1
|
Muangsawat S, Chaiyosang P, Sinkanarak P, Sukted J, Thanyasrisung P, Matangkasombut O. Effects of efflux pumps on antifungal activity of chitosan against Candida albicans. J Oral Microbiol 2024; 16:2357976. [PMID: 38813525 PMCID: PMC11133954 DOI: 10.1080/20002297.2024.2357976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Background Antifungal resistance is a major problem, commonly caused by drug-efflux pump overexpression. To evaluate if chitosan could be effective in drug-resistant Candida infections, we investigated the effects of efflux pumps on antifungal activity of chitosan. Materials and Methods The minimal fungicidal concentration (MFC) of oligomer (7-9 kD) and polymer (900-1,000 kD) chitosan against Saccharomyces cerevisiae and Candida albicans were evaluated by broth and agar dilution methods. The MFCs of S. cerevisiae with single deletion of efflux pump genes, with deletion of seven efflux pumps (AD∆), and AD∆ overexpressing C. albicans efflux pump genes (CDR1, CDR2 and MDR1) were determined. C. albicans with homozygous deletions of CDR1 and of CDR2 were generated using CRISPR-Cas9 system and tested for chitosan susceptibility. Results While deleting any individual efflux pump genes had no effect on chitosan susceptibility, simultaneous deletion of multiple pumps (in AD∆) increased sensitivity to both types of chitosan. Interestingly, the overexpression of CDR1, CDR2 or MDR1 in AD∆ barely affected its sensitivity. Moreover, C. albicans with homozygous deletions of CDR1 and/or CDR2 showed similar sensitivity to wildtype. Conclusion Thus, C. albicans susceptibility to chitosan was not affected by drug-efflux pumps. Chitosan may be a promising antifungal agent against pump-overexpressing azole-resistant C. albicans.
Collapse
Affiliation(s)
- Sureeporn Muangsawat
- Department of Microbiology and Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Interdisciplinary Program on Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | | | - Patrawee Sinkanarak
- DDS Program, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Juthamas Sukted
- Graduate Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Panida Thanyasrisung
- Department of Microbiology and Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Oranart Matangkasombut
- Department of Microbiology and Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
2
|
Basante-Bedoya MA, Bogliolo S, Garcia-Rodas R, Zaragoza O, Arkowitz RA, Bassilana M. Two distinct lipid transporters together regulate invasive filamentous growth in the human fungal pathogen Candida albicans. PLoS Genet 2022; 18:e1010549. [PMID: 36516161 PMCID: PMC9797089 DOI: 10.1371/journal.pgen.1010549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/28/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Flippases transport lipids across the membrane bilayer to generate and maintain asymmetry. The human fungal pathogen Candida albicans has 5 flippases, including Drs2, which is critical for filamentous growth and phosphatidylserine (PS) distribution. Furthermore, a drs2 deletion mutant is hypersensitive to the antifungal drug fluconazole and copper ions. We show here that such a flippase mutant also has an altered distribution of phosphatidylinositol 4-phosphate [PI(4)P] and ergosterol. Analyses of additional lipid transporters, i.e. the flippases Dnf1-3, and all the oxysterol binding protein (Osh) family lipid transfer proteins, i.e. Osh2-4 and Osh7, indicate that they are not critical for filamentous growth. However, deletion of Osh4 alone, which exchanges PI(4)P for sterol, in a drs2 mutant can bypass the requirement for this flippase in invasive filamentous growth. In addition, deletion of the lipid phosphatase Sac1, which dephosphorylates PI(4)P, in a drs2 mutant results in a synthetic growth defect, suggesting that Drs2 and Sac1 function in parallel pathways. Together, our results indicate that a balance between the activities of two putative lipid transporters regulates invasive filamentous growth, via PI(4)P. In contrast, deletion of OSH4 in drs2 does not restore growth on fluconazole, nor on papuamide A, a toxin that binds PS in the outer leaflet of the plasma membrane, suggesting that Drs2 has additional role(s) in plasma membrane organization, independent of Osh4. As we show that C. albicans Drs2 localizes to different structures, including the Spitzenkörper, we investigated if a specific localization of Drs2 is critical for different functions, using a synthetic physical interaction approach to restrict/stabilize Drs2 at the Spitzenkörper. Our results suggest that the localization of Drs2 at the plasma membrane is critical for C. albicans growth on fluconazole and papuamide A, but not for invasive filamentous growth.
Collapse
Affiliation(s)
| | | | - Rocio Garcia-Rodas
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Health Institute Carlos III, Madrid, Spain
| | | | - Martine Bassilana
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- * E-mail:
| |
Collapse
|
3
|
Lee YS, Chen X, Widiyanto TW, Orihara K, Shibata H, Kajiwara S. Curcumin affects function of Hsp90 and drug efflux pump of Candida albicans. Front Cell Infect Microbiol 2022; 12:944611. [PMID: 36237434 PMCID: PMC9551236 DOI: 10.3389/fcimb.2022.944611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is a pathogenic yeast that causes candidiasis in immunocompromised patients. The overuse of antifungal drugs has led to the development of resistance to such drugs by this fungus, which is a major challenge in antifungal chemotherapy. One approach to this problem involves the utilization of new natural products as an alternative source of antifungals. Curcumin, one such natural product, has been widely studied as a drug candidate and is reported to exhibit antifungal activity against C. albicans. Although studies of the mechanism of curcumin against human cancer cells have shown that it inhibits heat shock protein 90 (Hsp90), little is known about its function against C. albicans. In this paper, using a doxycycline-mediated HSP90 strain and an HSP90-overexpressing strain of C. albicans, we demonstrated that the curcumin triggered a decrease in Hsp90 by affecting it at the post-transcriptional level. This also led to the downregulation of HOG1 and CDR1, resulting in a reduction of the stress response and efflux pump activity of C. albicans. However, the inhibition of HSP90 by curcumin was not due to the inhibition of transcription factors HSF1 or AHR1. We also found that curcumin can not only decrease the transcriptional expression of CDR1, but also inhibit the efflux pump activity of Cdr1. Hence, we conclude that disruption of HSP90 by curcumin could impair cell growth, stress responses and efflux pump activity of C. albicans.
Collapse
Affiliation(s)
- Yean Sheng Lee
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Kanami Orihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
4
|
Lai WC, Hsu HC, Cheng CW, Wang SH, Li WC, Hsieh PS, Tseng TL, Lin TH, Shieh JC. Filament Negative Regulator CDC4 Suppresses Glycogen Phosphorylase Encoded GPH1 that Impacts the Cell Wall-Associated Features in Candida albicans. J Fungi (Basel) 2022; 8:jof8030233. [PMID: 35330235 PMCID: PMC8949380 DOI: 10.3390/jof8030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
We have previously identified Candida albicans GPH1 (orf19.7021) whose protein product was associated with C. albicans Cdc4. The GPH1 gene is a putative glycogen phosphorylase because its Saccharomyces cerevisiae homolog participates in glycogen catabolism, which involves the synthesis of β-glucan of the fungal cell wall. We made a strain whose CaCDC4 expression is repressed, and GPH1 is constitutively expressed. We established a GPH1 null mutant strain and used it to conduct the in vitro virulence assays that detect cell wall function. The in vitro virulence assay is centered on biofilm formation in which analytic procedures are implemented to evaluate cell surface hydrophobicity; competence, either in stress resistance, germ tube formation, or fibronection association; and the XTT-based adhesion and biofilm formation. We showed that the constitutively expressed GPH1 partially suppresses filamentation when the CaCDC4 expression is repressed. The C. albicans Gph1 protein is reduced in the presence of CaCdc4 in comparison with the absence of CaCdc4. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant displayed a reduction in the capability to form germ tubes and the cell surface hydrophobicity but an increase in binding with fibronectin. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant showed a rise in adhesion, the initial stage of biofilm formation, but displayed a similar capacity to form a mature biofilm. There was no major impact on the gph1Δ/gph1Δ mutant regarding the conditions of cell wall damaging and TOR pathway-associated nutrient depletion. We conclude that GPH1, adversely regulated by the filament suppressor CDC4, contributes to cell wall function in C. albicans.
Collapse
Affiliation(s)
- Wei-Chung Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Hsiao-Chi Hsu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Shao-Hung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 60004, Taiwan;
| | - Wan Chen Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Po-Szu Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Tzu-Ling Tseng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: ; Tel.: +886-424-730-022 (ext. 11806); Fax: +886-424-757-412
| |
Collapse
|
5
|
Wagner AS, Hancock TJ, Lumsdaine SW, Kauffman SJ, Mangrum MM, Phillips EK, Sparer TE, Reynolds TB. Activation of Cph1 causes ß(1,3)-glucan unmasking in Candida albicans and attenuates virulence in mice in a neutrophil-dependent manner. PLoS Pathog 2021; 17:e1009839. [PMID: 34432857 PMCID: PMC8423308 DOI: 10.1371/journal.ppat.1009839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/07/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Masking the immunogenic cell wall epitope ß(1,3)-glucan under an outer layer of mannosylated glycoproteins is an important virulence factor deployed by Candida albicans during infection. Consequently, increased ß(1,3)-glucan exposure (unmasking) reveals C. albicans to the host's immune system and attenuates its virulence. We have previously shown that activation of the Cek1 MAPK pathway via expression of a hyperactive allele of an upstream kinase (STE11ΔN467) induced unmasking. It also increased survival of mice in a murine disseminated candidiasis model and attenuated kidney fungal burden by ≥33 fold. In this communication, we utilized cyclophosphamide-induced immunosuppression to test if the clearance of the unmasked STE11ΔN467 mutant was dependent on the host immune system. Suppression of the immune response by cyclophosphamide reduced the attenuation in fungal burden caused by the STE11ΔN467 allele. Moreover, specific depletion of neutrophils via 1A8 antibody treatment also reduced STE11ΔN467-dependent fungal burden attenuation, but to a lesser extent than cyclophosphamide, demonstrating an important role for neutrophils in mediating fungal clearance of unmasked STE11ΔN467 cells. In an effort to understand the mechanism by which Ste11ΔN467 causes unmasking, transcriptomics were used to reveal that several components in the Cek1 MAPK pathway were upregulated, including the transcription factor CPH1 and the cell wall sensor DFI1. In this report we show that a cph1ΔΔ mutation restored ß(1,3)-glucan exposure to wild-type levels in the STE11ΔN467 strain, confirming that Cph1 is the transcription factor mediating Ste11ΔN467-induced unmasking. Furthermore, Cph1 is shown to induce a positive feedback loop that increases Cek1 activation. In addition, full unmasking by STE11ΔN467 is dependent on the upstream cell wall sensor DFI1. However, while deletion of DFI1 significantly reduced Ste11ΔN467-induced unmasking, it did not impact activation of the downstream kinase Cek1. Thus, it appears that once stimulated by Ste11ΔN467, Dfi1 activates a parallel signaling pathway that is involved in Ste11ΔN467-induced unmasking.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Stephen W. Lumsdaine
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sarah J. Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
6
|
Homchan A, Sukted J, Mongkolsuk S, Jeruzalmi D, Matangkasombut O, Pakotiprapha D. Wss1 homolog from Candida albicans and its role in DNA-protein crosslink tolerance. Mol Microbiol 2020; 114:409-422. [PMID: 32302440 DOI: 10.1111/mmi.14518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
Candida albicans is an opportunistic yeast that can cause life-threatening systemic infection in immunocompromised individuals. During infections, C. albicans has to cope with genotoxic stresses generated by the host immune system. DNA-protein crosslink (DPC), the covalent linkage of proteins with DNA, is one type of DNA damages that can be caused by the host immune response. DPCs are bulky lesions that interfere with the progression of replication and transcription machineries, and hence threaten genomic integrity. Accordingly, either a DPC tolerance mechanism or a DPC repair pathway is essential for C. albicans to maintain genomic stability and survive in the host. Here, we identified Wss1 (weak suppressor of Smt3) in C. albicans (CaWss1) using bioinformatics, genetic complementation, and biochemical studies. We showed that CaWss1 promotes cell survival under genotoxic stress conditions that generate DPCs and that the catalytic metalloprotease domain of CaWss1 is essential for its cellular function. Interactions of CaWss1 with Cdc48 and small ubiquitin-like modifier, although not strictly required, contribute to the function of CaWss1 in the suppression of the growth defects under DPC-inducing conditions. This report is the first investigation of the role of CaWss1 in DPC tolerance in C. albicans.
Collapse
Affiliation(s)
- Aimorn Homchan
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Juthamas Sukted
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY, USA.,Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Oranart Matangkasombut
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Establishment of tetracycline-regulated bimolecular fluorescence complementation assay to detect protein-protein interactions in Candida albicans. Sci Rep 2020; 10:2936. [PMID: 32076074 PMCID: PMC7031294 DOI: 10.1038/s41598-020-59891-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/03/2020] [Indexed: 01/05/2023] Open
Abstract
To visualize protein-protein interactions in Candida albicans with the bimolecular fluorescence complementation (BiFC) approach, we created a Tet-on system with the plasmids pWTN1 and pWTN2. Both plasmids bear a hygromycin B-resistant marker (CaHygB) that is compatible with the original Tet-on plasmid pNIM1, which carries a nourseothricin-resistant marker (CaSAT1). By using GFPmut2 and mCherry as reporters, we found that the two complementary Tet-on plasmids act synergistically in C. albicans with doxycycline in a dose-dependent manner and that expression of the fusion proteins, CaCdc11-GFPmut2 and mCherry-CaCdc10, derived from this system, is septum targeted. Furthermore, to allow detection of protein-protein interactions with the reassembly of a split fluorescent protein, we incorporated mCherry into our system. We generated pWTN1-RN and pNIM1-RC, which express the N-terminus (amino acids 1–159) and C-terminus (amino acids 160–237) of mCherry, respectively. To verify BiFC with mCherry, we created the pWTN1-CDC42-RN (or pWTN1-RN-CDC42) and pNIM1-RC-RDI1 plasmids. C. albicans cells containing these plasmids treated with doxycycline co-expressed the N- and C-terminal fragments of mCherry either N-terminally or C-terminally fused with CaCdc42 and CaRdi1, respectively, and the CaCdc42-CaRdi1 interaction reconstituted a functional form of mCherry. The establishment of this Tet-on-based BiFC system in C. albicans should facilitate the exploration of protein-protein interactions under a variety of conditions.
Collapse
|
8
|
Chen T, Wagner AS, Tams RN, Eyer JE, Kauffman SJ, Gann ER, Fernandez EJ, Reynolds TB. Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway. mBio 2019; 10:e01767-19. [PMID: 31530671 PMCID: PMC6751057 DOI: 10.1128/mbio.01767-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
Candida albicans is among the most prevalent opportunistic human fungal pathogens. The ability to mask the immunogenic polysaccharide β (1,3)-glucan from immune detection via a layer of mannosylated proteins is a key virulence factor of C. albicans We previously reported that hyperactivation of the Cek1 mitogen-activated protein (MAP) kinase pathway promotes β (1,3)-glucan exposure. In this communication, we report a novel upstream regulator of Cek1 activation and characterize the impact of Cek1 activity on fungal virulence. Lrg1 encodes a GTPase-activating protein (GAP) that has been suggested to inhibit the GTPase Rho1. We found that disruption of LRG1 causes Cek1 hyperactivation and β (1,3)-glucan unmasking. However, when GTPase activation was measured for a panel of GTPases, the lrg1ΔΔ mutant exhibited increased activation of Cdc42 and Ras1 but not Rho1 or Rac1. Unmasking and Cek1 activation in the lrg1ΔΔ mutant can be blocked by inhibition of the Ste11 MAP kinase kinase kinase (MAPKKK), indicating that the lrg1ΔΔ mutant acts through the canonical Cek1 MAP kinase cascade. In order to determine how Cek1 hyperactivation specifically impacts virulence, a doxycycline-repressible hyperactive STE11ΔN467 allele was expressed in C. albicans In the absence of doxycycline, this allele overexpressed STE11ΔN467 , which induced production of proinflammatory tumor necrosis factor alpha (TNF-α) from murine macrophages. This in vitro phenotype correlates with decreased colonization and virulence in a mouse model of systemic infection. The mechanism by which Ste11ΔN467 causes unmasking was explored with RNA sequencing (RNA-Seq) analysis. Overexpression of Ste11ΔN467 caused upregulation of the Cph1 transcription factor and of a group of cell wall-modifying proteins which are predicted to impact cell wall architecture.IMPORTANCECandida albicans is an important source of systemic infections in humans. The ability to mask the immunogenic cell wall polymer β (1,3)-glucan from host immune surveillance contributes to fungal virulence. We previously reported that the hyperactivation of the Cek1 MAP kinase cascade promotes cell wall unmasking, thus increasing strain immunogenicity. In this study, we identified a novel regulator of the Cek1 pathway called Lrg1. Lrg1 is a predicted GTPase-activating protein (GAP) that represses Cek1 activity by downregulating the GTPase Cdc42 and its downstream MAPKKK, Ste11. Upregulation of Cek1 activity diminished fungal virulence in the mouse model of infection, and this correlates with increased cytokine responses from macrophages. We also analyzed the transcriptional profile determined during β (1,3)-glucan exposure driven by Cek1 hyperactivation. Our report provides a model where Cek1 hyperactivation causes β (1,3)-glucan exposure by upregulation of cell wall proteins and leads to more robust immune detection in vivo, promoting more effective clearance.
Collapse
Affiliation(s)
- Tian Chen
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew S Wagner
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Robert N Tams
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - James E Eyer
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah J Kauffman
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Elias J Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B Reynolds
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
9
|
Huang CY, Chen YC, Wu-Hsieh BA, Fang JM, Chang ZF. The Ca-loop in thymidylate kinase is critical for growth and contributes to pyrimidine drug sensitivity of Candida albicans. J Biol Chem 2019; 294:10686-10697. [PMID: 31152062 DOI: 10.1074/jbc.ra118.006798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
The yeast Candida albicans is the most prevalent opportunistic fungal pathogen in humans. Drug resistance among C. albicans isolates poses a common challenge, and overcoming this resistance represents an unmet need in managing this common pathogen. Here, we investigated CDC8, encoding thymidylate kinase (TMPK), as a potential drug target for the management of C. albicans infections. We found that the region spanning amino acids 106-123, namely the Ca-loop of C. albicans TMPK (CaTMPK), contributes to the hyperactivity of this enzyme compared with the human enzyme (hTMPK) and to the utilization of deoxyuridine monophosphate (dUMP)/deoxy-5-fluorouridine monophosphate (5-FdUMP) as a substrate. Notably, expression of CaTMPK, but not of hTMPK, produced dUTP/5-FdUTP-mediated DNA toxicity in budding yeast (Saccharomyces cerevisiae). CRISPR-mediated deletion of this Ca-loop in C. albicans revealed that the Ca-loop is critical for fungal growth and susceptibility to 5-fluorouridine (5-FUrd). Of note, pathogenic and drug-resistant C. albicans clones were similarly sensitive to 5-FUrd, and we also found that CaTMPK is essential for the growth of C. albicans In conclusion, these findings not only identified a target site for the development of CaTMPK-selective drugs, but also revealed that 5-FUrd may have potential utility as drug for managing C. albicans infections.
Collapse
Affiliation(s)
- Chang-Yu Huang
- From the Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Linong Street, Taipei 11221.,the Institute of Molecular Medicine, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei 10051
| | - Yee-Chun Chen
- the National Taiwan University Hospital and College of Medicine.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002
| | - Betty A Wu-Hsieh
- the Graduate Institute of Immunology, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei 10051, and
| | - Jim-Min Fang
- the Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Zee-Fen Chang
- From the Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Linong Street, Taipei 11221, .,the Institute of Molecular Medicine, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei 10051.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002
| |
Collapse
|
10
|
Lee YT, Fang YY, Sun YW, Hsu HC, Weng SM, Tseng TL, Lin TH, Shieh JC. THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans. Int J Mol Med 2018; 42:3193-3208. [PMID: 30320368 PMCID: PMC6202100 DOI: 10.3892/ijmm.2018.3930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022] Open
Abstract
Candida albicans (C. albicans) CDC4 (CaCDC4), encoding the F-box protein for the substrate specificity of the Skp1-cullin-F-box E3 ubiquitin ligase complex, suppresses the yeast-to-filament transition in C. albicans. In our previous study, Thr1 was identified as a CaCdc4-associated protein using affinity purification. THR1 encodes a homoserine kinase, which is involved in the threonine biosynthesis pathway. The present study generated a strain with repressible CaCDC4 expression and continuous THR1 expression. Colony and cell morphology analyses, as well as immunoblotting, revealed that the Thr1 protein was detectable under conditions in which the expression of CaCDC4 was repressed and that the filaments resulting from the repressed expression of CaCDC4 were suppressed by the constitutive expression of THR1 in C. albicans. Additionally, by using the CaSAT1-flipper method, the present study produced null mutants of THR1, GCN4, and CaCDC4. The phenotypic consequences were evaluated by growth curves, spotting assays, microscopic analysis, reverse transcription-polymerase chain reaction and XTT-based biofilm formation ability. The results revealed that fewer cells lacking THR1 entered the stationary phase but had no apparent morphological alteration. It was observed that the expression of THR1 was upregulated concurrently with GCN4 during nutrient depletion and that cells lacking GCN4 rescued the lethality of cells in the absence of THR1 in conditions accumulating homoserine in the threonine biosynthesis pathway. Of note, it was found that cells with either CaCDC4 or THR1 loss were sensitive to oxidative stress and osmotic stress, with those with THR1 loss being more sensitive. In addition, it was observed that cells with loss of either CaCDC4 or THR1 exhibited the ability to increase biofilm formation, with those lacking CaCDC4 exhibiting a greater extent of enhancement. It was concluded that CaCDC4 is important in the coordination of morphogenesis, nutrient sensing, and the stress response through THR1 in C. albicans.
Collapse
Affiliation(s)
- Yuan-Ti Lee
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Yi-Ya Fang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Yu Wen Sun
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Hsiao-Chi Hsu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Shan-Mei Weng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Tzu-Ling Tseng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| |
Collapse
|
11
|
Candida albicans Aro1 affects cell wall integrity, biofilm formation and virulence. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 53:115-124. [PMID: 29807722 DOI: 10.1016/j.jmii.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/04/2018] [Accepted: 04/20/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Candida albicans is an opportunistic pathogen capable of causing life-threatening systemic infections. The C. albicans ARO1 gene encodes an arom multifunctional enzyme, which can possibly catalyze reactions of the shikimate pathway to synthesize aromatic amino acids. However, the functions of C. albicans Aro1 have not been extensively characterized. METHODS ARO1 knockdown mutant strain was constructed, using a tetracycline-regulated (TR) expression system. Cell growth of the mutant strain was compared with wild type. Effects of the ARO1 gene knockdown on cell wall properties, adhesion to polystyrene and biofilm formation were further investigated. Finally, Galleria mellonella was used as a model host to study the role of ARO1 in virulence of C. albicans. RESULTS We showed that defective growth in the ARO1 knockdown strain was rescued by supplemental aromatic amino acids. In addition, the ARO1 knockdown strain was easily aggregated and precipitated. The knockdown of ARO1 also caused changes in cell wall properties and compositions and promoted C. albicans cell adhesion to polystyrene and biofilm formation. Finally, the ARO1 knockdown strain showed attenuation of C. albicans virulence. CONCLUSION This work provides new insights into C. albicans metabolism, cell wall and virulence.
Collapse
|
12
|
Soreanu I, Hendler A, Dahan D, Dovrat D, Aharoni A. Marker-free genetic manipulations in yeast using CRISPR/CAS9 system. Curr Genet 2018; 64:1129-1139. [PMID: 29626221 DOI: 10.1007/s00294-018-0831-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022]
Abstract
The budding yeast is currently one of the major model organisms for the study of a wide variety of biological processes. Genetic manipulation of yeast involves the extensive usage of selectable markers that can lead to undesired effects. Thus, marker-free genetic manipulation in yeast is highly desirable for gene/promoter replacement and various other applications. Here we combine the power of selectable markers followed by CRISPR/CAS9 genome editing for common genetic manipulations in yeast in a marker-free manner. We demonstrate our approach for whole gene and promoter replacements and for high-efficiency operator array integration. Our approach allows the utilization of many thousands of existing strains including library strains for the generation of significant genetic changes in yeast in a marker-free and cloning-free fashion.
Collapse
Affiliation(s)
- Inga Soreanu
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Adi Hendler
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Danielle Dahan
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel.
| |
Collapse
|
13
|
Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion. Curr Genet 2017; 64:405-412. [DOI: 10.1007/s00294-017-0765-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022]
|
14
|
Bijlani S, Nahar AS, Ganesan K. Improved Tet-On and Tet-Off systems for tetracycline-regulated expression of genes in Candida. Curr Genet 2017; 64:303-316. [DOI: 10.1007/s00294-017-0720-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/27/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
|
15
|
Ianiri G, Boyce KJ, Idnurm A. Isolation of conditional mutations in genes essential for viability of Cryptococcus neoformans. Curr Genet 2016; 63:519-530. [PMID: 27783209 DOI: 10.1007/s00294-016-0659-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/02/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Discovering the genes underlying fundamental processes that enable cells to live and reproduce is a technical challenge, because loss of gene function in mutants results in organisms that cannot survive. This study describes a forward genetics method to identify essential genes in fungi, based on the propensity for Agrobacterium tumefaciens to insert T-DNA molecules into the promoters or 5' untranslated regions of genes and by placing a conditional promoter within the T-DNA. Insertions of the promoter of the GAL7 gene were made in the human pathogen Cryptococcus neoformans. Nine strains of 960 T-DNA insertional mutants screened grew on media containing galactose, but had impaired growth on media containing glucose, which suppresses expression from GAL7. T-DNA insertions were found in the homologs of IDI1, MRPL37, NOC3, NOP56, PRE3 and RPL17, all of which are essential in ascomycete yeasts Saccharomyces cerevisiae or Schizosaccharomyces pombe. Altering the carbon source in the medium provided a system to identify phenotypes in response to stress agents. The pre3 proteasome subunit mutant was further characterized. The T-DNA insertion and phenotype co-segregate in progeny from a cross, and the growth defect is complemented by the reintroduction of the wild type gene into the insertional mutant. A deletion allele was generated in a diploid strain, this heterozygous strain was sporulated, and analysis of the progeny provided additional genetic evidence that PRE3 is essential. The experimental design is applicable to other fungi and has other forward genetic applications such as to isolate over-expression suppressors or enhance the production of traits of interest.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via F. De Sanctis Snc, 86100, Campobasso, Italy
| | - Kylie J Boyce
- School of BioSciences, BioSciences 2, University of Melbourne, Building 122, Melbourne, VIC, 3010, Australia
| | - Alexander Idnurm
- School of BioSciences, BioSciences 2, University of Melbourne, Building 122, Melbourne, VIC, 3010, Australia.
| |
Collapse
|