1
|
Nakazawa T, Kawauchi M, Otsuka Y, Han J, Koshi D, Schiphof K, Ramírez L, Pisabarro AG, Honda Y. Pleurotus ostreatus as a model mushroom in genetics, cell biology, and material sciences. Appl Microbiol Biotechnol 2024; 108:217. [PMID: 38372792 PMCID: PMC10876731 DOI: 10.1007/s00253-024-13034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Pleurotus ostreatus, also known as the oyster mushroom, is a popular edible mushroom cultivated worldwide. This review aims to survey recent progress in the molecular genetics of this fungus and demonstrate its potential as a model mushroom for future research. The development of modern molecular genetic techniques and genome sequencing technologies has resulted in breakthroughs in mushroom science. With efficient transformation protocols and multiple selection markers, a powerful toolbox, including techniques such as gene knockout and genome editing, has been developed, and numerous new findings are accumulating in P. ostreatus. These include molecular mechanisms of wood component degradation, sexual development, protein secretion systems, and cell wall structure. Furthermore, these techniques enable the identification of new horizons in enzymology, biochemistry, cell biology, and material science through protein engineering, fluorescence microscopy, and molecular breeding. KEY POINTS: • Various genetic techniques are available in Pleurotus ostreatus. • P. ostreatus can be used as an alternative model mushroom in genetic analyses. • New frontiers in mushroom science are being developed using the fungus.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuitsu Otsuka
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Junxian Han
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Daishiro Koshi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Kim Schiphof
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
2
|
Nakazawa T, Yamaguchi I, Zhang Y, Saka C, Wu H, Kayama K, Kawauchi M, Sakamoto M, Honda Y. Experimental evidence that lignin-modifying enzymes are essential for degrading plant cell wall lignin by Pleurotus ostreatus using CRISPR/Cas9. Environ Microbiol 2023; 25:1909-1924. [PMID: 37218079 DOI: 10.1111/1462-2920.16427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Lignin-modifying enzymes (LMEs), which include laccases (Lacs), manganese peroxidases (MnPs), versatile peroxidases (VPs), and lignin peroxidases (LiPs), have been considered key factors in lignin degradation by white-rot fungi because they oxidize lignin model compounds and depolymerize synthetic lignin in vitro. However, it remains unclear whether these enzymes are essential/important in the actual degradation of natural lignin in plant cell walls. To address this long-standing issue, we examined the lignin-degrading abilities of multiple mnp/vp/lac mutants of Pleurotus ostreatus. One vp2/vp3/mnp3/mnp6 quadruple-gene mutant was generated from a monokaryotic wild-type strain PC9 using plasmid-based CRISPR/Cas9. Also, two vp2/vp3/mnp2/mnp3/mnp6, two vp2/vp3/mnp3/mnp6/lac2 quintuple-gene mutants, and two vp2/vp3/mnp2/mnp3/mnp6/lac2 sextuple-gene mutants were generated. The lignin-degrading abilities of the sextuple and vp2/vp3/mnp2/mnp3/mnp6 quintuple-gene mutants on the Beech wood sawdust medium reduced drastically, but not so much for those of the vp2/vp3/mnp3/mnp6/lac2 mutants and the quadruple mutant strain. The sextuple-gene mutants also barely degraded lignin in Japanese Cedar wood sawdust and milled rice straw. Thus, this study presented evidence that the LMEs, especially MnPs and VPs, play a crucial role in the degradation of natural lignin by P. ostreatus for the first time.
Collapse
Affiliation(s)
| | - Iori Yamaguchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yufan Zhang
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chinami Saka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hongli Wu
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keita Kayama
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Brazkova M, Koleva R, Angelova G, Yemendzhiev H. Ligninolytic enzymes in Basidiomycetes and their application in xenobiotics degradation. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224502009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Variety of microorganisms have already proven their capabilities for degradation of wide range of wastes with anthropogenic nature. These pollutants, both liquid and solids, also include so called xenobiotics like phenol and its derivatives, PAHs, dyes, pesticides, pharmaceuticals, etc. Xenobiotics as bisphenol A (BPA), chlorhexidine (CHX), octenidine (OCT), other disinfectants and antiseptics have high ecotoxicological impact. Moreover, they can also impair our quality of life and our health interfering different metabolic and hormone receptors pathways in human body. Chemical treatment of such wastes is not a viable option because of its poor socio-economics and environmental merits. Therefore, applying effective, ecofriendly and cheap treatment methods is of great importance. Basidiomycetes are extensively investigated for their abilities to degrade numerous pollutants and xenobiotics. Through their extracellular ligninolytic enzymes they are capable of reducing or completely removing wide range of hazardous compounds. These enzymes can be categorized in two groups: oxidases (laccase) and peroxidases (manganese peroxidase, lignin peroxidase, versatile peroxidase). Due to the broad substrate specificity of the secreted enzymes Basidiomycetes can be applied as a powerful tool for bioremediation of diverse xenobiotics and recalcitrant compounds.
Collapse
|
4
|
Okuda N, Nakazawa T, Horii M, Wu H, Kawauchi M, Sakamoto M, Honda Y. Overexpressing Pleurotus ostreatus rho1b results in transcriptional upregulation of the putative cellulolytic enzyme-encoding genes observed in ccl1 disruptants. Environ Microbiol 2021; 23:7009-7027. [PMID: 34622510 DOI: 10.1111/1462-2920.15786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022]
Abstract
The transcriptional expression pattern of lignocellulolytic enzyme-encoding genes in white-rot fungi differs depending on the culture conditions. Recently, it was shown that 13 putative cellulolytic enzyme-encoding genes were significantly upregulated in most Pleurotus ostreatus ligninolysis-deficient mutant strains on beech wood sawdust medium. However, the mechanisms by which this transcriptional shift is triggered remain unknown. In this study, we identified one mechanism. Our previous study implied that histone H3 N-dimethylation at lysine 4 level possibly affects the shift; therefore, we analysed the expression pattern in the disruptants of P. ostreatus ccl1, which encodes a putative component of the COMPASS complex mediating the methylation. The results showed upregulation of 5 of the 13 cellulolytic enzyme-encoding genes. We also found that rho1b, encoding a putative GTPase regulating signal transduction pathways, was upregulated in the ccl1 disruptants and ligninolysis-deficient strains. Upregulation of at least three of the five cellulolytic enzyme-encoding genes was observed in rho1b-overexpressing strains but not in ccl1/rho1b double-gene disruptants, during the 20-day culture period. These results suggest that Rho1b may be involved in the upregulation of cellulolytic enzyme-encoding genes observed in the ccl1 disruptants. Furthermore, we suggest that Mpk1b, a putative Agaricomycetes-specific mitogen-activated protein kinase, functions downstream of Rho1b.
Collapse
Affiliation(s)
- Nozomi Okuda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masato Horii
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hongli Wu
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
5
|
Grelska A, Noszczyńska M. White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39958-39976. [PMID: 32803603 PMCID: PMC7546991 DOI: 10.1007/s11356-020-10382-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/03/2020] [Indexed: 05/04/2023]
Abstract
Endocrine-disrupting chemicals (EDC) are a wide group of chemicals that interfere with the endocrine system. Their similarity to natural steroid hormones makes them able to attach to hormone receptors, thereby causing unfavorable health effects. Among EDC, bisphenol A (BPA), bisphenol S (BPS), and nonylphenol (NP) seem to be particularly harmful. As the industry is experiencing rapid expansion, BPA, BPS, and NP are being produced in growing amounts, generating considerable environmental pollution. White rot fungi (WRF) are an economical, ecologically friendly, and socially acceptable way to remove EDC contamination from ecosystems. WRF secrete extracellular ligninolytic enzymes such as laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidase, involved in lignin deterioration. Owing to the broad substrate specificity of these enzymes, they are able to remove numerous xenobiotics, including EDC. Therefore, WRF seem to be a promising tool in the abovementioned EDC elimination during wastewater treatment processes. Here, we review WRF application for this EDC removal from wastewater and indicate several strengths and limitations of such methods.
Collapse
Affiliation(s)
- Agnieszka Grelska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Magdalena Noszczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
6
|
Wu H, Nakazawa T, Takenaka A, Kodera R, Morimoto R, Sakamoto M, Honda Y. Transcriptional shifts in delignification-defective mutants of the white-rot fungus Pleurotus ostreatus. FEBS Lett 2020; 594:3182-3199. [PMID: 32697375 DOI: 10.1002/1873-3468.13890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
White-rot fungi efficiently degrade lignin and, thus, play a pivotal role in the global carbon cycle. However, the mechanisms of lignin degradation are largely unknown. Recently, mutations in four genes, namely wtr1, chd1, pex1, and gat1, were shown to abrogate the wood lignin-degrading ability of Pleurotus ostreatus. In this study, we conducted a comparative transcriptome analysis to identify genes that are differentially expressed in ligninolysis-deficient mutant strains. Putative ligninolytic genes that are highly expressed in parental strains are significantly downregulated in the mutant strains. On the contrary, many putative cellulolytic and xylanolytic genes are upregulated in the chd1-1, Δpex1, and Δgat1 strains. Identifying transcriptional alterations in mutant strains could provide new insights into the regulatory mechanisms of lignocellulolytic genes in P. ostreatus.
Collapse
Affiliation(s)
- Hongli Wu
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Atsuki Takenaka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Rina Kodera
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryota Morimoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Nakazawa T, Morimoto R, Wu H, Kodera R, Sakamoto M, Honda Y. Dominant effects of gat1 mutations on the ligninolytic activity of the white-rot fungus Pleurotus ostreatus. Fungal Biol 2018; 123:209-217. [PMID: 30798876 DOI: 10.1016/j.funbio.2018.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/08/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
In nature, white-rot fungi efficiently degrade lignin present in wood biomass. Elucidation of molecular mechanisms underlying wood lignin biodegradation by white-rot fungi would contribute to the development of efficient and ecofriendly methods of producing valuable chemical products from wood biomass. Here, using forward genetics approach, we demonstrate that the mutant of a putative transcription factor gene, gat1-1, significantly decreases the ligninolytic activity of the white-rot fungus Pleurotus ostreatus, when grown on beech wood sawdust medium. We also show that this phenotype is dominant. In Schizophyllum commune, Gat1 was previously shown to be involved in fruiting body development. In this study, we reveal that the mutations in gat1 gene cause defects in fruiting body development in P. ostreatus. Unlike the previously reported recessive gene mutations that decrease the ligninolytic activity of P. ostreatus, the gat1-1 mutation and Δgat1 are dominant and would thus be useful for future studies on the functional role of the orthologs in other white-rot fungi.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Ryota Morimoto
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hongli Wu
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Rina Kodera
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Qi Y, Sun X, Zhang M, Wen Q, Qiu L, Shen J. Identification of up-regulated transcripts during Pleurotus ostreatus
primordium stage and characterization of PoALDH1. J Basic Microbiol 2018; 58:1071-1082. [DOI: 10.1002/jobm.201800123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Yuancheng Qi
- College of Life Science; Henan Agricultural University; Zhengzhou China
| | - Xiankai Sun
- College of Life Science; Henan Agricultural University; Zhengzhou China
| | - Mengke Zhang
- College of Life Science; Henan Agricultural University; Zhengzhou China
| | - Qing Wen
- College of Life Science; Henan Agricultural University; Zhengzhou China
| | - Liyou Qiu
- College of Life Science; Henan Agricultural University; Zhengzhou China
| | - Jinwen Shen
- College of Life Science; Henan Agricultural University; Zhengzhou China
| |
Collapse
|
9
|
Yang J, Li W, Ng TB, Deng X, Lin J, Ye X. Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation. Front Microbiol 2017; 8:832. [PMID: 28559880 PMCID: PMC5432550 DOI: 10.3389/fmicb.2017.00832] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023] Open
Abstract
Laccases are a family of copper-containing oxidases with important applications in bioremediation and other various industrial and biotechnological areas. There have been over two dozen reviews on laccases since 2010 covering various aspects of this group of versatile enzymes, from their occurrence, biochemical properties, and expression to immobilization and applications. This review is not intended to be all-encompassing; instead, we highlighted some of the latest developments in basic and applied laccase research with an emphasis on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics. Pharmaceuticals are a broad class of emerging organic contaminants that are recalcitrant and prevalent. The recent surge in the relevant literature justifies a short review on the topic. Since low laccase yields in natural and genetically modified hosts constitute a bottleneck to industrial-scale applications, we also accentuated a genus of laccase-producing white-rot fungi, Cerrena, and included a discussion with regards to regulation of laccase expression.
Collapse
Affiliation(s)
- Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Wenjuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Tzi Bun Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong KongShatin, Hong Kong
| | - Xiangzhen Deng
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| |
Collapse
|
10
|
Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives. Curr Genet 2017; 63:877-894. [PMID: 28275822 DOI: 10.1007/s00294-017-0686-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Lignin, most complex and abundant biopolymer on the earth's surface, attains its stability from intricate polyphenolic units and non-phenolic bonds, making it difficult to depolymerize or separate from other units of biomass. Eccentric lignin degrading ability and availability of annotated genome make Phanerochaete chrysosporium ideal for studying lignin degrading mechanisms. Decoding and understanding the molecular mechanisms underlying the process of lignin degradation will significantly aid the progressing biofuel industries and lead to the production of commercially vital platform chemicals. In this study, we have performed a large-scale metadata analysis to understand the common gene expression patterns of P. chrysosporium during lignin degradation. Gene expression datasets were retrieved from NCBI GEO database and analyzed using GEO2R and Bioconductor packages. Commonly expressed statistically significant genes among different datasets were further considered to understand their involvement in lignin degradation and detoxification mechanisms. We have observed three sets of enzymes commonly expressed during ligninolytic conditions which were later classified into primary ligninolytic, aromatic compound-degrading and other necessary enzymes. Similarly, we have observed three sets of genes coding for detoxification and stress-responsive, phase I and phase II metabolic enzymes. Results obtained in this study indicate the coordinated action of enzymes involved in lignin depolymerization and detoxification-stress responses under ligninolytic conditions. We have developed tentative network of genes and enzymes involved in lignin degradation and detoxification mechanisms by P. chrysosporium based on the literature and results obtained in this study. However, ambiguity raised due to higher expression of several uncharacterized proteins necessitates for further proteomic studies in P. chrysosporium.
Collapse
|
11
|
A development and an improvement of selectable markers in Pleurotus ostreatus transformation. J Microbiol Methods 2017; 134:27-29. [DOI: 10.1016/j.mimet.2017.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/08/2017] [Accepted: 01/08/2017] [Indexed: 11/20/2022]
|
12
|
Toyokawa C, Shobu M, Tsukamoto R, Okamura S, Honda Y, Kamitsuji H, Izumitsu K, Suzuki K, Irie T. Effects of overexpression of PKAc genes on expressions of lignin-modifying enzymes by Pleurotus ostreatus. Biosci Biotechnol Biochem 2016; 80:1759-67. [PMID: 26979984 DOI: 10.1080/09168451.2016.1158630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We studied the role of genes encoding the cAMP-dependent protein kinase A catalytic subunit (PKAc) in the ligninolytic system in Pleurotus ostreatus. The wild-type P. ostreatus strain PC9 has two PKAc-encoding genes: PKAc1 and PKAc2 (protein ID 114122 and 85056). In the current study, PKAc1 and PKAc2 were fused with a β-tubulin promoter and introduced into strain PC9 to produce the overexpression strains PKAc1-97 and PKAc2-69. These strains showed significantly higher transcription levels of isozyme genes encoding lignin-modifying enzymes than strain PC9, but the specific gene expression patterns differed between the two recombinant strains. Both recombinants showed 2.05-2.10-fold faster degradation of beechwood lignin than strain PC9. These results indicate that PKAc plays an important role in inducing the wood degradation system in P. ostreatus.
Collapse
Affiliation(s)
- Chihana Toyokawa
- a School of Environmental Science , University of Shiga Prefecture , Hikone , Japan
| | - Misaki Shobu
- a School of Environmental Science , University of Shiga Prefecture , Hikone , Japan
| | - Rie Tsukamoto
- a School of Environmental Science , University of Shiga Prefecture , Hikone , Japan
| | - Saki Okamura
- a School of Environmental Science , University of Shiga Prefecture , Hikone , Japan
| | - Yoichi Honda
- b Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | | | - Kousuke Izumitsu
- a School of Environmental Science , University of Shiga Prefecture , Hikone , Japan
| | - Kazumi Suzuki
- a School of Environmental Science , University of Shiga Prefecture , Hikone , Japan
| | - Toshikazu Irie
- a School of Environmental Science , University of Shiga Prefecture , Hikone , Japan
| |
Collapse
|
13
|
Yang J, Wang G, Ng TB, Lin J, Ye X. Laccase Production and Differential Transcription of Laccase Genes in Cerrena sp. in Response to Metal Ions, Aromatic Compounds, and Nutrients. Front Microbiol 2016; 6:1558. [PMID: 26793186 PMCID: PMC4710055 DOI: 10.3389/fmicb.2015.01558] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022] Open
Abstract
Laccases can oxidize a wide range of aromatic compounds and are industrially valuable. Laccases often exist in gene families and may differ from each other in expression and function. Quantitative real-time polymerase chain reaction (qPCR) was used for transcription profiling of eight laccase genes in Cerrena sp. strain HYB07 with validated reference genes. A high laccase activity of 280.0 U/mL was obtained after submerged fermentation for 5 days. Laccase production and laccase gene transcription at different fermentation stages and in response to various environmental cues were revealed. HYB07 laccase activity correlated with transcription levels of its predominantly expressed laccase gene, Lac7. Cu2+ ions were indispensable for efficient laccase production by HYB07, mainly through Lac7 transcription induction, and no aromatic compounds were needed. HYB07 laccase synthesis and biomass accumulation were highest with non-limiting carbon and nitrogen. Glycerol and inorganic nitrogen sources adversely impacted Lac7 transcription, laccase yields, and fungal growth. The present study would further our understanding of transcription regulation of laccase genes, which may in turn facilitate laccase production as well as elucidation of their physiological roles.
Collapse
Affiliation(s)
- Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Guozeng Wang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Tzi Bun Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| |
Collapse
|
14
|
Hori C, Cullen D. Prospects for Bioprocess Development Based on Recent Genome Advances in Lignocellulose Degrading Basidiomycetes. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|