downy mildew, a foliar disease of global economic importance. Similar to other oomycete plant pathogens, Ps. cubensis has a suite of RXLR and RXLR-like effector proteins, which likely function as virulence or avirulence determinants during the course of host infection. Using in silico analyses, we identified 271 candidate effector proteins within the Ps. cubensis genome with variable RXLR motifs. In extending this analysis, we present the functional characterization of one Ps. cubensis effector protein, RXLR protein 1 (PscRXLR1), and its closest Phytophthora infestans ortholog, PITG_17484, a member of the Drug/Metabolite Transporter (DMT) superfamily. To assess if such effector-non-effector pairs are common among oomycete plant pathogens, we examined the relationship(s) among putative ortholog pairs in Ps. cubensis and P. infestans. Of 271 predicted Ps. cubensis effector proteins, only 109 (41%) had a putative ortholog in P. infestans and evolutionary rate analysis of these orthologs shows that they are evolving significantly faster than most other genes. We found that PscRXLR1 was up-regulated during the early stages of infection of plants, and, moreover, that heterologous expression of PscRXLR1 in Nicotiana benthamiana elicits a rapid necrosis. More interestingly, we also demonstrate that PscRXLR1 arises as a product of alternative splicing, making this the first example of an alternative splicing event in plant pathogenic oomycetes transforming a non-effector gene to a functional effector protein. Taken together, these data suggest a role for PscRXLR1 in pathogenicity, and, in total, our data provide a basis for comparative analysis of candidate effector proteins and their non-effector orthologs as a means of understanding function and evolutionary history of pathogen effectors.
Collapse
Affiliation(s)
- Elizabeth A. Savory
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
| | - Cheng Zou
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Bishwo N. Adhikari
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - John P. Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Brad Day
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
13
|
Richardson DN, Rogers MF, Labadorf A, Ben-Hur A, Guo H, Paterson AH, Reddy ASN. Comparative analysis of serine/arginine-rich proteins across 27 eukaryotes: insights into sub-family classification and extent of alternative splicing. PLoS One 2011; 6:e24542. [PMID: 21935421 PMCID: PMC3173450 DOI: 10.1371/journal.pone.0024542] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/12/2011] [Indexed: 11/29/2022] Open
Abstract
Alternative splicing (AS) of pre-mRNA is a fundamental molecular process that generates diversity in the transcriptome and proteome of eukaryotic organisms. SR proteins, a family of splicing regulators with one or two RNA recognition motifs (RRMs) at the N-terminus and an arg/ser-rich domain at the C-terminus, function in both constitutive and alternative splicing. We identified SR proteins in 27 eukaryotic species, which include plants, animals, fungi and "basal" eukaryotes that lie outside of these lineages. Using RNA recognition motifs (RRMs) as a phylogenetic marker, we classified 272 SR genes into robust sub-families. The SR gene family can be split into five major groupings, which can be further separated into 11 distinct sub-families. Most flowering plants have double or nearly double the number of SR genes found in vertebrates. The majority of plant SR genes are under purifying selection. Moreover, in all paralogous SR genes in Arabidopsis, rice, soybean and maize, one of the two paralogs is preferentially expressed throughout plant development. We also assessed the extent of AS in SR genes based on a splice graph approach (http://combi.cs.colostate.edu/as/gmap_SRgenes). AS of SR genes is a widespread phenomenon throughout multiple lineages, with alternative 3' or 5' splicing events being the most prominent type of event. However, plant-enriched sub-families have 57%-88% of their SR genes experiencing some type of AS compared to the 40%-54% seen in other sub-families. The SR gene family is pervasive throughout multiple eukaryotic lineages, conserved in sequence and domain organization, but differs in gene number across lineages with an abundance of SR genes in flowering plants. The higher number of alternatively spliced SR genes in plants emphasizes the importance of AS in generating splice variants in these organisms.
Collapse
Affiliation(s)
- Dale N. Richardson
- Department of Bioinformatics and Population Genetics, Universität zu Köln, Köln, Germany
| | - Mark F. Rogers
- Computer Science Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Adam Labadorf
- Computer Science Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Asa Ben-Hur
- Computer Science Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Hui Guo
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Anireddy S. N. Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
14
|
Novel cellulose-binding-domain protein in Phytophthora is cell wall localized. PLoS One 2011; 6:e23555. [PMID: 21887271 PMCID: PMC3160888 DOI: 10.1371/journal.pone.0023555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022] Open
Abstract
Cellulose binding domains (CBD) in the carbohydrate binding module family 1 (CBM1) are structurally conserved regions generally linked to catalytic regions of cellulolytic enzymes. While widespread amongst saprophytic fungi that subsist on plant cell wall polysaccharides, they are absent amongst most plant pathogenic fungal cellulases. A genome wide survey for CBM1 was performed on the highly destructive plant pathogen Phytophthora infestans, a fungal-like Stramenopile, to determine if it harbored cellulolytic enzymes with CBM1. Only five genes were found to encode CBM1, and none were associated with catalytic domains. Surveys of other genomes indicated that the CBM1-containing proteins, lacking other domains, represent a unique group of proteins largely confined to the Stramenopiles. Immunolocalization of one of these proteins, CBD1, indicated that it is embedded in the hyphal cell wall. Proteins with CBM1 domains can have plant host elicitor activity, but tests with Agrobacterium-mediated in planta expression and synthetic peptide infiltration failed to identify plant hypersensitive elicitation with CBD1. A structural basis for differential elicitor activity is proposed.
Collapse
|
15
|
Chen X, Klemsdal SS, Brurberg MB. Identification and analysis of Phytophthora cactorum genes up-regulated during cyst germination and strawberry infection. Curr Genet 2011; 57:297-315. [PMID: 21698431 DOI: 10.1007/s00294-011-0348-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
The oomycete Phytophthora cactorum can cause economically important diseases on numerous host plants worldwide, such as crown rot on strawberry. To explore the molecular mechanisms underlying the pathogenicity of P. cactorum on strawberry, transcriptional analysis of P. cactorum during strawberry infection and cyst germination was performed by applying suppression subtractive hybridization (SSH) and effector-specific differential display (ESDD) techniques. Two SSH cDNA libraries were generated, enriched for P. cactorum genes expressed during infection or during cyst germination, respectively, and 137 unique differentially expressed genes were identified. To specifically select RxLR effector genes from P. cactorum, ESDD was performed using RxLR and EER motif-based degenerate primers. Eight RxLR effector candidate genes as well as 67 other genes were identified out of 124 selected fragments. The expression levels of 20 putatively up-regulated genes were further analyzed using real-time RT-PCR, showing that, indeed 19 of these 20 genes were up-regulated during at least one of the studied developmental stages or during strawberry crown invasion, relative to the mycelium. This study provides a first overview of P. cactorum genes that are up-regulated immediately prior to or during strawberry infection and also provides a novel method for selecting RxLR effector genes from the unsequenced genome of P. cactorum.
Collapse
Affiliation(s)
- Xiaoren Chen
- Plant Health and Plant Protection Division, Norwegian Institute for Agricultural and Environmental Research, Høgskoleveien 7, 1432, Ås, Norway
| | | | | |
Collapse
|
16
|
Shen D, Ye W, Dong S, Wang Y, Dou D. Characterization of intronic structures and alternative splicing in Phytophthora sojae by comparative analysis of expressed sequence tags and genomic sequences. Can J Microbiol 2011; 57:84-90. [PMID: 21326350 DOI: 10.1139/w10-103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oomycetes, a distinct phylogenetic lineage of fungus-like microorganisms, are heterokonts (stramenopiles) belonging to the supergroup Chromalveolata. Although the complete genomic sequences of a number of oomycetes have been reported, little information regarding the introns therein is available. Here, we investigated the introns of Phytophthora sojae, a pathogen that causes soybean root and stem rot, by a comparative analysis of genomic sequences and expressed sequence tags. A total of 4013 introns were identified, of which 96.6% contained canonical splice sites. The P. sojae genome possessed features distinct from other organisms at 5' splice sites, polypyrimidine tracts, branch sites, and 3' splice sites. Diverse repeating sequences, ranging from 2 to 10 nucleotides in length, were found at more than half of the intron-exon boundaries. Furthermore, 122 genes underwent alternative splicing. These data indicate that P. sojae has unique splicing mechanisms, and recognition of those mechanisms may lead to more accurate predictions of the location of introns in P. sojae and even other oomycete species.
Collapse
Affiliation(s)
- Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
17
|
Studholme DJ, Glover RH, Boonham N. Application of high-throughput DNA sequencing in phytopathology. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:87-105. [PMID: 21548771 DOI: 10.1146/annurev-phyto-072910-095408] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The new sequencing technologies are already making a big impact in academic research on medically important microbes and may soon revolutionize diagnostics, epidemiology, and infection control. Plant pathology also stands to gain from exploiting these opportunities. This manuscript reviews some applications of these high-throughput sequencing methods that are relevant to phytopathology, with emphasis on the associated computational and bioinformatics challenges and their solutions. Second-generation sequencing technologies have recently been exploited in genomics of both prokaryotic and eukaryotic plant pathogens. They are also proving to be useful in diagnostics, especially with respect to viruses.
Collapse
Affiliation(s)
- David J Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom.
| | | | | |
Collapse
|
18
|
Ospina-Giraldo MD, Griffith JG, Laird EW, Mingora C. The CAZyome of Phytophthora spp.: a comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora. BMC Genomics 2010; 11:525. [PMID: 20920201 PMCID: PMC2997016 DOI: 10.1186/1471-2164-11-525] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 09/28/2010] [Indexed: 12/18/2022] Open
Abstract
Background Enzymes involved in carbohydrate metabolism include Carbohydrate esterases (CE), Glycoside hydrolases (GH), Glycosyl transferases (GT), and Polysaccharide lyases (PL), commonly referred to as carbohydrate-active enzymes (CAZymes). The CE, GH, and PL superfamilies are also known as cell wall degrading enzymes (CWDE) due to their role in the disintegration of the plant cell wall by bacterial and fungal pathogens. In Phytophthora infestans, penetration of the plant cells occurs through a specialized hyphal structure called appressorium; however, it is likely that members of the genus Phytophthora also use CWDE for invasive growth because hyphal forces are below the level of tensile strength exhibited by the plant cell wall. Because information regarding the frequency and distribution of CAZyme coding genes in Phytophthora is currently unknown, we have scanned the genomes of P. infestans, P. sojae, and P. ramorum for the presence of CAZyme-coding genes using a homology-based approach and compared the gene collinearity in the three genomes. In addition, we have tested the expression of several genes coding for CE in cultures grown in vitro. Results We have found that P. infestans, P. sojae and P. ramorum contain a total of 435, 379, and 310 CAZy homologs; in each genome, most homologs belong to the GH superfamily. Most GH and PL homologs code for enzymes that hydrolyze substances present in the pectin layer forming the middle lamella of the plant cells. In addition, a significant number of CE homologs catalyzing the deacetylation of compounds characteristic of the plant cell cuticle were found. In general, a high degree of gene location conservation was observed, as indicated by the presence of sequential orthologous pairs in the three genomes. Such collinearity was frequently observed among members of the GH superfamily. On the other hand, the CE and PL superfamilies showed less collinearity for some of their putative members. Quantitative PCR experiments revealed that all genes are expressed in P. infestans when this pathogen grown in vitro. However, the levels of expression vary considerably and are lower than the expression levels observed for the constitutive control. Conclusions In conclusion, we have identified a highly complex set of CAZy homologs in the genomes of P. infestans, P. sojae, and P. ramorum, a significant number of which could play roles critical for pathogenicity, by participating in the degradation of the plant cell wall.
Collapse
|
19
|
Gregory PJ, Johnson SN, Newton AC, Ingram JSI. Integrating pests and pathogens into the climate change/food security debate. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2827-38. [PMID: 19380424 DOI: 10.1093/jxb/erp080] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While many studies have demonstrated the sensitivities of plants and of crop yield to a changing climate, a major challenge for the agricultural research community is to relate these findings to the broader societal concern with food security. This paper reviews the direct effects of climate on both crop growth and yield and on plant pests and pathogens and the interactions that may occur between crops, pests, and pathogens under changed climate. Finally, we consider the contribution that better understanding of the roles of pests and pathogens in crop production systems might make to enhanced food security. Evidence for the measured climate change on crops and their associated pests and pathogens is starting to be documented. Globally atmospheric [CO(2)] has increased, and in northern latitudes mean temperature at many locations has increased by about 1.0-1.4 degrees C with accompanying changes in pest and pathogen incidence and to farming practices. Many pests and pathogens exhibit considerable capacity for generating, recombining, and selecting fit combinations of variants in key pathogenicity, fitness, and aggressiveness traits that there is little doubt that any new opportunities resulting from climate change will be exploited by them. However, the interactions between crops and pests and pathogens are complex and poorly understood in the context of climate change. More mechanistic inclusion of pests and pathogen effects in crop models would lead to more realistic predictions of crop production on a regional scale and thereby assist in the development of more robust regional food security policies.
Collapse
Affiliation(s)
- Peter J Gregory
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK.
| | | | | | | |
Collapse
|