1
|
Zhang R, Yang Q, Yao X, Fang Z, Wu X, Lin Q, Qing Y. Transcriptome analysis reveals the effect of cold storage time on the expression of genes related to oxidative metabolism in Chinese black truffle. Front Nutr 2024; 11:1375386. [PMID: 38895661 PMCID: PMC11183293 DOI: 10.3389/fnut.2024.1375386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Chinese black truffle (Tuber indicum) is a hypogenous fungus of great value due to its distinctive aroma. In this study, both transcriptome and physicochemical analyses were performed to investigate the changes of nutrients and gene expression in truffle fruiting bodies during cold storage. The results of physicochemical analysis revealed the active metabolism of fruiting bodies in cold storage, showing the decreased contents of protein and soluble sugar, the variations in both polyphenol oxidase activity and total phenol content, and the detrimental effect of reactive oxygen species production caused by heavy metals (cadmium and lead) in truffles. Transcriptome analysis identified a total of 139,489 unigenes. Down-regulated expression of genes encoding the catalase-like domain-containing protein (katE), glutaredoxin protein (GRX), a copper/zinc superoxide dismutase (Sod_Cu), and aspartate aminotransferase (AAT) affected the degradation metabolism of intracellular oxides. Ribulose-5-phosphate-3-epimerase (RPE) was a key enzyme in response to oxidative stress in truffle cells through the pentose phosphate pathway (PPP). A total of 51,612 simple sequence repeats were identified, providing valuable resources for further genetic diversity analysis, molecular breeding, and genetic map-ping in T. indicum. Transcription factors GAL4 and SUF4-like protein were involved in glucose metabolism and histone methylation processes, respectively. Our study provided a fundamental characterization of the physicochemical and molecular variations in T. indicum during the cold storage at 4°C, providing strong experimental evidence to support the improvement of storage quality of T. indicum.
Collapse
Affiliation(s)
- Runji Zhang
- Key Laboratory of Panxi Featured Crops Research and Utilization, Xichang University, Xichang, China
| | - Qiuyue Yang
- College of Agricultural Sciences, Xichang University, Xichang, China
| | - Xin Yao
- College of Agricultural Sciences, Xichang University, Xichang, China
| | - Zhirong Fang
- College of Resources and Environment, Xichang University, Xichang, China
| | - Xia Wu
- College of Agricultural Sciences, Xichang University, Xichang, China
| | - Qiao Lin
- College of Agricultural Sciences, Xichang University, Xichang, China
| | - Yuan Qing
- Key Laboratory of Panxi Featured Crops Research and Utilization, Xichang University, Xichang, China
| |
Collapse
|
2
|
Čejka T, Trnka M, Büntgen U. Sustainable cultivation of the white truffle (Tuber magnatum) requires ecological understanding. MYCORRHIZA 2023; 33:291-302. [PMID: 37462722 PMCID: PMC10752849 DOI: 10.1007/s00572-023-01120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/29/2023] [Indexed: 12/29/2023]
Abstract
The white truffle (Tuber magnatum Picco.; WT) is the most expensive and arguably also the most delicious species within the genus Tuber. Due to its hidden belowground life cycle, complex host symbiosis, and yet unknown distribution, cultivation of the enigmatic species has only recently been achieved at some plantations in France. A sustainable production of WTs under future climate change, however, requires a better ecological understanding of the species' natural occurrence. Here, we combine information from truffle hunters with a literature review to assess the climatic, edaphic, geographic, and symbiotic characteristics of 231 reported WT sites in southeast Europe. Our meta-study shows that 75% of the WT sites are located outside the species' most famous harvest region, the Piedmont in northern Italy. Spanning a wide geographic range from ~ 37° N in Sicily to ~ 47° N in Hungary, and elevations between sea level in the north and 1000 m asl in the south, all WT sites are characterised by mean winter temperatures > 0.4 °C and summer precipitation totals of ~ 50 mm. Often formed during past flood or landslide events, current soil conditions of the WT sites exhibit pH levels between 6.4 and 8.7, high macroporosity, and a cation exchange capacity of ~ 17 meq/100 g. At least 26 potential host species from 12 genera were reported at the WT sites, with Populus alba and Quercus cerris accounting for 23.5% of all plant species. We expect our findings to contribute to a sustainable WT industry under changing environmental and economic conditions.
Collapse
Affiliation(s)
- Tomáš Čejka
- Department of Climate Change Impacts On Agroecosystems, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4, 603 00, Brno, Czech Republic.
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Miroslav Trnka
- Department of Climate Change Impacts On Agroecosystems, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4, 603 00, Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of Agronomy, Mendel University, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Ulf Büntgen
- Department of Climate Change Impacts On Agroecosystems, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4, 603 00, Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, Kotlářská 2, 602 00, Brno, Czech Republic
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK
| |
Collapse
|
3
|
Sillo F, Vergine M, Luvisi A, Calvo A, Petruzzelli G, Balestrini R, Mancuso S, De Bellis L, Vita F. Bacterial Communities in the Fruiting Bodies and Background Soils of the White Truffle Tuber magnatum. Front Microbiol 2022; 13:864434. [PMID: 35651491 PMCID: PMC9149314 DOI: 10.3389/fmicb.2022.864434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 01/09/2023] Open
Abstract
Tuber magnatum Picco is a greatly appreciated truffle species mainly distributed in Italy. Its price and characteristics mostly depend on its geographical origin. Truffles represent a fundamental step of the life cycle of Tuber species promoting spore dissemination. They consist of two main parts, gleba, the inner part, and peridium, which is in direct contact with ground soil. Within the truffle and around in the growing soil, both the occurrence and abundance of different microbial species seem to play an essential role in truffle production. The development of the next-generation sequencing (NGS) based technology has greatly improved to deepen the role of the composition of microbial communities, thus improving the knowledge of the existing relationships between microbial taxa in a specific condition. Here, we applied a metabarcoding approach to assess the differences in T. magnatum samples collected from three areas in Tuscany (Italy). Peridium and gleba were analyzed separately with the aim to distinguish them based on their microbial composition. Also, soil samples were collected and analyzed to compare productive and unproductive truffle grounds to confirm the presence of specific patterns linked to truffle production. Results indicate that differences occurred between truffle compartments (gleba and peridium) as well as between analyzed soils (productive and unproductive), with distinctive taxa associated. Furthermore, findings also demonstrated specific characteristics associated with truffle collection areas, thus indicating a degree of microbial selection related to different environments.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Alice Calvo
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | | | - Raffaella Balestrini
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | - Stefano Mancuso
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Federico Vita
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy.,Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
4
|
Wang J, Wen X, Zhang Y, Zou P, Cheng L, Gan R, Li X, Liu D, Geng F. Quantitative proteomic and metabolomic analysis of Dictyophora indusiata fruiting bodies during post-harvest morphological development. Food Chem 2020; 339:127884. [PMID: 32858387 DOI: 10.1016/j.foodchem.2020.127884] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/29/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023]
Abstract
The differences in Dictyophora indusiata fruiting bodies between peach-shaped and mature stage during the postharvest were systematically investigated through quantitative proteomic and metabolomic analyses. A total of 951 differentially expressed proteins were identified, 571 upregulated and 380 downregulated in the mature fruiting body; additionally, 173 upregulated and 165 downregulated differential abundance metabolites were screened. Integrated proteome and metabolome analyses showed that, during the maturation of D. indusiata fruiting bodies, glycerophospholipids were hydrolyzed and drastically decreased, the degradation of glucan was upregulated, the degradation and synthesis of chitin were simultaneously enhanced, and proteins were dominated via catabolism. Along with vigorous material metabolism, energy production was enhanced through the upregulated TCA-cycles and oxidative phosphorylation. In addition, the synthesis of antioxidant substances and the decomposition of peroxides were enhanced in mature fruiting bodies. These omics analyses of D. indusiata provide high-throughput data and reveal the changes in the post-harvest morphological development.
Collapse
Affiliation(s)
- Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuefei Wen
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yayu Zhang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Pingping Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lei Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Renyou Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Xiang Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
5
|
|
6
|
Bertini E, Merlin M, Gecchele E, Puggia A, Brozzetti A, Commisso M, Falorni A, Bini V, Klymyuk V, Pezzotti M, Avesani L. Design of a Type-1 Diabetes Vaccine Candidate Using Edible Plants Expressing a Major Autoantigen. FRONTIERS IN PLANT SCIENCE 2018; 9:572. [PMID: 29765386 PMCID: PMC5938395 DOI: 10.3389/fpls.2018.00572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 05/13/2023]
Abstract
Type-1 diabetes (T1D) is a metabolic disease involving the autoimmune destruction of insulin-producing pancreatic beta cells. It is often diagnosed by the detection of autoantibodies, typically those recognizing insulin itself or the 65-kDa isoform of glutamic acid decarboxylase (GAD65). Oral insulin can be used to induce systemic immunological tolerance and thus prevent or delay the onset of T1D, suggesting that combination treatments with other autoantigens such as GAD65 could be even more successful. GAD65 has induced oral tolerance and prevented T1D in preclinical studies but it is difficult to produce in sufficient quantities for clinical testing. Here we combined edible plant systems, namely spinach (Spinacia oleracea cv Industra) and red beet (Beta vulgaris cv Moulin Rouge), with the magnICON® expression system to develop a safe, cost-effective and environmentally sustainable platform for the large-scale production of GAD65. The superior red beet platform was extensively characterized in terms of recombinant protein yields and bioequivalence to wild-type plants, and the product was tested for its ability to resist simulated gastric digestion. Our results indicate that red beet plants are suitable for the production of a candidate oral vaccine based on GAD65 for the future preclinical and clinical testing of T1D immunotherapy approaches.
Collapse
Affiliation(s)
- Edoardo Bertini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Matilde Merlin
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elisa Gecchele
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Andrea Puggia
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Mauro Commisso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alberto Falorni
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Vittorio Bini
- Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
- *Correspondence: Linda Avesani,
| |
Collapse
|