1
|
Pathakumari B, Liu W, Wang Q, Kong X, Liang G, Chokkakula S, Pathakamuri V, Nunna V. Comparative Evaluation of Candida Species-Specific T-Cell Immune Response in Human Peripheral Blood Mononuclear Cells. Biomedicines 2024; 12:1487. [PMID: 39062060 PMCID: PMC11274682 DOI: 10.3390/biomedicines12071487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Non-albicans Candida (NAC) species are increasingly recognized as significant contributors to candidemia infections; however, relatively less is known about the immune responses induced by these species. In this study, we compared the cytokine production ability of human peripheral blood mononuclear cells (PBMCs) upon stimulation with different Candida species (Candida spp.). We measured secreted cytokines using ELISA and checked the functional profiles of T-cell responses using multicolor flow cytometry. Although there was a differential expression of cytokines against Candida spp., significant difference were observed in the levels of IFN-γ, TNF-α, IL-10, IL-12p40, and IL-23 (p < 0.05) between Candida spp. A significant difference was observed between C. albicans and C. glabrata (p = 0.026) in the levels of TNF-α. C. glabrata showed significant differences compared to C. albicans, C. parapsilosis, and C. krusei in the levels of IL-10 (p values of 0.02, 0.04, and 0.01, respectively). Despite the percentages of CD4+ and CD8+ expressing Th1, Th2, and Th17 cytokines being higher in stimulated PBMCs, none of the Candida spp. showed significant differences. The levels of secreted IL-17A and IL-23 were consistently lower in Candida spp. regardless of the stimulus used. Here, we showed the differential regulation of Th1, Th2, and Th17 during Candida spp. stimulation of the immune system ex vivo. Additionally, our findings suggest that C. albicans elicits an IFN-γ response, whereas C. glabrata promotes IL-10 cellular responses, but this warrants additional studies to conclude this association. This investigation holds the potential to advance our comprehension of the distinct immune responses induced by Candida spp., with probable implications in designing antifungal immunotherapeutics.
Collapse
Affiliation(s)
- Balaji Pathakumari
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China; (W.L.); (Q.W.); (X.K.); (G.L.)
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China; (W.L.); (Q.W.); (X.K.); (G.L.)
| | - Qiong Wang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China; (W.L.); (Q.W.); (X.K.); (G.L.)
| | - Xue Kong
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China; (W.L.); (Q.W.); (X.K.); (G.L.)
| | - Guanzhao Liang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China; (W.L.); (Q.W.); (X.K.); (G.L.)
| | - Santosh Chokkakula
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Republic of Korea;
| | - Vasundhara Pathakamuri
- Department of Radio-Diagnosis, Sri Venkateshwara Medical College, Tirupathi 517507, India;
| | - Venkatrao Nunna
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
2
|
Pattini VC, Polaquini CR, Lemes TH, Brizzotti-Mazuchi NS, Sardi JDCO, Paziani MH, Kress MRVZ, de Almeida MTG, Regasini LO. Antifungal activity of 3,3'-dimethoxycurcumin (DMC) against dermatophytes and Candida species. Lett Appl Microbiol 2024; 77:ovae019. [PMID: 38499446 DOI: 10.1093/lambio/ovae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Dermatomycosis is an infection with global impacts caused especially by dermatophytes and Candida species. Current antifungal therapies involve drugs that face fungal resistance barriers. This clinical context emphasizes the need to discover new antifungal agents. Herein, the antifungal potential of 10 curcumin analogs was evaluated against four Candida and four dermatophyte species. The most active compound, 3,3'-dimethoxycurcumin, exhibited minimum inhibitory concentration values ranging from 1.9‒62.5 to 15.6‒62.5 µg ml-1 against dermatophytes and Candida species, respectively. According to the checkerboard method, the association between DMC and terbinafine demonstrated a synergistic effect against Trichophyton mentagrophytes and Epidermophyton floccosum. Ergosterol binding test indicated DMC forms a complex with ergosterol of Candida albicans, C. krusei, and C. tropicalis. However, results from the sorbitol protection assay indicated that DMC had no effect on the cell walls of Candida species. The in vivo toxicity, using Galleria mellonella larvae, indicated no toxic effect of DMC. Altogether, curcumin analog DMC was a promising antifungal agent with a promising ability to act against Candida and dermatophyte species.
Collapse
Affiliation(s)
- Veridianna Camilo Pattini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Carlos Roberto Polaquini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Thiago Henrique Lemes
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| | | | | | - Mário Henrique Paziani
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 05508-000, Brazil
| | - Marcia Regina von Zeska Kress
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 05508-000, Brazil
| | | | - Luis Octávio Regasini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
3
|
Arévalo-Jaimes BV, Admella J, Blanco-Cabra N, Torrents E. Culture media influences Candida parapsilosis growth, susceptibility, and virulence. Front Cell Infect Microbiol 2023; 13:1323619. [PMID: 38156315 PMCID: PMC10753817 DOI: 10.3389/fcimb.2023.1323619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Candida parapsilosis, a pathogenic yeast associated with systemic infections, exhibits metabolic adaptability in response to nutrient availability. Methods We investigated the impact of RPMI glucose supplemented (RPMId), TSB, BHI and YPD media on C. parapsilosis growth, morphology, susceptibility (caspofungin and amphotericin B), and in vivo virulence (Galleria mellonella) in planktonic and biofilm states. Results High-glucose media favors growth but hinders metabolic activity and filamentation. Media promoting carbohydrate production reduces biofilm susceptibility. Virulence differences between planktonic cells and biofilm suspensions from the same media shows that biofilm-related factors influence infection outcome depending on nutrient availability. Pseudohyphal growth occurred in biofilms under low oxygen and shear stress, but its presence is not exclusively correlated with virulence. Discussion This study provides valuable insights into the intricate interplay between nutrient availability and C. parapsilosis pathogenicity. It emphasizes the importance of considering pathogen behavior in diverse conditions when designing research protocols and therapeutic strategies.
Collapse
Affiliation(s)
- Betsy V. Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Hernandez R, Jimenez-Chávez A, De Vizcaya A, Lozano-Alvarez JA, Esquivel K, Medina-Ramírez IE. Synthesis of TiO 2-Cu 2+/CuI Nanocomposites and Evaluation of Antifungal and Cytotoxic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1900. [PMID: 37446416 DOI: 10.3390/nano13131900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Fungal infections have become a significant public health concern due to their increasing recurrence and harmful effects on plants, animals, and humans. Opportunistic pathogens (among others from the genera Candida and Aspergillus) can be present in indoor air, becoming a risk for people with suppressed immune systems. Engineered nanomaterials are novel alternatives to traditional antifungal therapy. In this work, copper(I) iodide (CuI) and a copper-doped titanium dioxide-copper(I) iodide (TiO2-Cu2+/CuI) composite nanomaterials (NMs)-were synthesized and tested as antifungal agents. The materials were synthesized using sol-gel (TiO2-Cu2+) and co-precipitation (CuI) techniques. The resulting colloids were evaluated as antifungal agents against Candida parapsilosis and Aspergillus niger strains. The NMs were characterized by XRD, HRTEM, AFM, and DLS to evaluate their physicochemical properties. The NMs present a high size dispersion and different geometrical shapes of agglomerates. The antifungal capacity of the NMs by the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) was below 15 µg/mL against Candida parapsilosis and below 600 µg/mL against Aspergillus niger for both NMs. Holotomography microscopy showed that the NMs could penetrate cell membranes causing cell death through its rupture and reactive oxygen species (ROS) production. Cytotoxicity tests showed that NMs could be safe to use at low concentrations. The synthesized nanomaterials could be potential antifungal agents for biomedical or environmental applications.
Collapse
Affiliation(s)
- Rafael Hernandez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes 20100, Mexico
| | - Arturo Jimenez-Chávez
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados del IPN, Ciudad de Mexico 07360, Mexico
| | - Andrea De Vizcaya
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados del IPN, Ciudad de Mexico 07360, Mexico
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - Juan Antonio Lozano-Alvarez
- Department of Biochemical Engineering, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes 20100, Mexico
| | - Karen Esquivel
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro 76010, Mexico
| | - Iliana E Medina-Ramírez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes 20100, Mexico
| |
Collapse
|
5
|
Glushakova АМ, Kachalkin АV. Yeast community succession in cow dung composting process. Fungal Biol 2023; 127:1075-1083. [PMID: 37344009 DOI: 10.1016/j.funbio.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/14/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Yeast complexes in the composting process of cow dung prepared to fertilize the soil for growing vegetables and fruits were studied. The average abundance of yeasts changed during the four temperature stages of the composting process. The highest abundance of yeasts, 1.38 × 104 cfu/g, was observed in the second stage of heating from 20 to 40 °C; the lowest was studied in the stage with the highest temperature (65 °C), 1.68 × 103 cfu/g. A total of 19 yeast species were observed and identified: 11 ascomycetes and 8 basidiomycetes, belonging to five subphyla of Fungi: Saccharomycotina (10), Pezizomycotina (1), Agaricomycotina (5), Pucciniomycotina (2), and Ustilaginomycotina (1). The greatest diversity of yeasts was found in the initial (20 °C) and second (heating up to 40 °C) temperature stages of composting (Aureobasidium pullulans (yeast-like fungus), Candida parapsilosis, Candida saitoana, Candida santamariae, Candida tropicalis, Curvibasidium cygneicollum, Cutaneotrichosporon moniliforme, Debaryomyces fabryi, Debaryomyces hansenii, Filobasidium magnum, Kazachstania sp., Moesziomyces bullatus, Naganishia globosa, Papiliotrema flavescens, Rhodotorula mucilaginosa, Scheffersomyces insectosa, Torulaspora delbrueckii, Vanrija musci), and the lowest in the stage of maximum heating (65 °C) (C. parapsilosis, C. tropicalis, Cyberlindnera jadinii).The opportunistic yeasts C. parapsilosis and C. tropicalis were obtained not only in the initial, second and third temperature stages of the composting process, but also in mature compost in the final stage prepared for soil application. This study shows that the cow dung, used in the farm studied did not meet the microbiological safety criteria. The reduction of opportunistic yeast species was not achieved with the composting method used. The likelihood of these species entering agricultural products via compost and soil and developing as endophytes in the internal tissues of fruits is very high. Since some strains of opportunistic Candida species from cow dung exhibited virulent characteristics (they produced hydrolytic enzymes and were resistant to antifungal compounds), additional phenotypic and genetic studies of the compost strains and their comparison with clinical isolates should be pursued.
Collapse
Affiliation(s)
- Аnna М Glushakova
- M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia.
| | - Аleksey V Kachalkin
- M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| |
Collapse
|
6
|
Hydrolytic Enzyme Production and Susceptibility to Antifungal Compounds of Opportunistic Candida parapsilosis Strains Isolated from Cucurbitaceae and Rosaceae Fruits. Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endophytic yeast species were studied in the internal tissues of ripe cultivated vegetables and fruits. A total of 19 yeast species, 11 ascomycete species, and 8 basidiomycete species were observed in the internal tissues of all fruits examined. The opportunistic yeast Candida parapsilosis was present in all plants studied. Several virulence factors (production of hydrolytic enzymes and sensitivity to antifungal agents) were examined in all 107 isolates of C. parapsilosis from the internal tissues of fruits. The most virulent isolates were found in vegetables. C. parapsilosis is widespread in nature and is often isolated from a variety of non-human sources. It is frequently involved in invasive infections that seriously affect human health. This species poses a high risk to immunocompromised individuals, such as HIV patients and surgical patients or children whose immune systems are not sufficiently mature. Since virulent isolates of Candida parapsilosis have been found in vegetables and fruits; their raw consumption may not be safe. Finally, we emphasize the importance of ongoing phenotypic and genetic studies of endophytic isolates of Candida parapsilosis and their comparison with clinical isolates.
Collapse
|
7
|
Leite-Andrade MC, de Araújo Neto LN, Buonafina-Paz MDS, de Assis Graciano dos Santos F, da Silva Alves AI, de Castro MCAB, Mori E, de Lacerda BCGV, Araújo IM, Coutinho HDM, Kowalska G, Kowalski R, Baj T, Neves RP. Antifungal Effect and Inhibition of the Virulence Mechanism of D-Limonene against Candida parapsilosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248884. [PMID: 36558017 PMCID: PMC9788451 DOI: 10.3390/molecules27248884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Yeasts from the Candida parapsilosis complex are clinically relevant due to their high virulence and pathogenicity potential, such as adherence to epithelial cells and emission of filamentous structures, as well as their low susceptibility to antifungals. D-limonene, a natural compound, emerges as a promising alternative with previously described antibacterial, antiparasitic, and antifungal activity; however, its mechanisms of action and antivirulence activity against C. parapsilosis complex species have not been elucidated. Therefore, in the present study, we aimed to evaluate the antifungal and antivirulence action, as well as the mechanism of action of D-limonene against isolates from this complex. D-limonene exhibited relevant antifungal activity against C. parapsilosis complex yeasts, as well as excellent antivirulence activity by inhibiting yeast morphogenesis and adherence to the human epithelium. Furthermore, the apoptotic mechanism induced by this compound, which is not induced by oxidative stress, represents an important target for the development of new antifungal drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Carolina Accioly Brelaz de Castro
- Laboratório de Parasitologia e Laboratório de Imunologia IAM, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Edna Mori
- Faculdade CECAPE College, São José, Juazeiro do Norte 63024-015, CE, Brazil
| | | | - Isaac Moura Araújo
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato 63105-010, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato 63105-010, CE, Brazil
- Correspondence: (H.D.M.C.); (T.B.)
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
- Correspondence: (H.D.M.C.); (T.B.)
| | - Rejane Pereira Neves
- Departamento de Micologia, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| |
Collapse
|
8
|
Jerónimo A, Olmos C, Vilacosta I, Sáez C, López J, Sanz M, Cabezón G, Pérez-Serrano JB, Zulet P, San Román JA. Contemporary comparison of infective endocarditis caused by Candida albicans and Candida parapsilosis: a cohort study. Eur J Clin Microbiol Infect Dis 2022; 41:981-987. [PMID: 35568743 DOI: 10.1007/s10096-022-04456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Among 1655 consecutive patients with infective endocarditis treated from 1998 to 2020 in three tertiary care centres, 16 were caused by Candida albicans (CAIE, n = 8) and Candida parapsilosis (CPIE, n = 8). Compared to CAIE, CPIE were more frequently community-acquired. Prosthetic valve involvement was remarkably more common among patients with CPIE. CPIE cases presented a higher rate of positive blood cultures at admission, persistently positive blood cultures after antifungals initiation and positive valve cultures. All patients but four underwent cardiac surgery. Urgent surgery was more frequently performed in CPIE. No differences regarding in-hospital mortality were documented, even after adjusting for therapeutic management.
Collapse
Affiliation(s)
- Adrián Jerónimo
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdSSC), Prof. Martín Lagos s/n, 28040, Madrid, Spain
| | - Carmen Olmos
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdSSC), Prof. Martín Lagos s/n, 28040, Madrid, Spain.
| | - Isidre Vilacosta
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdSSC), Prof. Martín Lagos s/n, 28040, Madrid, Spain
| | - Carmen Sáez
- Servicio de Medicina Interna-Infecciosas, Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, Madrid, Spain
| | - Javier López
- Servicio de Cardiología, Instituto de Ciencias del Corazón (ICICOR), CIBERCV, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Marta Sanz
- Servicio de Medicina Interna-Infecciosas, Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, Madrid, Spain
| | - Gonzalo Cabezón
- Servicio de Cardiología, Instituto de Ciencias del Corazón (ICICOR), CIBERCV, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Javier B Pérez-Serrano
- Servicio de Medicina Interna-Infecciosas, Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, Madrid, Spain
| | - Pablo Zulet
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdSSC), Prof. Martín Lagos s/n, 28040, Madrid, Spain
| | - J Alberto San Román
- Servicio de Cardiología, Instituto de Ciencias del Corazón (ICICOR), CIBERCV, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
9
|
Epidemiology of Candidemia in Children over 7 Years in a Medical Center in Turkey. Microbiol Spectr 2021; 9:e0045321. [PMID: 34550003 PMCID: PMC8519503 DOI: 10.1128/spectrum.00453-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aims of the study were to describe Candida species in children with candidemia, to determine the changing epidemiology of candidemia over time in our tertiary care hospital, and to examine the demographic and clinical characteristics of patients with candidemia caused by parapsilosis and nonparapsilosis Candida spp. From 2012 to 2018, we identified a total of 126 cases of candidemia. The most commonly isolated Candida sp. was C. parapsilosis (n = 71, 56.3%), followed by C. albicans (n = 34, 26.9%). A total of 21 candidemia episodes (16.6%) were caused by other Candida species. Patients were divided into two groups (parapsilosis and nonparapsilosis) to identify any potential differences between the groups in terms of risk factors, mortality, and antifungal resistance. The median age of the patients, the median durations of the hospital and pediatric intensive care unit stay, receipt of immunosuppressive therapy within 2 weeks of developing candidemia, the rate of using total parenteral nutrition, need for mechanical ventilation, and receipt of carbapenems were statistically significantly higher in the parapsilosis group than in the nonparapsilosis group (P = 0.020, P = 0.001, P = 0.011, P = 0.036, P = 0.002, P = 0.038, and P = 0.004, respectively). The overall 30-day mortality rates (4.2% versus 3.6%) and resistance to fluconazole (33.8% versus 32.7%) were similar between the groups (P = 0.790 and P = 0.860, respectively). The distribution of Candida strains isolated in this study was consistent with the global trend, with C. parapsilosis being the most commonly identified species. Determining local epidemiologic data at regular intervals in candidemia cases is important in terms of determining both the changing epidemiology and empirical antifungal agents. IMPORTANCE In our study, the changing epidemiology of Candida species in candidemia in children was evaluated. The dominance of Candida parapsilosis species in the changing epidemiology was remarkable. We found that fluconazole resistance was high in both parapsilosis and nonparapsilosis groups. Updating local epidemiologic data at certain intervals in candidemia cases is important in determining both the changing epidemiology and empirical antifungal agents.
Collapse
|
10
|
Abstract
Candida albicans is a major human fungal pathogen that encounters varied host environments during infection. In response to environmental cues, C. albicans switches between ovoid yeast and elongated hyphal growth forms, and this morphological plasticity contributes to virulence. Environmental changes that alter the cell's metabolic state could be sensed by sirtuins, which are NAD+-dependent deacetylases. Here, we studied the roles of three sirtuin deacetylases-Sir2, Hst1, and Hst2-in the hyphal growth of C. albicans We made single, double, and triple sirtuin knockout strains and tested their ability to switch from yeast to hyphae. We found that true hypha formation was significantly reduced by the deletion of SIR2 but not HST1 or HST2 Moreover, the expression of hypha-specific genes HWP1, ALS3, and ECE1 decreased in the sir2Δ/Δ mutant compared to the wild type. This regulation of hypha formation was likely dependent on the deacetylase activity of Sir2, as a similar defect in hypha formation was observed when an asparagine known to be required for deacetylation was mutated. Finally, we found that Sir2 and Hst1 were localized to the nucleus, with Sir2 specifically focused in the nucleolus. This nuclear localization suggests a role for Sir2 and Hst1 in regulating gene expression. In contrast, Hst2 was localized to the cytoplasm. In conclusion, our results suggest that Sir2 plays a critical and nonredundant role in hyphal growth of C. albicans IMPORTANCE Candida albicans is one of the most common causes of hospital-acquired systemic fungal infections in the United States. It can switch between ovoid yeast and elongated hyphal growth forms in response to environmental cues. This morphological transition is essential for its survival in the host. Thus, identifying regulators involved in this process can lead to new therapies. In this study, we examined the contribution of three regulators called sirtuins (Sir2, Hst1, and Hst2) to the yeast-to-hypha transition of C. albicans We found that loss of Sir2 but not Hst1 or Hst2 hampered hypha formation. Moreover, the defect was caused by the loss of the catalytic activity of Sir2. Our study may lay the groundwork for discovering novel targets for antifungal therapies.
Collapse
|
11
|
Qadri H, Qureshi MF, Mir MA, Shah AH. Glucose - The X factor for the survival of human fungal pathogens and disease progression in the host. Microbiol Res 2021; 247:126725. [PMID: 33676311 DOI: 10.1016/j.micres.2021.126725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 01/04/2023]
Abstract
The incidence of human fungal infections is increasing due to the expansion of the immunocompromised patient population. The continuous use of different antifungal agents has eventually resulted in the establishment of resistant fungal species. The fungal pathogens unfold multiple resistance strategies to successfully tackle the effect of different antifungal agents. For the successful colonization and establishment of infection inside the host, the pathogenic fungi switch to the process of metabolic flexibility to regulate distinct nutrient uptake systems as well as to modulate their metabolism accordingly. Glucose the most favourable carbon source helps carry out the important survival and niche colonization processes. Adopting glucose as the center, this review has been put forward to provide an outline of the important processes like growth, the progression of infection, and the metabolism regulated by glucose, affecting the pathogenicity and virulence traits in the human pathogenic fungi. This could help in the identification of better treatment options and appropriate target-oriented antifungal drugs based on the glucose-regulated pathways and processes. In the article, we have also presented a summary of the novel studies and findings pointing to glucose-based potential therapeutic avenues to be explored to tackle the problem of globally increasing multidrug-resistant human fungal infections.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Munazah Fazal Qureshi
- Department of Biotechnology, Central University of Kashmir, Ganderbal, 191201, J&K, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India.
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India.
| |
Collapse
|
12
|
Pál SE, Tóth R, Nosanchuk JD, Vágvölgyi C, Németh T, Gácser A. A Candida parapsilosis Overexpression Collection Reveals Genes Required for Pathogenesis. J Fungi (Basel) 2021; 7:jof7020097. [PMID: 33572958 PMCID: PMC7911391 DOI: 10.3390/jof7020097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Relative to the vast data regarding the virulence mechanisms of Candida albicans, there is limited knowledge on the emerging opportunistic human pathogen Candida parapsilosis. The aim of this study was to generate and characterize an overexpression mutant collection to identify and explore virulence factors in C. parapsilosis. With the obtained mutants, we investigated stress tolerance, morphology switch, biofilm formation, phagocytosis, and in vivo virulence in Galleria mellonella larvae and mouse models. In order to evaluate the results, we compared the data from the C. parapsilosis overexpression collection analysis to the results derived from previous deletion mutant library characterizations. Of the 37 overexpression C. parapsilosis mutants, we identified eight with altered phenotypes compared to the controls. This work is the first report to identify CPAR2_107240, CPAR2_108840, CPAR2_302400, CPAR2_406400, and CPAR2_602820 as contributors to C. parapsilosis virulence by regulating functions associated with host-pathogen interactions and biofilm formation. Our findings also confirmed the role of CPAR2_109520, CPAR2_200040, and CPAR2_500180 in pathogenesis. This study was the first attempt to use an overexpression strategy to systematically assess gene function in C. parapsilosis, and our results demonstrate that this approach is effective for such investigations.
Collapse
Affiliation(s)
- Sára E. Pál
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Joshua D. Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Tibor Németh
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, 6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
13
|
Candida parapsilosis Colony Morphotype Forecasts Biofilm Formation of Clinical Isolates. J Fungi (Basel) 2021; 7:jof7010033. [PMID: 33430377 PMCID: PMC7827155 DOI: 10.3390/jof7010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Candida parapsilosis is a frequent cause of fungal bloodstream infections, especially in critically ill neonates or immunocompromised patients. Due to the formation of biofilms, the use of indwelling catheters and other medical devices increases the risk of infection and complicates treatment, as cells embedded in biofilms display reduced drug susceptibility. Therefore, biofilm formation may be a significant clinical parameter, guiding downstream therapeutic choices. Here, we phenotypically characterized 120 selected isolates out of a prospective collection of 215 clinical C. parapsilosis isolates, determining biofilm formation, major emerging colony morphotype, and antifungal drug susceptibility of the isolates and their biofilms. In our isolate set, increased biofilm formation capacity was independent of body site of isolation and not predictable using standard or modified European Committee on Antimicrobial Susceptibility Testing (EUCAST) drug susceptibility testing protocols. In contrast, biofilm formation was strongly correlated with the appearance of non-smooth colony morphotypes and invasiveness into agar plates. Our data suggest that the observation of non-smooth colony morphotypes in cultures of C. parapsilosis may help as an indicator to consider the initiation of anti-biofilm-active therapy, such as the switch from azole- to echinocandin- or polyene-based strategies, especially in case of infections by potent biofilm-forming strains.
Collapse
|
14
|
Gómez-Molero E, Willis JR, Dudakova A, Carreté L, Weig M, Groß U, Gácser A, Gabaldón T, Bader O. Phenotypic Variability in a Coinfection With Three Independent Candida parapsilosis Lineages. Front Microbiol 2020; 11:1994. [PMID: 32983018 PMCID: PMC7481391 DOI: 10.3389/fmicb.2020.01994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
The human pathogenic yeast Candida parapsilosis has gained significant importance over the past decades as one of the principal causes of fungal bloodstream infections. Isolates of C. parapsilosis are known to be able to switch between several different colony morphologies in vitro, which are correlated with different cell shapes, altered cell surface properties, and thus different capacities to form biofilms on indwelling medical devices. In a set of six clinical specimens from a single surgery patient yielding stable smooth- as well as crepe-morphology isolates, we investigated the differences between five of them on a phenotypic and genomic level. In contrast to the initial assumption that they were switched forms of a clonal strain, karyotyping and genome sequencing showed that the patient was colonized by at least three distinct linages. Statistical analysis placed these groups distantly across the population of C. parapsilosis. Interestingly the single blood culture isolate was of smooth morphology and matched with an isolate from the patient’s nose of similar morphology. Strong variation between the isolates was seen in adhesin-encoding genes, where repeat regions showed significant variation in length and repeat-numbers, most strikingly in HWP1 of the smooth isolates. Although no differences in drug susceptibility were evident, the high phylogenetic distance separating the individual strains highlights the need for testing of multiple colonies in routine practice. The absence of biofilm formation in the blood stream isolate indicates a lack of respective adhesins in the cell wall, in turn pointing toward lack of adhesion as a positively contributing factor for dissemination.
Collapse
Affiliation(s)
- Emilia Gómez-Molero
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jesse R Willis
- Comparative Genomics Group, CRG-Centre for Genomic Regulation, Barcelona, Spain
| | - Anna Dudakova
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Laia Carreté
- Comparative Genomics Group, CRG-Centre for Genomic Regulation, Barcelona, Spain
| | - Michael Weig
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Groß
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Attila Gácser
- Department of Microbiology, University of Szeged Interdisciplinary Excellence Centre, Szeged, Hungary.,MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Comparative Genomics Group, CRG-Centre for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
15
|
Corbett KM, de Smidt O. Culture-dependent diversity profiling of spoilage yeasts species by PCR-RFLP comparative analysis. FOOD SCI TECHNOL INT 2019; 25:671-679. [PMID: 31272221 DOI: 10.1177/1082013219856779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spoilage caused by yeasts is a constant, widespread problem in the beverage industry that can result in major economic losses. Fruit juices provide an environment that allows the proliferation of yeast. Some factories in South Africa are not equipped with laboratory facilities to identify spoilage yeasts and outsourcing becomes a prolonged process which obstructs corrective action planning. This study aimed to establish yeast diversity and apply a rapid method for preliminary identification of spoilage yeasts associated with a small-scale fruit juice bottling factory. Yeast population in the factory was determined by isolation from the production environment, process equipment and spoiled products. PCR-RFLP analysis targeting the 5.8S-ITS region and D1/D2 sequencing was used for identification. A total of 207 yeasts belonging to 10 different genera (Candida, Lodderomyces, Wickerhamomyces, Yarrowia, Zygosaccharomyces, Zygoascus, Cryptococcus, Filobasidium, Rhodotorula/Cystobasidium and Trichosporon) were isolated and identified from the production environment and processing equipment. Candida intermedia, C. parapsilosis and Lodderomyces elongisporus were widely distributed in the factory. Zygosaccharomyces bailii, Z. bisporus, Zygoascus hellenicus and Saccharomyces cerevisiae were isolated from the spoiled products. The data provided a yeast control panel that was used successfully to identify unknown yeasts in spoiled products from this factory using polymerase chain reaction-restriction length polymorphism (PCR-RFLP) comparative analysis.
Collapse
Affiliation(s)
- Kereng M Corbett
- Centre for Applied Food Security and -Biotechnology (CAFSaB), Central University of Technology, Bloemfontein, South Africa
| | - Olga de Smidt
- Centre for Applied Food Security and -Biotechnology (CAFSaB), Central University of Technology, Bloemfontein, South Africa
| |
Collapse
|
16
|
Abstract
Patients with suppressed immunity are at the highest risk for hospital-acquired infections. Among these, invasive candidiasis is the most prevalent systemic fungal nosocomial infection. Over recent decades, the combined prevalence of non-albicans Candida species outranked Candida albicans infections in several geographical regions worldwide, highlighting the need to understand their pathobiology in order to develop effective treatment and to prevent future outbreaks. Candida parapsilosis is the second or third most frequently isolated Candida species from patients. Besides being highly prevalent, its biology differs markedly from that of C. albicans, which may be associated with C. parapsilosis' increased incidence. Differences in virulence, regulatory and antifungal drug resistance mechanisms, and the patient groups at risk indicate that conclusions drawn from C. albicans pathobiology cannot be simply extrapolated to C. parapsilosis Such species-specific characteristics may also influence their recognition and elimination by the host and the efficacy of antifungal drugs. Due to the availability of high-throughput, state-of-the-art experimental tools and molecular genetic methods adapted to C. parapsilosis, genome and transcriptome studies are now available that greatly contribute to our understanding of what makes this species a threat. In this review, we summarize 10 years of findings on C. parapsilosis pathogenesis, including the species' genetic properties, transcriptome studies, host responses, and molecular mechanisms of virulence. Antifungal susceptibility studies and clinician perspectives are discussed. We also present regional incidence reports in order to provide an updated worldwide epidemiology summary.
Collapse
|
17
|
Herek TC, Menegazzo VR, Ogaki MB, Perini HF, Maia LF, Furlaneto MC. Biofilm formation by blood isolates of Candida parapsilosis sensu stricto in the presence of a hyperglycidic solution at comparable concentrations of total parenteral nutrition. Rev Soc Bras Med Trop 2019; 52:e20180182. [PMID: 30652791 DOI: 10.1590/0037-8682-0182-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/04/2018] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Administration of total parenteral nutrition (TPN) via catheters increases the risk for candidemia from Candida parapsilosis. METHODS C. parapsilosis sensu stricto blood isolates were evaluated for ability total biomass biofilm formation and morphogenesis in presence of glucose at TPN equivalent concentrations. RESULTS Biofilms were increased at high glucose concentrations (25-30%) compared to the control medium. Significant increase in filamentous forms was observed in cultures with 30% glucose. CONCLUSIONS Biofilm formation by C. parapsilosis sensu stricto in hyperglycidic medium may contribute to its pathogenic potential for fungemia related to TPN catheters.
Collapse
Affiliation(s)
| | | | | | - Hugo Felix Perini
- Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - Luciana Furlaneto Maia
- Departamento de Tecnologia em Alimentos, Universidade Tecnológica Federal do Paraná, PR, Brasil
| | | |
Collapse
|
18
|
Thomaz DY, de Almeida JN, Lima GME, Nunes MDO, Camargo CH, Grenfell RDC, Benard G, Del Negro GMB. An Azole-Resistant Candida parapsilosis Outbreak: Clonal Persistence in the Intensive Care Unit of a Brazilian Teaching Hospital. Front Microbiol 2018; 9:2997. [PMID: 30568646 PMCID: PMC6290035 DOI: 10.3389/fmicb.2018.02997] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/20/2018] [Indexed: 01/12/2023] Open
Abstract
The incidence of candidemia by the Candida parapsilosis complex has increased considerably in recent decades, frequently related to use of indwelling intravascular catheters. The ability of this pathogen to colonize healthcare workers (HCW)' hands, and to form biofilm on medical devices has been associated with the occurrence of nosocomial outbreaks and high mortality rates. Fluconazole has been the leading antifungal drug for the treatment of invasive candidiasis in developing countries. However, azole-resistant C. parapsilosis isolates are emerging worldwide, including in Brazil. Few studies have correlated outbreak infections due to C. parapsilosis with virulence factors, such as biofilm production. We thus conducted a microbiological investigation of C. parapsilosis complex isolates from a Brazilian teaching hospital. Additionally, we identified a previously unrecognized outbreak caused by a persistent azole-resistant C. parapsilosis (sensu stricto) clone in the intensive care unit (ICU), correlating it with the main clinical data from the patients with invasive candidiasis. The molecular identification of the isolates was carried out by PCR-RFLP assay; antifungal susceptibility and biofilm formation were also evaluated. The genotyping of all C. parapsilosis (sensu stricto) was performed by microsatellite analysis and the presence of ERG11 mutations was assessed in the azole non-susceptible isolates. Fourteen C. parapsilosis (sensu stricto) isolates were recovered from patients with invasive candidiasis, eight being fluconazole and voriconazole-resistant, and two intermediate only to fluconazole (FLC). All non-susceptible isolates showed a similar pattern of biofilm formation with low biomass and metabolic activity. The A395T mutation in ERG11 was detected exclusively among the azole-resistant isolates. According to the microsatellite analysis, all azole non-susceptible isolates from the adult ICU were clustered together indicating the occurrence of an outbreak. Regarding clinical data, all patients infected by the clonal non-susceptible isolates and none of the patients infected by the susceptible isolates had been previously exposed to corticosteroids (p = 0.001), while the remaining characteristics showed no statistical significance. The current study revealed the persistence of an azole non-susceptible C. parapsilosis clone with low capacity to form biofilm over two years in the adult ICU. These results reinforce the need of epidemiological surveillance and monitoring antifungal susceptibility of C. parapsilosis isolates in hospital wards.
Collapse
Affiliation(s)
- Danilo Yamamoto Thomaz
- Laboratory of Medical Mycology-LIM-53, Clinical Dermatology Division, Hospital das Clínicas FMUSP and Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - João Nobrega de Almeida
- Laboratory of Medical Mycology-LIM-53, Clinical Dermatology Division, Hospital das Clínicas FMUSP and Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil.,Central Laboratory Division-LIM-03, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Glaucia Moreira Espindola Lima
- Laboratory of Clinical Analyzes, Hospital Universitário Maria Aparecida Pedrossian, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Maína de Oliveira Nunes
- Laboratory of Clinical Analyzes, Hospital Universitário Maria Aparecida Pedrossian, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | | | | | - Gil Benard
- Laboratory of Medical Mycology-LIM-53, Clinical Dermatology Division, Hospital das Clínicas FMUSP and Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Gilda M B Del Negro
- Laboratory of Medical Mycology-LIM-53, Clinical Dermatology Division, Hospital das Clínicas FMUSP and Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Genetic Diversity and Antifungal Susceptibility of Candida parapsilosis Sensu Stricto Isolated from Bloodstream Infections in Turkish Patients. Mycopathologia 2018; 183:701-708. [PMID: 29725811 DOI: 10.1007/s11046-018-0261-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Candida parapsilosis sensu stricto is an emerging cause of hospital-acquired Candida infections, predominantly in southern Europe, South America, and Asia. We investigated the genetic diversity and antifungal susceptibility profile of 170 independent C. parapsilosis sensu stricto strains obtained from patients with candidemia who were treated at the Ege University Hospital in Izmir, Turkey, between 2006 and 2014. The identity of each strain was confirmed via PCR amplification and digestion of the secondary alcohol dehydrogenase-encoding gene. The 24-h geometric mean minimum inhibitory concentrations of the antifungal agents, in increasing order, were as follows: posaconazole, 0.10 µg/mL; voriconazole, 0.21 µg/mL; caspofungin, 0.38 µg/mL; amphotericin B, 0.61 µg/mL; anidulafungin, 0.68 µg/mL; and fluconazole, 2.95 µg/mL. Microsatellite genotyping of the isolates (using fluorescently labeled primers and a panel of four different short-nucleotide repeat fragments) identified 25, 17, 17, and 8 different allelic genotypes at the CP6, B5, CP4, and CP1 locus, respectively. Posaconazole, caspofungin, and amphotericin B showed the greatest in vitro activity of the tested systemic azole, echinocandin, and polyene agents, respectively, and the observed antifungal susceptibility of the isolates was shown to be independent of their isolation source. We obtained a combined discriminatory power of 0.99 with a total of 130 genotypes for 170 isolates tested. Finally, microsatellite profiling analysis confirmed the presence of identical genotype between separate isolates, supporting that effective surveillance and infection-prevention programs are essential to limit the impact of C. parapsilosis sensu stricto on hospitalized patients' health.
Collapse
|
20
|
Defosse TA, Le Govic Y, Courdavault V, Clastre M, Vandeputte P, Chabasse D, Bouchara JP, Giglioli-Guivarc'h N, Papon N. [Yeasts from the CTG clade (Candida clade): Biology, impact in human health, and biotechnological applications]. J Mycol Med 2018; 28:257-268. [PMID: 29545121 DOI: 10.1016/j.mycmed.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 11/29/2022]
Abstract
Among the subdivision of Saccharomycotina (ascomycetes budding yeasts), the CTG clade (formerly the Candida clade) includes species that display a particular genetic code. In these yeasts, the CTG codon is predominantly translated as a serine instead of a leucine residue. It is now well-known that some CTG clade species have a major impact on human and its activities. Some of them are recognized as opportunistic agents of fungal infections termed candidiasis. In addition, another series of species belonging to the CTG clade draws the attention of some research groups because they exhibit a strong potential in various areas of biotechnology such as biological control, bioremediation, but also in the production of valuable biocompounds (biofuel, vitamins, sweeteners, industrial enzymes). Here we provide an overview of recent advances concerning the biology, clinical relevance, and currently tested biotechnological applications of species of the CTG clade. Future directions for scientific research on these particular yeasts are also discussed.
Collapse
Affiliation(s)
- T A Defosse
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - Y Le Govic
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - V Courdavault
- EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - M Clastre
- EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - P Vandeputte
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - D Chabasse
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - J-P Bouchara
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - N Giglioli-Guivarc'h
- EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - N Papon
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France.
| |
Collapse
|
21
|
Döğen A, Metin B, Ilkit M, de Hoog GS, Heitman J. MTL genotypes, phenotypic switching, and susceptibility profiles of Candida parapsilosis species group compared to Lodderomyces elongisporus. PLoS One 2017; 12:e0182653. [PMID: 28771588 PMCID: PMC5542550 DOI: 10.1371/journal.pone.0182653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
Reference isolates of Candida parapsilosis (n = 8), Candida metapsilosis (n = 6), Candida orthopsilosis (n = 7), and Lodderomyces elongisporus (n = 11) were analyzed to gain insight into their pathobiology and virulence mechanisms. Initial evaluation using BBL Chromagar Candida medium misidentified L. elongisporus isolates as C. albicans. Polymerase chain reaction analysis of isolate MTL idiomorphs revealed that all C. parapsilosis isolates were MTLa homozygous and no MTL α1, α2, a1, or a2 gene was detected in L. elongisporus isolates. For C. orthopsilosis, two isolates were MTLa homozygous and five were MTL-heterozygous. Similarly, one C. metapsilosis isolate was MTLα homozygous whereas five were MTL-heterozygous. Isolate phenotypic switching analysis revealed potential phenotypic switching in the MTLα homozygous C. metapsilosis isolate, resulting in concomitant elongated cell formation. Minimum inhibitory concentrations of fluconazole (FLC) and FK506, alone or in combination, were determined by checkerboard assay, with data analyzed using the fractional inhibitory concentration index model. Synergistic or additive effects of these compounds were commonly observed in C. parapsilosis and L. elongisporus isolates. No killer activity was observed in the studied isolates, as determined phenotypically. No significant difference in virulence was seen for the four species in a Galleria mellonella model (P > 0.05). In conclusion, our results demonstrated phenotypic switching of C. metapsilosis CBS 2315 and that FLC and FK506 represent a promising drug combination against C. parapsilosis and L. elongisporus. The findings of the present study contribute to our understanding of the biology, diagnosis, and new possible treatments of the C. parapsilosis species group and L. elongisporus.
Collapse
Affiliation(s)
- Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine University of Çukurova, Adana, Turkey
- * E-mail:
| | - G. Sybren de Hoog
- Westerdijk Fungal Biodiversity Centre, Utrecht, the Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
22
|
Tóth A, Zajta E, Csonka K, Vágvölgyi C, Netea MG, Gácser A. Specific pathways mediating inflammasome activation by Candida parapsilosis. Sci Rep 2017; 7:43129. [PMID: 28225025 PMCID: PMC5320503 DOI: 10.1038/srep43129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/19/2017] [Indexed: 12/22/2022] Open
Abstract
Candida albicans and C. parapsilosis are human pathogens causing severe infections. The NLRP3 inflammasome plays a crucial role in host defence against C. albicans, but it has been previously unknown whether C. parapsilosis activates this complex. Here we show that C. parapsilosis induces caspase-1 activation and interleukin-1β (IL-1β) secretion in THP-1, as well as primary, human macrophages. IL-1β secretion was dependent on NLRP3, K+-efflux, TLR4, IRAK, Syk, caspase-1, caspase-8 and NADPH-oxidase. Importantly, while C. albicans induced robust IL-1β release after 4 h, C. parapsilosis was not able to stimulate the production of IL-1β after this short incubation period. We also found that C. parapsilosis was phagocytosed to a lesser extent, and induced significantly lower ROS production and lysosomal cathepsin B release compared to C. albicans, suggesting that the low extent of inflammasome activation by C. parapsilosis may result from a delay in the so-called "signal 2". In conclusion, this is the first study to examine the molecular pathways responsible for the IL-1β production in response to a non-albicans Candida species, and these results enhance our understanding about the immune response against C. parapsilosis.
Collapse
Affiliation(s)
- Adél Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Erik Zajta
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Katalin Csonka
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Efficient bioreduction of 2-hydroxyacetophenone to ( S )-1-phenyl-1, 2-ethanediol through homologous expression of ( S )-carbonyl reductase II in Candida parapsilosis CCTCC M203011. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Park GN, Kim SH, Kang HS, Lee HR, Jo HJ, Jeoung HY, An DJ, Chang KS. Isolation frequency and epidemiological characterization of yeast-like fungi and co-infected bacteria isolated from clinical patient. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/jyfr2015.0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Pérez-García LA, Csonka K, Flores-Carreón A, Estrada-Mata E, Mellado-Mojica E, Németh T, López-Ramírez LA, Toth R, López MG, Vizler C, Marton A, Tóth A, Nosanchuk JD, Gácser A, Mora-Montes HM. Role of Protein Glycosylation in Candida parapsilosis Cell Wall Integrity and Host Interaction. Front Microbiol 2016; 7:306. [PMID: 27014229 PMCID: PMC4781877 DOI: 10.3389/fmicb.2016.00306] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/24/2016] [Indexed: 11/13/2022] Open
Abstract
Candida parapsilosis is an important, emerging opportunistic fungal pathogen. Highly mannosylated fungal cell wall proteins are initial contact points with host immune systems. In Candida albicans, Och1 is a Golgi α1,6-mannosyltransferase that plays a key role in the elaboration of the N-linked mannan outer chain. Here, we disrupted C. parapsilosis OCH1 to gain insights into the contribution of N-linked mannosylation to cell fitness and to interactions with immune cells. Loss of Och1 in C. parapsilosis resulted in cellular aggregation, failure of morphogenesis, enhanced susceptibility to cell wall perturbing agents and defects in wall composition. We removed the cell wall O-linked mannans by β-elimination, and assessed the relevance of mannans during interaction with human monocytes. Results indicated that O-linked mannans are important for IL-1β stimulation in a dectin-1 and TLR4-dependent pathway; whereas both, N- and O-linked mannans are equally important ligands for TNFα and IL-6 stimulation, but neither is involved in IL-10 production. Furthermore, mice infected with C. parapsilosis och1Δ null mutant cells had significantly lower fungal burdens compared to wild-type (WT)-challenged counterparts. Therefore, our data are the first to demonstrate that C. parapsilosis N- and O-linked mannans have different roles in host interactions than those reported for C. albicans.
Collapse
Affiliation(s)
- Luis A Pérez-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| | - Katalin Csonka
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Arturo Flores-Carreón
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| | - Eine Estrada-Mata
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| | - Erika Mellado-Mojica
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - Tibor Németh
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Luz A López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| | - Renata Toth
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Mercedes G López
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - Csaba Vizler
- Biological Research Centre, Hungarian Academy of Sciences Szeged, Hungary
| | - Annamaria Marton
- Biological Research Centre, Hungarian Academy of Sciences Szeged, Hungary
| | - Adél Tóth
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Joshua D Nosanchuk
- Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY, USA
| | - Attila Gácser
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| |
Collapse
|
26
|
Kołaczkowska A, Kołaczkowski M. Drug resistance mechanisms and their regulation in non-albicans Candida species. J Antimicrob Chemother 2016; 71:1438-50. [PMID: 26801081 DOI: 10.1093/jac/dkv445] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fungal pathogens use various mechanisms to survive exposure to drugs. Prolonged treatment very often leads to the stepwise acquisition of resistance. The limited number of antifungal therapeutics and their mostly fungistatic rather than fungicidal character facilitates selection of resistant strains. These are able to cope with cytotoxic molecules by acquisition of appropriate mutations, re-wiring gene expression and metabolic adjustments. Recent evidence points to the paramount importance of the permeability barrier and cell wall integrity in the process of adaptation to high drug concentrations. Molecular details of basal and acquired drug resistance are best characterized in the most frequent human fungal pathogen, Candida albicans Effector genes directly related to the acquisition of elevated tolerance of this species to azole and echinocandin drugs are well described. The emergence of high-level drug resistance against intrinsically lower susceptibility to azoles in yeast species other than C. albicans is, however, of particular concern. This is due to their steadily increasing contribution to high mortality rates associated with disseminated infections. Recent findings concerning underlying mechanisms associated with elevated drug resistance suggest a link to cell wall and plasma membrane metabolism in non-albicans Candida species.
Collapse
Affiliation(s)
- Anna Kołaczkowska
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Norwida 31, PL 50-375, Wroclaw, Poland
| | - Marcin Kołaczkowski
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, PL50-368, Wroclaw, Poland
| |
Collapse
|
27
|
Tóth R, Alonso MF, Bain JM, Vágvölgyi C, Erwig LP, Gácser A. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response. Front Microbiol 2015; 6:1102. [PMID: 26528256 PMCID: PMC4602145 DOI: 10.3389/fmicb.2015.01102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/24/2015] [Indexed: 01/12/2023] Open
Abstract
Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure, and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as Candida parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response toward this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi's virulence by detecting altered innate cellular responses. In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host–pathogen interactions.
Collapse
Affiliation(s)
- Renáta Tóth
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Maria F Alonso
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK
| | - Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged Szeged, Hungary ; Botany and Microbiology Department, King Saud University Riyadh, Saudi Arabia
| | - Lars-Peter Erwig
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK
| | - Attila Gácser
- Department of Microbiology, University of Szeged Szeged, Hungary
| |
Collapse
|
28
|
Pryszcz LP, Németh T, Saus E, Ksiezopolska E, Hegedűsová E, Nosek J, Wolfe KH, Gacser A, Gabaldón T. The Genomic Aftermath of Hybridization in the Opportunistic Pathogen Candida metapsilosis. PLoS Genet 2015; 11:e1005626. [PMID: 26517373 PMCID: PMC4627764 DOI: 10.1371/journal.pgen.1005626] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/05/2015] [Indexed: 01/17/2023] Open
Abstract
Candida metapsilosis is a rarely-isolated, opportunistic pathogen that belongs to a clade of pathogenic yeasts known as the C. parapsilosis sensu lato species complex. To gain insight into the recent evolution of C. metapsilosis and the genetic basis of its virulence, we sequenced the genome of 11 clinical isolates from various locations, which we compared to each other and to the available genomes of the two remaining members of the complex: C. orthopsilosis and C. parapsilosis. Unexpectedly, we found compelling genomic evidence that C. metapsilosis is a highly heterozygous hybrid species, with all sequenced clinical strains resulting from the same past hybridization event involving two parental lineages that were approximately 4.5% divergent in sequence. This result indicates that the parental species are non-pathogenic, but that hybridization between them formed a new opportunistic pathogen, C. metapsilosis, that has achieved a worldwide distribution. We show that these hybrids are diploid and we identified strains carrying loci for both alternative mating types, which supports mating as the initial mechanism for hybrid formation. We trace the aftermath of this hybridization at the genomic level, and reconstruct the evolutionary relationships among the different strains. Recombination and introgression -resulting in loss of heterozygosis- between the two subgenomes have been rampant, and includes the partial overwriting of the MTLa mating locus in all strains. Collectively, our results shed light on the recent genomic evolution within the C. parapsilosis sensu lato complex, and argue for a re-definition of species within this clade, with at least five distinct homozygous lineages, some of which having the ability to form hybrids.
Collapse
Affiliation(s)
- Leszek P. Pryszcz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Tibor Németh
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Ester Saus
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ewa Ksiezopolska
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eva Hegedűsová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Kenneth H. Wolfe
- UCD Conway Institute, School of Medicine & Medical Science, University College Dublin, Dublin, Ireland
| | - Attila Gacser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
29
|
Tiwari V, Hui M, Rai M. Incidence of Candida Species in Urinary Tract Infections and Their Control by Using Bioactive Compounds Occurring in Medicinal Plants. Med Mycol 2015. [DOI: 10.1201/b18707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
30
|
Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity. Antonie van Leeuwenhoek 2015; 108:391-402. [PMID: 26036671 DOI: 10.1007/s10482-015-0492-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/24/2015] [Indexed: 10/23/2022]
Abstract
Arnica montana L. is a medical plant of the Asteraceae family and grows preferably on nutrient poor soils in mountainous environments. Such surroundings are known to make plants dependent on symbiosis with other organisms. Up to now only arbuscular mycorrhizal fungi were found to act as endophytic symbiosis partners for A. montana. Here we identified five Streptomyces strains, microorganisms also known to occur as endophytes in plants and to produce a huge variety of active secondary metabolites, as inhabitants of A. montana. The secondary metabolite spectrum of these strains does not contain sesquiterpene lactones, but consists of the glutarimide antibiotics cycloheximide and actiphenol as well as the diketopiperazines cyclo-prolyl-valyl, cyclo-prolyl-isoleucyl, cyclo-prolyl-leucyl and cyclo-prolyl-phenylalanyl. Notably, genome analysis of one strain was performed and indicated a huge genome size with a high number of natural products gene clusters among which genes for cycloheximide production were detected. Only weak activity against the Gram-positive bacterium Staphylococcus aureus was revealed, but the extracts showed a marked cytotoxic activity as well as an antifungal activity against Candida parapsilosis and Fusarium verticillioides. Altogether, our results provide evidence that A. montana and its endophytic Streptomyces benefit from each other by completing their protection against competitors and pathogens and by exchanging plant growth promoting signals with nutrients.
Collapse
|
31
|
Cordeiro RDA, Macedo RDB, Teixeira CEC, Marques FJDF, Bandeira TDJPG, Moreira JLB, Brilhante RSN, Rocha MFG, Sidrim JJC. The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex. J Med Microbiol 2014; 63:936-944. [PMID: 24722799 DOI: 10.1099/jmm.0.073478-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Candida parapsilosis complex comprises three closely related species, C. parapsilosis sensu stricto, Candida metapsilosis and Candida orthopsilosis. In the last decade, antifungal resistance to azoles and caspofungin among C. parapsilosis sensu lato strains has been considered a matter of concern worldwide. In the present study, we evaluated the synergistic potential of antifungals and the calcineurin inhibitor cyclosporin A (Cys) against planktonic and biofilms of C. parapsilosis complex from clinical sources. Susceptibility assays with amphotericin, fluconazole, voriconazole, caspofungin and Cys were performed by microdilution in accordance with Clinical and Laboratory Standards Institute guidelines. Synergy testing against planktonic cells of C. parapsilosis sensu lato strains was assessed by the chequerboard method. Combinations formed by antifungals with Cys were evaluated against mature biofilms in microtitre plates. No differences in the antifungal susceptibility pattern among species were observed, but C. parapsilosis sensu stricto strains were more susceptible to Cys than C. orthopsilosis and C. metapsilosis. Synergism between antifungals and Cys was observed in C. parapsilosis sensu lato strains. Combinations formed by antifungals and Cys were able to prevent biofilm formation and showed an inhibitory effect against mature biofilms of C. parapsilosis sensu stricto, C. metapsilosis and C. orthopsilosis. These results strengthen the potential of calcineurin inhibition as a promising approach to enhance the efficiency of antifungal drugs.
Collapse
Affiliation(s)
- Rossana de Aguiar Cordeiro
- Department of Clinical Medicine, School of Medicine, Post-Graduation Program in Medicine Science, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ramila de Brito Macedo
- Department of Clinical Medicine, School of Medicine, Post-Graduation Program in Medicine Science, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Carlos Eduardo Cordeiro Teixeira
- Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisca Jakelyne de Farias Marques
- Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Tereza de Jesus Pinheiro Gomes Bandeira
- Christus College, School of Medicine, Fortaleza, Ceará, Brazil.,LabPasteur-DASA Laboratory, Fortaleza, Ceará, Brazil.,Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Luciano Bezerra Moreira
- Department of Pathology and Legal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Department of Clinical Medicine, School of Medicine, Post-Graduation Program in Medicine Science, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- School of Veterinary, Postgraduate Program in Veterinary Science, State University of Ceará, Fortaleza, Ceará, Brazil.,Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
32
|
De Carolis E, Hensgens LAM, Vella A, Posteraro B, Sanguinetti M, Senesi S, Tavanti A. Identification and typing of the Candida parapsilosis complex: MALDI-TOF MS vs. AFLP. Med Mycol 2014; 52:123-30. [PMID: 24577004 DOI: 10.1093/mmy/myt009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study we compare the capability of amplification fragment-length polymorphism (AFLP) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify and subtype isolates of members of the Candida parapsilosis complex (C. parapsilosis, C. orthopsilosis, C. metapsilosis) and Lodderomyces elongisporus, which cannot be differentiated with biochemical methods. Both techniques correctly identified all isolates included in this study and clustered isolates within the different species. DNA-based and mass spectrum-based dendrograms yielded similar outcomes with regard to phylogenetic distance within C. orthopsilosis and C. parapsilosis species. However, a different clustering was obtained for C. metapsilosis for which AFLP was highly effective in differentiating. While MALDI-TOF MS was found to be a reliable method for species-level identification, further studies are required to assess its value as a fungal typing tool.
Collapse
Affiliation(s)
- Elena De Carolis
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Abi-chacra ÉA, Souza LO, Cruz LP, Braga-Silva LA, Gonçalves DS, Sodré CL, Ribeiro MD, Seabra SH, Figueiredo-Carvalho MH, Barbedo LS, Zancopé-Oliveira RM, Ziccardi M, Santos AL. Phenotypical properties associated with virulence from clinical isolates belonging to theCandida parapsilosiscomplex. FEMS Yeast Res 2013; 13:831-48. [DOI: 10.1111/1567-1364.12092] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/22/2013] [Accepted: 09/07/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Érika A. Abi-chacra
- Laboratório de Investigação de Peptidases (LIP); Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes (IMPG); Centro de Ciências da Saúde (CCS); Universidade Federal do Rio de Janeiro (UFRJ); Rio de Janeiro Brazil
| | - Lucieri O.P. Souza
- Laboratório de Investigação de Peptidases (LIP); Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes (IMPG); Centro de Ciências da Saúde (CCS); Universidade Federal do Rio de Janeiro (UFRJ); Rio de Janeiro Brazil
| | - Lucas P. Cruz
- Laboratório de Investigação de Peptidases (LIP); Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes (IMPG); Centro de Ciências da Saúde (CCS); Universidade Federal do Rio de Janeiro (UFRJ); Rio de Janeiro Brazil
| | - Lys A. Braga-Silva
- Laboratório de Investigação de Peptidases (LIP); Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes (IMPG); Centro de Ciências da Saúde (CCS); Universidade Federal do Rio de Janeiro (UFRJ); Rio de Janeiro Brazil
- Programa de Pós-Graduação em Bioquímica; Instituto de Química; UFRJ; Rio de Janeiro Brazil
| | - Diego S. Gonçalves
- Laboratório de Investigação de Peptidases (LIP); Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes (IMPG); Centro de Ciências da Saúde (CCS); Universidade Federal do Rio de Janeiro (UFRJ); Rio de Janeiro Brazil
- Programa de Pós-Graduação em Bioquímica; Instituto de Química; UFRJ; Rio de Janeiro Brazil
| | - Cátia L. Sodré
- Laboratório de Investigação de Peptidases (LIP); Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes (IMPG); Centro de Ciências da Saúde (CCS); Universidade Federal do Rio de Janeiro (UFRJ); Rio de Janeiro Brazil
- Departamento de Biologia Celular e Molecular; Instituto de Biologia; Universidade Federal Fluminense (UFF); Niterói Brazil
| | - Marcos D. Ribeiro
- Laboratório de Bacteriologia/Micologia; Instituto de Biologia do Exército (IBEx); Rio de Janeiro Brazil
| | - Sergio H. Seabra
- Laboratório de Tecnologia em Cultura de Células; Centro Universitário Estadual da Zona Oeste (UEZO); Duque de Caxias Brazil
| | - Maria H.G. Figueiredo-Carvalho
- Laboratório de Micologia; Instituto de Pesquisa Clínica Evandro Chagas; Fundação Oswaldo Cruz (FIOCRUZ); Rio de Janeiro Brazil
| | - Leonardo S. Barbedo
- Laboratório de Micologia; Instituto de Pesquisa Clínica Evandro Chagas; Fundação Oswaldo Cruz (FIOCRUZ); Rio de Janeiro Brazil
| | - Rosely M. Zancopé-Oliveira
- Laboratório de Micologia; Instituto de Pesquisa Clínica Evandro Chagas; Fundação Oswaldo Cruz (FIOCRUZ); Rio de Janeiro Brazil
| | - Mariangela Ziccardi
- Laboratório de Investigação de Peptidases (LIP); Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes (IMPG); Centro de Ciências da Saúde (CCS); Universidade Federal do Rio de Janeiro (UFRJ); Rio de Janeiro Brazil
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (FIOCRUZ); Rio de Janeiro Brazil
| | - André L.S. Santos
- Laboratório de Investigação de Peptidases (LIP); Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes (IMPG); Centro de Ciências da Saúde (CCS); Universidade Federal do Rio de Janeiro (UFRJ); Rio de Janeiro Brazil
- Programa de Pós-Graduação em Bioquímica; Instituto de Química; UFRJ; Rio de Janeiro Brazil
| |
Collapse
|
34
|
Comparative evolution of morphological regulatory functions in Candida species. EUKARYOTIC CELL 2013; 12:1356-68. [PMID: 23913541 DOI: 10.1128/ec.00164-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Morphological transitions play an important role in virulence and virulence-related processes in a wide variety of pathogenic fungi, including the most commonly isolated human fungal pathogen Candida albicans. While environmental signals, transcriptional regulators, and target genes associated with C. albicans morphogenesis are well-characterized, considerably little is known about morphological regulatory mechanisms and the extent to which they are evolutionarily conserved in less pathogenic and less filamentous non-albicans Candida species (NACS). We have identified specific optimal filament-inducing conditions for three NACS (C. tropicalis, C. parapsilosis, and C. guilliermondii), which are very limited, suggesting that these species may be adapted for niche-specific filamentation in the host. Only a subset of evolutionarily conserved C. albicans filament-specific target genes were induced upon filamentation in C. tropicalis, C. parapsilosis, and C. guilliermondii. One of the genes showing conserved expression was UME6, a key filament-specific regulator of C. albicans hyphal development. Constitutive high-level expression of UME6 was sufficient to drive increased filamentation as well as biofilm formation and partly restore conserved filament-specific gene expression in both C. tropicalis and C. parapsilosis, suggesting that evolutionary differences in filamentation ability among pathogenic Candida species may be partially attributed to alterations in the expression level of a conserved filamentous growth machinery. In contrast to UME6, NRG1, an important repressor of C. albicans filamentation, showed only a partly conserved role in controlling NACS filamentation. Overall, our results suggest that C. albicans morphological regulatory functions are partially conserved in NACS and have evolved to respond to more specific sets of host environmental cues.
Collapse
|
35
|
Saccharomyces cerevisiae can secrete Sapp1p proteinase of Candida parapsilosis but cannot use it for efficient nitrogen acquisition. J Microbiol 2013; 51:336-44. [DOI: 10.1007/s12275-013-2422-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/07/2013] [Indexed: 10/26/2022]
|
36
|
Papon N, Savini V, Lanoue A, Simkin AJ, Crèche J, Giglioli-Guivarc'h N, Clastre M, Courdavault V, Sibirny AA. Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Curr Genet 2013; 59:73-90. [PMID: 23616192 DOI: 10.1007/s00294-013-0391-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
Candida guilliermondii (teleomorph Meyerozyma guilliermondii) is an ascomycetous species belonging to the Saccharomycotina CTG clade which has been studied over the last 40 years due to its biotechnological interest, biological control potential and clinical importance. Such a wide range of applications in various areas of fundamental and applied scientific research has progressively made C. guilliermondii an attractive model for exploring the potential of yeast metabolic engineering as well as for elucidating new molecular events supporting pathogenicity and antifungal resistance. All these research fields now take advantage of the establishment of a useful molecular toolbox specifically dedicated to C. guilliermondii genetics including the construction of recipient strains, the development of selectable markers and reporter genes and optimization of transformation protocols. This area of study is further supported by the availability of the complete genome sequence of the reference strain ATCC 6260 and the creation of numerous databases dedicated to gene ontology annotation (metabolic pathways, virulence, and morphogenesis). These genetic tools and genomic resources represent essential prerequisites for further successful development of C. guilliermondii research in medical mycology and in biological control by facilitating the identification of the multiple factors that contribute to its pathogenic potential. These genetic and genomic advances should also expedite future practical uses of C. guilliermondii strains of biotechnological interest by opening a window into a better understanding of the biosynthetic pathways of valuable metabolites.
Collapse
Affiliation(s)
- Nicolas Papon
- EA2106, Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université François-Rabelais de Tours, Tours, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Foureau E, Courdavault V, Simkin AJ, Sibirny AA, Crèche J, Giglioli-Guivarc'h N, Clastre M, Papon N. Transformation ofCandida guilliermondiiwild-type strains using theStaphylococcus aureusMRSA 252blegene as a phleomycin-resistant marker. FEMS Yeast Res 2013; 13:354-8. [DOI: 10.1111/1567-1364.12034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 12/01/2022] Open
Affiliation(s)
- Emilien Foureau
- EA2106, Biomolécules et Biotechnologies Végétales; Faculté de Pharmacie; Université François-Rabelais de Tours; Tours; France
| | - Vincent Courdavault
- EA2106, Biomolécules et Biotechnologies Végétales; Faculté des Sciences et Techniques; Université François-Rabelais de Tours; Tours; France
| | - Andrew J. Simkin
- School of Biological Sciences; University of Essex; Colchester; UK
| | | | - Joël Crèche
- EA2106, Biomolécules et Biotechnologies Végétales; Faculté de Pharmacie; Université François-Rabelais de Tours; Tours; France
| | - Nathalie Giglioli-Guivarc'h
- EA2106, Biomolécules et Biotechnologies Végétales; Faculté des Sciences et Techniques; Université François-Rabelais de Tours; Tours; France
| | - Marc Clastre
- EA2106, Biomolécules et Biotechnologies Végétales; Faculté de Pharmacie; Université François-Rabelais de Tours; Tours; France
| | - Nicolas Papon
- EA2106, Biomolécules et Biotechnologies Végétales; Faculté de Pharmacie; Université François-Rabelais de Tours; Tours; France
| |
Collapse
|
38
|
Chow BDW, Linden JR, Bliss JM. Candida parapsilosis and the neonate: epidemiology, virulence and host defense in a unique patient setting. Expert Rev Anti Infect Ther 2013; 10:935-46. [PMID: 23030332 DOI: 10.1586/eri.12.74] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Invasive candidiasis is a common problem in premature infants that leads to high morbidity and mortality. Although Candida albicans has historically been the most prominent species involved in these infections and has therefore been the subject of the most study, Candida parapsilosis is increasing in frequency, and neonates are disproportionately affected. This article reviews unique aspects of the epidemiology of this organism as well as strategies for prophylaxis against invasive candidiasis in general. Additionally, important differences between C. parapsilosis and C. albicans are coming to light related to virulence determinants and interactions with components of host immunity. These developments are reviewed while highlighting the significant gaps in our understanding that remain to be elucidated.
Collapse
Affiliation(s)
- Brian D W Chow
- Department of Pediatrics, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | | |
Collapse
|
39
|
Yadav JSS, Bezawada J, Yan S, Tyagi RD, Surampalli RY. Candida krusei: biotechnological potentials and concerns about its safety. Can J Microbiol 2012; 58:937-52. [PMID: 22823163 DOI: 10.1139/w2012-077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Yeasts have a tradition in biotechnological applications, and Saccharomyces species are the most dominating representatives. Among the yeast species, Candida krusei has been isolated from different habitats, and in recent years, it has gained increased interest because of its diverse biotechnological role. It is found in many fermented food items and dairy products and has also been exploited for production of biochemicals and enzymes. However, because of its opportunistic pathogenic nature, it draws scientific attention regarding the safety of its industrial exploitation. Candida krusei generally causes infections in immunocompromised patients, such as those suffering from Human immunodeficiency virus - acquired immune deficiency syndrome, and also in cancer patients. The recent increase in the use of immunosuppressive drugs has increased the chances of C. krusei infections. Candida krusei possesses an intrinsic resistance to many triazole antifungal drugs, especially fluconazole, which is a main drug used in antifungal therapy; therefore, there is serious concern regarding its safe industrial use.
Collapse
Affiliation(s)
- Jay Shankar Singh Yadav
- Institut national de la recherche scientifique - Eau Terre Environnement, Université du Québec, 490, rue de la Couronne, Québec, QC G1K 9A9, Canada
| | | | | | | | | |
Collapse
|
40
|
Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosisandCandida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 2012; 36:288-305. [DOI: 10.1111/j.1574-6976.2011.00278.x] [Citation(s) in RCA: 578] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Galgóczy L, Bácsi A, Homa M, Virágh M, Papp T, Vágvölgyi C. In vitro antifungal activity of phenothiazines and their combination with amphotericin B against different Candida species. Mycoses 2011; 54:e737-e743. [PMID: 21605196 DOI: 10.1111/j.1439-0507.2010.02010.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Candidiosis is a mycosis that is currently increasingly affecting the population in consequence of its frequency and the severity of its complications, especially among immunocompromised hosts. In this work, the in vitro anticandidal activities of two phenothiazines (PTZs), chlorpromazine (CPZ) and trifluoperazine (TFP), and their combinations with amphotericin B (AMB) were tested against 12 different Candida strains representing 12 species (Candida albicans, Candida glabrata, Candida guillermondii, Candida inconspicua, Candida krusei, Candida lusitaniae, Candida lypolitica, Candida norvegica, Candida parapsilosis, Candida pulcherrima, Candida tropicalis and Candida zeylanoides). When used alone, both tested PTZs exerted antifungal effects against these strains. In their combinations, these PTZs and AMB mainly acted antagonistically at higher concentrations, but additively and synergistically at lower concentrations as concerns the clinically most important species (C. albicans and C. parapsilosis). For C. albicans, only synergistic interactions were revealed between CPZ and AMB. Synergistic, additive or no interactions were demonstrated between the investigated compounds for the most PTZ-susceptible (C. glabrata to TFP and C. krusei to CPZ) and insusceptible strains (C. glabrata to CPZ and C. lypolitica to TFP).
Collapse
Affiliation(s)
- László Galgóczy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Many of the major human fungal pathogens are known to undergo morphological changes, which in certain cases are associated with virulence. Although there has been an intense research focus on morphology in fungi, very little is known about how morphology evolved in conjunction with a variety of other virulence properties. However, several recent important discoveries, primarily in Candida species, are beginning to shed light on this important area and answer many longstanding questions. In this minireview, we first provide a description of the major fungal morphologies, as well as the roles of morphology and morphology-associated gene expression in virulence. Next, focusing largely on Candida species, we examine the evolutionary relationships among specific morphological forms. Finally, drawing on recent findings, we begin to address the question of how specific morphological changes came to be associated with virulence of Candida species during evolution.
Collapse
|
43
|
Holesova Z, Jakubkova M, Zavadiakova I, Zeman I, Tomaska L, Nosek J. Gentisate and 3-oxoadipate pathways in the yeast Candida parapsilosis: identification and functional analysis of the genes coding for 3-hydroxybenzoate 6-hydroxylase and 4-hydroxybenzoate 1-hydroxylase. MICROBIOLOGY-SGM 2011; 157:2152-2163. [PMID: 21474535 DOI: 10.1099/mic.0.048215-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pathogenic yeast Candida parapsilosis degrades various hydroxy derivatives of benzenes and benzoates by the gentisate and 3-oxoadipate pathways. We identified the genes MNX1, MNX2, MNX3, GDX1, HDX1 and FPH1 that code for enzymes involved in these pathways in the complete genome sequence of C. parapsilosis. Next, we demonstrated that MNX1, MNX2, MNX3 and GDX1 are inducible and transcriptionally controlled by hydroxyaromatic substrates present in cultivation media. Our results indicate that MNX1 and MNX2 code for flavoprotein monooxygenases catalysing the first steps in the 3-oxoadipate and gentisate pathways, respectively (i.e. 4-hydroxybenzoate 1-hydroxylase and 3-hydroxybenzoate 6-hydroxylase). Moreover, we found that the two pathways differ by their intracellular localization. The enzymes of the 3-oxoadipate pathway, Mnx1p and Mnx3p, localize predominantly in the cytosol. In contrast, intracellular localization of the components of the gentisate pathway, Mnx2p and Gdx1p, depends on the substrate in the cultivation medium. In cells growing on glucose these proteins localize in the cytosol, whereas in media containing hydroxyaromatic compounds they associate with mitochondria. Finally, we showed that the overexpression of MNX1 or MNX2 increases the tolerance of C. parapsilosis cells to the antifungal drug terbinafine.
Collapse
Affiliation(s)
- Zuzana Holesova
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina B-1, 842 15 Bratislava, Slovak Republic
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic
| | - Michaela Jakubkova
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic
| | - Ivana Zavadiakova
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina B-1, 842 15 Bratislava, Slovak Republic
| | - Igor Zeman
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic
| | - Lubomir Tomaska
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina B-1, 842 15 Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
44
|
Russo-Abrahão T, Cosentino-Gomes D, Gomes MT, Alviano DS, Alviano CS, Lopes AH, Meyer-Fernandes JR. Biochemical properties of Candida parapsilosis ecto-5'-nucleotidase and the possible role of adenosine in macrophage interaction. FEMS Microbiol Lett 2011; 317:34-42. [PMID: 21241359 DOI: 10.1111/j.1574-6968.2011.02216.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Candida parapsilosis is considered to be an emerging fungal pathogen because it is associated with an increasing range of infections. In this work, we biochemically characterized ecto-5'-nucleotidase activity on the surface of living, intact C. parapsilosis cells. At a pH of 4.5, intact cells were able to hydrolyze 5'-AMP at a rate of 52.44 ± 7.01 nmol Pi h(-1) 10(-7) cells. 5'-AMP, 5'-IMP and 5'-UMP were hydrolyzed at similar rates, whereas 5'-GMP and 5'-CMP hydrolyzed at lower rates. Enzyme activity was increased by about 42% with addition of Mg(2+) or Ca(2+), and the optimum pH was in the acidic range. An inhibitor of phosphatase activities, sodium orthovanadate, showed no effect on AMP hydrolysis; however, as expected, ammonium molybdate, a classical nucleotidase inhibitor, inhibited the activity in a dose-dependent manner. The results indicated that the existence of an ecto-5'-nucleotidase could play a role in the control of extracellular nucleotide concentrations.
Collapse
Affiliation(s)
- Thais Russo-Abrahão
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Tavanti A, Hensgens LAM, Mogavero S, Majoros L, Senesi S, Campa M. Genotypic and phenotypic properties of Candida parapsilosis sensu strictu strains isolated from different geographic regions and body sites. BMC Microbiol 2010; 10:203. [PMID: 20667137 PMCID: PMC2919483 DOI: 10.1186/1471-2180-10-203] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 07/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Candida parapsilosis is known to show limited genetic variability, despite different karyotypes and phenotypes have been described. To further investigate this aspect, a collection of 62 sensu strictu C. parapsilosis independent isolates from 4 geographic regions (Italy, n = 19; New Zealand, n = 15; Argentina, n = 14; and Hungary, n = 14) and different body sites (superficial and deep seated) were analysed for their genetic and phenotypic traits. Amplification fragment length polymorphism (AFLP) analysis was used to confirm species identification and to evaluate intraspecific genetic variability. Phenotypic characterisation included clinically relevant traits, such as drug susceptibility, in vitro biofilm formation and aspartyl protease secretion. RESULTS AFLP genotyping showed little variation among isolates, when the presence/absence of bands was considered. However, when AFLP profiles were compared by relative intensity for each fragment, a significant level of variation and geographical clustering was observed. All isolates were found to be susceptible to commonly used antifungals, although a reduced susceptibility to echinocandins was observed in all isolates. C. parapsilosis isolates from different geographic origins varied in the number of biofilm producers, with a higher prevalence of producers isolated in Hungary and Argentina. The frequency of secreted proteinase producers also varied in isolates obtained from different areas, with a higher number of proteinase producers found in Italy and New Zealand. Interestingly, biofilm production and proteinase secretion were negatively correlated. This finding could be explained by assuming that proteinase activity plays a role in detachment and release from a mature biofilm, via degradation of C. parapsilosis adhesins and/or extracellular matrix components, as observed for other microorganisms. CONCLUSIONS The low number of polymorphic AFLP bands (18 out of 80) obtained for C. parapsilosis isolates is in agreement with the limited sequence variability described for this species. However, when band intensity was included in the analysis, geographical clustering was observed. Expression of virulence factors varied among strains isolated from different geographical regions, with biofilm and proteinase producers more frequently isolated from Hungary and Italy, respectively.
Collapse
|
46
|
Selmecki A, Forche A, Berman J. Genomic plasticity of the human fungal pathogen Candida albicans. EUKARYOTIC CELL 2010; 9:991-1008. [PMID: 20495058 PMCID: PMC2901674 DOI: 10.1128/ec.00060-10] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic plasticity of Candida albicans, a commensal and common opportunistic fungal pathogen, continues to reveal unexpected surprises. Once thought to be asexual, we now know that the organism can generate genetic diversity through several mechanisms, including mating between cells of the opposite or of the same mating type and by a parasexual reduction in chromosome number that can be accompanied by recombination events (2, 12, 14, 53, 77, 115). In addition, dramatic genome changes can appear quite rapidly in mitotic cells propagated in vitro as well as in vivo. The detection of aneuploidy in other fungal pathogens isolated directly from patients (145) and from environmental samples (71) suggests that variations in chromosome organization and copy number are a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions, including, but not limited to, antifungal drug exposure. Since cancer cells often become polyploid and/or aneuploid, some of the lessons learned from studies of genome plasticity in C. albicans may provide important insights into how these processes occur in higher-eukaryotic cells exposed to stresses such as anticancer drugs.
Collapse
Affiliation(s)
- Anna Selmecki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
47
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|