1
|
Garrido PA, Proaño-Cuenca F, Flor FJF, Benítez EAD, Torres IFS, Kaiser ARK, Sain L, Peñaloza YAM, Marek SM, Melouk H, Daughtrey M, Garzon CD. Identification and Characterization of Pythium, Globisporangium, and Phytopythium Species Present in Floricultural Crops from Long Island, New York. PHYTOPATHOLOGY 2023; 113:1335-1346. [PMID: 36510360 DOI: 10.1094/phyto-06-22-0195-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Several Pythium, Globisporangium, and Phytopythium species cause Pythium diseases in greenhouse floricultural crops, resulting in significant seasonal losses. Four hundred and eighteen Pythium, Globisporangium, and Phytopythium isolates from flowering crops, growing media, or bench and floor debris were collected from Long Island greenhouses or clinic samples between 2002 and 2013. Isolates were identified to species based on morphology and internal transcribed spacer barcoding. Twenty-two species of Pythium, Phytopythium, and Globisporangium were identified, with Globisporangium irregulare sensu lato (s.l.) being the most common. To determine the origin of inoculum during the 2011 cropping season, 11 microsatellite loci were analyzed in 124 G. irregulare s.l. isolates collected in four greenhouses and six previously collected from clinic samples. Cluster analyses grouped G. irregulare s.l. isolates into four groups: G. irregulare sensu stricto, plus three G. cryptoirregulare clusters. The population structure defined by greenhouse and host was found in two clades. Additionally, the population dynamics of G. irregulare s.l. isolates associated with Pelargonium spp. from 2011 to 2013 were examined using 85 isolates and nine informative microsatellite loci to assess inoculum survival over multiple cropping seasons. Although most isolates had unique genotypes, closely related genotypes were found in the same locations over different years. Our results indicate that G. irregulare s.l. inocula have local as well as remote origins. Isolates may be initially brought into ornamental operations from common sources, such as infected plant materials or infested potting mixes. Our results support the hypothesis that established strains can serve as inocula and survive in greenhouse facilities over multiple seasons.
Collapse
Affiliation(s)
- Patricia A Garrido
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito, Ecuador
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Fernanda Proaño-Cuenca
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Francisco J Flores Flor
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito, Ecuador
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
- Microbiology and Environmental Research Team, Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Edinson A Díaz Benítez
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
- Facultad de Ciencias Agrarias y del Ambiente, Universidad Francisco de Paula Santander, Cúcuta, Colombia
| | - Ivanna F Sánchez Torres
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
- Microbiology and Environmental Research Team, Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Alma R Koch Kaiser
- Microbiology and Environmental Research Team, Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Linda Sain
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Yaneth Amparo Muñoz Peñaloza
- Plant Pathology and Plant-Microbe Biology Section, Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY 11901, U.S.A
| | - Stephen M Marek
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Hassan Melouk
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Margery Daughtrey
- Plant Pathology and Plant-Microbe Biology Section, Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY 11901, U.S.A
| | - Carla D Garzon
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
- Department of Plant Science and Landscape Architecture, Delaware Valley University, Doylestown, PA 18901, U.S.A
| |
Collapse
|
2
|
Alotaibi NM, Saeed M, Alshammari N, Alabdallah NM, Mahfooz S. Comparative genomics reveals the presence of simple sequence repeats in genes related to virulence in plant pathogenic Pythium ultimum and Pythium vexans. Arch Microbiol 2023; 205:256. [PMID: 37270724 DOI: 10.1007/s00203-023-03595-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
In this study, we evaluated the occurrence, relative abundance (RA), and density (RD) of simple sequence repeats (SSRs) in the complete genome and transcriptomic sequences of the plant pathogenic species of Pythium to acquire a better knowledge of their genome structure and evolution. Among the species, P. ultimum had the highest RA and RD of SSRs in the genomic sequences, whereas P. vexans had the highest RA and RD in the transcriptomic sequences. The genomic and transcriptomic sequences of P. aphanidermatum showed the lowest RA and RD of SSRs. Trinucleotide SSRs were the most prevalent class in both genomic and transcriptomic sequences, while dinucleotide SSRs were the least prevalent. The G + C content of the transcriptomic sequences was found to be positively correlated with the number (r = 0.601) and RA (r = 0.710) of SSRs. A motif conservation study revealed the highest number of unique motifs in P. vexans (9.9%). Overall, a low conservation of motifs was observed among the species (25.9%). A gene enrichment study revealed P. vexans and P. ultimum carry SSRs in their genes that are directly connected to virulence, whereas the remaining two species, P. aphanidermatum and P. arrhenomanes, harbour SSRs in genes involved in transcription, translation, and ATP binding. In an effort to enhance the genomic resources, a total of 11,002 primers from the transcribed regions were designed for the pathogenic Pythium species. Furthermore, the unique motifs identified in this work could be employed as molecular probes for species identification.
Collapse
Affiliation(s)
- Nahaa M Alotaibi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, 2440, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, 2440, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sahil Mahfooz
- Department of Biotechnology, V.B.S. Purvanchal University, Jaunpur, Uttar Pradesh, 222003, India.
- , The Academic Editors, Saryu Enclave, Awadh Vikas Yojna, Lucknow, 226002, India.
| |
Collapse
|
3
|
Huzar-Novakowiski J, Dorrance AE. Genetic Diversity and Population Structure of Pythium irregulare from Soybean and Corn Production Fields in Ohio. PLANT DISEASE 2018; 102:1989-2000. [PMID: 30124360 DOI: 10.1094/pdis-11-17-1725-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High levels of genetic diversity have been described within the Pythium irregulare complex from several host plants; however, little is known about the population structure in fields used for grain production. Therefore, the objective of this study was to evaluate the genetic diversity and population structure of 53 isolates baited from 28 soybean and corn production fields from 25 counties in Ohio. Genetic diversity was characterized based on sequence analysis of the internal transcribed spacer (ITS1-5.8S-ITS2) region and with 21 simple sequence repeat (SSR) markers. In addition, aggressiveness on soybean, optimum growth temperature, and sensitivity to metalaxyl fungicide were determined. ITS sequence analysis indicated that four isolates clustered with P. cryptoirregulare, whereas the remaining isolates clustered with P. irregulare that was subdivided into two groups (1 and 2). Cluster analysis of SSR data revealed a similar subdivision, which was also supported by structure analysis. The isolates from group 2 grew at a slower rate, but both groups of P. irregulare and P. cryptoirregulare recovered in this study had the same optimum growth at 27°C. Variability of aggressiveness and sensitivity toward metalaxyl fungicide was also observed among isolates within each group. The results from this study will help in the selection of isolates to be used in screening for resistance, assessment of fungicide efficacy, and disease management recommendations.
Collapse
Affiliation(s)
- J Huzar-Novakowiski
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - A E Dorrance
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| |
Collapse
|
4
|
la Bastide PYD, Naumann C, Hintz WE. Assessment of intra-specific variability in Saprolegnia parasitica populations of aquaculture facilities in British Columbia, Canada. DISEASES OF AQUATIC ORGANISMS 2018; 128:235-248. [PMID: 29862981 DOI: 10.3354/dao03224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Among the Saprolegnia species found in aquaculture facilities, S. parasitica is recognized as the primary fish pathogen and remains an ongoing concern in fish health management. Until recently, these pathogens were kept in check by use of malachite green; due to its toxicity, this chemical has now been banned from use in many countries. It is difficult to predict and control S. parasitica outbreaks in freshwater systems and there is a need to understand the population genetic structure of this pathogen. Genetic characterization of this species in aquaculture systems would provide information to track introductions and determine possible sources of inoculum. Degenerate PCR primers containing short sequence repeats were used to create microsatellite-associated genetic markers (random amplified microsatellites) for the comparison of S. parasitica isolates collected primarily from commercial Atlantic salmon aquaculture systems in British Columbia, Canada, over a 15 mo period to describe their spatial and temporal variability. The frequencies of amplified products were compared and the population genetic diversity was measured using Nei's genetic distance and Shannon's information index, while the species population structure was evaluated by phylogenetic analysis. S. parasitica was detected in all facilities sampled. Genetic diversity was low but not clonal, most likely due to repeated introduction events and a low level of sexual recombination over time. A better understanding of pathogen population structure will assist the development of effective preventative measures and targeted treatments for disease outbreaks.
Collapse
Affiliation(s)
- Paul Y de la Bastide
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | | | | |
Collapse
|
5
|
Del Castillo Múnera J, Hausbeck MK. Characterization of Pythium Species Associated With Greenhouse Floriculture Crops in Michigan. PLANT DISEASE 2016; 100:569-576. [PMID: 30688597 DOI: 10.1094/pdis-03-15-0296-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Michigan ranks third in the United States for the wholesale value of floriculture products, with an estimated value of $375.7 million. Seedling damping-off and root and crown rot are commonly caused by Pythium spp. and are important problems for greenhouse growers. Pythium spp. associated with Michigan's floriculture crops were characterized as a means to improve current management strategies. During 2011 and 2012, potted poinsettias with root rot symptoms were sampled from nine greenhouses located in Kent, Kalamazoo, and Wayne counties. In 2013, from the same three counties, symptomatic geranium and snapdragon bedding plants were sampled from 12 greenhouses. Additionally, symptomatic hibiscus and lantana plants were sampled at one greenhouse facility. Isolates were confirmed to be Pythium spp. via morphology and sequencing of the ITS region. A total of 287 Pythium spp. isolates were obtained from poinsettias and 726 isolates from geranium, snapdragon, hibiscus, and lantana. Seven Pythium spp., and a group of isolates determined as Pythium sp. 1 were identified. The most prevalent species were P. irregulare, P. ultimum, and P. aphanidermatum. A subset of isolates was chosen for pathogenicity and mefenoxam sensitivity testing. Six of the species were virulent to germinating geranium seeds. Most P. ultimum and P. cylindrosporum isolates tested were intermediate to highly resistant to mefenoxam, whereas most P. aphanidermatum isolates were sensitive. This study suggests that Pythium spp. recovered from Michigan greenhouses may vary depending on the host, and that mefenoxam may not be effective to control P. ultimum or P. cylindrosporum.
Collapse
Affiliation(s)
| | - Mary K Hausbeck
- Professor, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824
| |
Collapse
|
6
|
Weiland JE, Garrido P, Kamvar ZN, Espíndola AS, Marek SM, Grünwald NJ, Garzón CD. Population Structure of Pythium irregulare, P. ultimum, and P. sylvaticum in Forest Nursery Soils of Oregon and Washington. PHYTOPATHOLOGY 2015; 105:684-694. [PMID: 25607720 DOI: 10.1094/phyto-05-14-0147-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pythium species are important soilborne pathogens occurring in the forest nursery industry of the Pacific Northwest. However, little is known about their genetic diversity or population structure and it is suspected that isolates are moved among forest nurseries on seedling stock and shared field equipment. In order to address these concerns, a total of 115 isolates of three Pythium species (P. irregulare, P. sylvaticum, and P. ultimum) were examined at three forest nurseries using simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers. Analyses revealed distinct patterns of intraspecific variation for the three species. P. sylvaticum exhibited the most diversity, followed by P. irregulare, while substantial clonality was found in P. ultimum. For both P. irregulare and P. sylvaticum, but not P. ultimum, there was evidence for significant variation among nurseries. However, all three species also exhibited at least two distinct lineages not associated with the nursery of origin. Finally, evidence was found that certain lineages and clonal genotypes, including fungicide-resistant isolates, are shared among nurseries, indicating that pathogen movement has occurred.
Collapse
Affiliation(s)
- Jerry E Weiland
- First and sixth authors: U.S. Department of Agriculture-Agriculture Research Service, Horticultural Crops Research Laboratory, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; second, fourth, fifth, and seventh authors: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74074; and third author: Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Patricia Garrido
- First and sixth authors: U.S. Department of Agriculture-Agriculture Research Service, Horticultural Crops Research Laboratory, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; second, fourth, fifth, and seventh authors: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74074; and third author: Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Zhian N Kamvar
- First and sixth authors: U.S. Department of Agriculture-Agriculture Research Service, Horticultural Crops Research Laboratory, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; second, fourth, fifth, and seventh authors: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74074; and third author: Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Andrés S Espíndola
- First and sixth authors: U.S. Department of Agriculture-Agriculture Research Service, Horticultural Crops Research Laboratory, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; second, fourth, fifth, and seventh authors: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74074; and third author: Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Stephen M Marek
- First and sixth authors: U.S. Department of Agriculture-Agriculture Research Service, Horticultural Crops Research Laboratory, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; second, fourth, fifth, and seventh authors: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74074; and third author: Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Niklaus J Grünwald
- First and sixth authors: U.S. Department of Agriculture-Agriculture Research Service, Horticultural Crops Research Laboratory, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; second, fourth, fifth, and seventh authors: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74074; and third author: Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Carla D Garzón
- First and sixth authors: U.S. Department of Agriculture-Agriculture Research Service, Horticultural Crops Research Laboratory, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; second, fourth, fifth, and seventh authors: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74074; and third author: Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
7
|
Schroeder KL, Martin FN, de Cock AWAM, Lévesque CA, Spies CFJ, Okubara PA, Paulitz TC. Molecular Detection and Quantification of Pythium Species: Evolving Taxonomy, New Tools, and Challenges. PLANT DISEASE 2013; 97:4-20. [PMID: 30722255 DOI: 10.1094/pdis-03-12-0243-fe] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The genus Pythium is one of the most important groups of soilborne plant pathogens, present in almost every agricultural soil and attacking the roots of thousands of hosts, reducing crop yield and quality. Most species are generalists, necrotrophic pathogens that infect young juvenile tissue. In fact, Cook and Veseth have called Pythium the "common cold" of wheat, because of its chronic nature and ubiquitous distribution. Where Pythium spp. are the cause of seedling damping-off or emergence reduction, the causal agent can easily be identified based on symptoms and culturing. In more mature plants, however, infection by Pythium spp. is more difficult to diagnose, because of the nonspecific symptoms that could have abiotic causes such as nutrient deficiencies or be due to other root rotting pathogens. Molecular methods that can accurately identify and quantify this important group are needed for disease diagnosis and management recommendations and to better understand the epidemiology and ecology of this important group. The purpose of this article is to outline the current state-of-the-art in the detection and quantification of this important genus. In addition, we will introduce the reader to new changes in the taxonomy of this group.
Collapse
Affiliation(s)
| | | | | | - C André Lévesque
- Agriculture and Agri-Food Canada, Central Experimental Farm, Ottawa, ON
| | | | - Patricia A Okubara
- USDA-ARS, Root Disease and Biological Control Research Unit, Pullman, WA
| | - Timothy C Paulitz
- USDA-ARS, Root Disease and Biological Control Research Unit, Pullman, WA
| |
Collapse
|
8
|
Bahkali AH, Abd-Elsalam KA, Guo JR, Khiyami MA, Verreet JA. Characterization of novel di-, tri-, and tetranucleotide microsatellite primers suitable for genotyping various plant pathogenic fungi with special emphasis on Fusaria and Mycospherella graminicola. Int J Mol Sci 2012; 13:2951-2964. [PMID: 22489135 PMCID: PMC3317696 DOI: 10.3390/ijms13032951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/09/2012] [Accepted: 02/20/2012] [Indexed: 11/30/2022] Open
Abstract
The goals of this investigation were to identify and evaluate the use of polymorphic microsatellite marker (PMM) analysis for molecular typing of seventeen plant pathogenic fungi. Primers for di-, tri-, and tetranucleotide loci were designed directly from the recently published genomic sequence of Mycospherlla graminicola and Fusarium graminearum. A total of 20 new microsatellite primers as easy-to-score markers were developed. Microsatellite primer PCR (MP-PCR) yielded highly reproducible and complex genomic fingerprints, with several bands ranging in size from 200 to 3000 bp. Of the 20 primers tested, only (TAGG)4, (TCC)5 and (CA)7T produced a high number of polymorphic bands from either F. graminearum or F. culmorum. (ATG)5 led to successful amplifications in M. graminicola isolates collected from Germany. Percentage of polymorphic bands among Fusarium species ranged from 9 to 100%. Cluster analysis of banding patterns of the isolates corresponded well to the established species delineations based on morphology and other methods of phylogenetic analysis. The current research demonstrates that the newly designed microsatellite primers are reliable, sensitive and technically simple tools for assaying genetic variability in plant pathogenic fungi.
Collapse
Affiliation(s)
- Ali H. Bahkali
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box: 2455, Riyadh 1145, Kingdom of Saudi Arabia; E-Mail:
| | - Kamel A. Abd-Elsalam
- Agricultural Research Center, Plant Pathology Research Institute, Giza, Egypt
- Institute of Phytopathology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Str. 9, D-24118, Kiel, Germany; E-Mail: (J.-A.V.)
- King Abdulaziz City for Science and Technology (KACST), P. O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +966-92-1467-580; Fax: +966-1467-5833
| | - Jian-Rong Guo
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, 71737 Danzhou, Hainan, China; E-Mail: (J.-R.G.)
| | - Mohamed A. Khiyami
- King Abdulaziz City for Science and Technology (KACST), P. O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia; E-Mail:
| | - Joseph-Alexander Verreet
- Institute of Phytopathology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Str. 9, D-24118, Kiel, Germany; E-Mail: (J.-A.V.)
| |
Collapse
|
9
|
Lidder P, Sonnino A. Biotechnologies for the management of genetic resources for food and agriculture. ADVANCES IN GENETICS 2012; 78:1-167. [PMID: 22980921 DOI: 10.1016/b978-0-12-394394-1.00001-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can facilitate the development and appropriate use of biotechnologies in developing countries; and that FAO and other relevant international organizations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies.
Collapse
Affiliation(s)
- Preetmoninder Lidder
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| | - Andrea Sonnino
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| |
Collapse
|
10
|
Molecular analyses of Pythium irregulare isolates from grapevines in South Africa suggest a single variable species. Fungal Biol 2011; 115:1210-24. [DOI: 10.1016/j.funbio.2011.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/10/2011] [Accepted: 08/23/2011] [Indexed: 11/19/2022]
|
11
|
Analysis of the Pythium ultimum transcriptome using Sanger and Pyrosequencing approaches. BMC Genomics 2008; 9:542. [PMID: 19014603 PMCID: PMC2612028 DOI: 10.1186/1471-2164-9-542] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 11/15/2008] [Indexed: 02/08/2023] Open
Abstract
Background Pythium species are an agriculturally important genus of plant pathogens, yet are not understood well at the molecular, genetic, or genomic level. They are closely related to other oomycete plant pathogens such as Phytophthora species and are ubiquitous in their geographic distribution and host rage. To gain a better understanding of its gene complement, we generated Expressed Sequence Tags (ESTs) from the transcriptome of Pythium ultimum DAOM BR144 (= ATCC 200006 = CBS 805.95) using two high throughput sequencing methods, Sanger-based chain termination sequencing and pyrosequencing-based sequencing-by-synthesis. Results A single half-plate pyrosequencing (454 FLX) run on adapter-ligated cDNA from a normalized cDNA population generated 90,664 reads with an average read length of 190 nucleotides following cleaning and removal of sequences shorter than 100 base pairs. After clustering and assembly, a total of 35,507 unique sequences were generated. In parallel, 9,578 reads were generated from a library constructed from the same normalized cDNA population using dideoxy chain termination Sanger sequencing, which upon clustering and assembly generated 4,689 unique sequences. A hybrid assembly of both Sanger- and pyrosequencing-derived ESTs resulted in 34,495 unique sequences with 1,110 sequences (3.2%) that were solely derived from Sanger sequencing alone. A high degree of similarity was seen between P. ultimum sequences and other sequenced plant pathogenic oomycetes with 91% of the hybrid assembly derived sequences > 500 bp having similarity to sequences from plant pathogenic Phytophthora species. An analysis of Gene Ontology assignments revealed a similar representation of molecular function ontologies in the hybrid assembly in comparison to the predicted proteomes of three Phytophthora species, suggesting a broad representation of the P. ultimum transcriptome was present in the normalized cDNA population. P. ultimum sequences with similarity to oomycete RXLR and Crinkler effectors, Kazal-like and cystatin-like protease inhibitors, and elicitins were identified. Sequences with similarity to thiamine biosynthesis enzymes that are lacking in the genome sequences of three Phytophthora species and one downy mildew were identified and could serve as useful phylogenetic markers. Furthermore, we identified 179 candidate simple sequence repeats that can be used for genotyping strains of P. ultimum. Conclusion Through these two technologies, we were able to generate a robust set (~10 Mb) of transcribed sequences for P. ultimum. We were able to identify known sequences present in oomycetes as well as identify novel sequences. An ample number of candidate polymorphic markers were identified in the dataset providing resources for phylogenetic and diagnostic marker development for this species. On a technical level, in spite of the depth possible with 454 FLX platform, the Sanger and pyro-based sequencing methodologies were complementary as each method generated sequences unique to each platform.
Collapse
|