1
|
Kumar D, Kumar A. Molecular Determinants Involved in Candida albicans Biofilm Formation and Regulation. Mol Biotechnol 2024; 66:1640-1659. [PMID: 37410258 DOI: 10.1007/s12033-023-00796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Candida albicans is known for its pathogenicity, although it lives within the human body as a commensal member. The commensal nature of C. albicans is well controlled and regulated by the host's immune system as they live in the harmonized microenvironment. However, the development of certain unusual microhabitat conditions (change in pH, co-inhabiting microorganisms' population ratio, debilitated host-immune system) pokes this commensal fungus to transform into a pathogen in such a way that it starts to propagate very rapidly and tries to breach the epithelial barrier to enter the host's systemic circulations. In addition, Candida is infamous as a major nosocomial (hospital-acquired infection) agent because it enters the human body through venous catheters or medical prostheses. The hysterical mode of C. albicans growth builds its microcolony or biofilm, which is pathogenic for the host. Biofilms propose additional resistance mechanisms from host immunity or extracellular chemicals to aid their survival. Differential gene expressions and regulations within the biofilms cause altered morphology and metabolism. The genes associated with adhesiveness, hyphal/pseudo-hyphal growth, persister cell transformation, and biofilm formation by C. albicans are controlled by myriads of cell-signaling regulators. These genes' transcription is controlled by different molecular determinants like transcription factors and regulators. Therefore, this review has focused discussion on host-immune-sensing molecular determinants of Candida during biofilm formation, regulatory descriptors (secondary messengers, regulatory RNAs, transcription factors) of Candida involved in biofilm formation that could enable small-molecule drug discovery against these molecular determinants, and lead to disrupt the well-structured Candida biofilms effectively.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
2
|
Cravener MV, Do E, May G, Zarnowski R, Andes DR, McManus CJ, Mitchell AP. Reinforcement amid genetic diversity in the Candida albicans biofilm regulatory network. PLoS Pathog 2023; 19:e1011109. [PMID: 36696432 PMCID: PMC9901766 DOI: 10.1371/journal.ppat.1011109] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/06/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Biofilms of the fungal pathogen Candida albicans include abundant long filaments called hyphae. These cells express hypha-associated genes, which specify diverse virulence functions including surface adhesins that ensure biofilm integrity. Biofilm formation, virulence, and hypha-associated gene expression all depend upon the transcription factor Efg1. This transcription factor has been characterized extensively in the C. albicans type strain SC5314 and derivatives, but only recently has its function been explored in other clinical isolates. Here we define a principal set of Efg1-responsive genes whose expression is significantly altered by an efg1Δ/Δ mutation across 17 clinical isolates. This principal gene set includes 68 direct Efg1 targets, whose 5' regions are bound by Efg1 in five clinical isolates, and 42 indirect Efg1 targets, whose 5' regions are not detectably bound by Efg1. Three direct Efg1 target genes encode transcription factors-BRG1, UME6, and WOR3 -whose increased expression in an efg1Δ/Δ mutant restores expression of multiple indirect and direct principal targets, as well as biofilm formation ability. Although BRG1 and UME6 are well known positive regulators of hypha-associated genes and biofilm formation, WOR3 is best known as an antagonist of Efg1 in the sexual mating pathway. We confirm the positive role of WOR3 in biofilm formation with the finding that a wor3Δ/Δ mutation impairs biofilm formation in vitro and in an in vivo biofilm model. Positive control of Efg1 direct target genes by other Efg1 direct target genes-BRG1, UME6, and WOR3 -may buffer principal Efg1-responsive gene expression against the impact of genetic variation in the C. albicans species.
Collapse
Affiliation(s)
- Max V. Cravener
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Eunsoo Do
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Gemma May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
3
|
Glazier VE. EFG1, Everyone’s Favorite Gene in Candida albicans: A Comprehensive Literature Review. Front Cell Infect Microbiol 2022; 12:855229. [PMID: 35392604 PMCID: PMC8980467 DOI: 10.3389/fcimb.2022.855229] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Candida sp. are among the most common fungal commensals found in the human microbiome. Although Candida can be found residing harmlessly on the surface of the skin and mucosal membranes, these opportunistic fungi have the potential to cause superficial skin, nail, and mucus membrane infections as well as life threatening systemic infections. Severity of infection is dependent on both fungal and host factors including the immune status of the host. Virulence factors associated with Candida sp. pathogenicity include adhesin proteins, degradative enzymes, phenotypic switching, and morphogenesis. A central transcriptional regulator of morphogenesis, the transcription factor Efg1 was first characterized in Candida albicans in 1997. Since then, EFG1 has been referenced in the Candida literature over three thousand times, with the number of citations growing daily. Arguably one of the most well studied genes in Candida albicans, EFG1 has been referenced in nearly all contexts of Candida biology from the development of novel therapeutics to white opaque switching, hyphae morphology to immunology. In the review that follows we will synthesize the research that has been performed on this extensively studied transcription factor and highlight several important unanswered questions.
Collapse
|
4
|
Systematic Genetic Interaction Analysis Identifies a Transcription Factor Circuit Required for Oropharyngeal Candidiasis. mBio 2022; 13:e0344721. [PMID: 35012341 PMCID: PMC8749425 DOI: 10.1128/mbio.03447-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oropharyngeal candidiasis (OPC) is a common infection that complicates a wide range of medical conditions and can cause either mild or severe disease depending on the patient. The pathobiology of OPC shares many features with candidal biofilms of abiotic surfaces. The transcriptional regulation of C. albicans biofilm formation on abiotic surfaces has been extensively characterized and involves six key transcription factors (Efg1, Ndt80, Rob1, Bcr1, Brg1, and Tec1). To determine if the in vitro biofilm transcriptional regulatory network also plays a role in OPC, we carried out a systematic genetic interaction analysis in a mouse model of C. albicans OPC. Whereas each of the six transcription factors are required for in vitro biofilm formation, only three homozygous deletion mutants (tec1ΔΔ, bcr1ΔΔ, and rob1ΔΔ) and one heterozygous mutant (tec1Δ/TEC1) have reduced infectivity in the mouse model of OPC. Although single mutants (heterozygous or homozygous) of BRG1 and EFG1 have no effect on fungal burden, double heterozygous and homozygous mutants have dramatically reduced infectivity, indicating a critical genetic interaction between these two transcription factors during OPC. Using epistasis analysis, we have formulated a genetic circuit, [EFG1+BRG1]→TEC1→BCR1, that is required for OPC infectivity and oral epithelial cell endocytosis. Surprisingly, we also found transcription factor mutants with in vitro defects in filamentation, such as efg1ΔΔ, rob1ΔΔ, and brg1ΔΔ filament, during oral infection and that reduced filamentation does not correlate with infectivity. Taken together, these data indicate that key in vitro biofilm transcription factors are involved in OPC but that the network characteristics and functional connections during infection are distinct from those observed in vivo. IMPORTANCE The pathology of oral candidiasis has features of biofilm formation, a well-studied process in vitro. Based on that analogy, we hypothesized that the network of transcription factors that regulates in vitro biofilm formation has similarities and differences during oral infection. To test this, we employed the first systematic genetic interaction analysis of C. albicans in a mouse model of oropharyngeal infection. This revealed that the six regulators involved in in vitro biofilm formation played roles in vivo but that the functional connections between factors were quite distinct. Surprisingly, we also found that while many of the factors are required for filamentation in vitro, none of the transcription factor deletion mutants was deficient for this key virulence trait in vivo. These observations clearly demonstrate that C. albicans regulates key aspects of its biology differently in vitro and in vivo.
Collapse
|
5
|
Glazer V, Krysan D. Construction of Double Heterozygous Deletion Strains for Complex Haploinsufficiency-Based Genetic Analysis in Candida albicans. Methods Mol Biol 2022; 2542:91-99. [PMID: 36008658 DOI: 10.1007/978-1-0716-2549-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Complex haploinsufficiency refers to the genetic interaction that occurs in strains with heterozygous mutations at two different loci (a double heterozygous deletion mutant). Double heterozygous deletion mutants can be used to identify gene partners that act within the same pathway or to determine expression-dependent genetic interactions that result in phenotypic changes outside of what would be expected based on the phenotypes of the single heterozygous deletion mutants. The approach outlined here uses a lithium acetate transformation method on a parental "query" strain to introduce a transcription factor deletion DNA construct that is derived from the Homann et al. Candida albicans transcription factor deletion library (Homann et al. PLoS Genet 5(12):e1000783, 2009). We also outline the steps to confirming the genotype of the resulting transformants as well as an example of the use of double heterozygous deletion mutants for complex haploinsufficiency analysis of biofilm formation.
Collapse
Affiliation(s)
| | - Damian Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
The Impact of Gene Dosage and Heterozygosity on The Diploid Pathobiont Candida albicans. J Fungi (Basel) 2019; 6:jof6010010. [PMID: 31892130 PMCID: PMC7151161 DOI: 10.3390/jof6010010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a fungal species that can colonize multiple niches in the human host where it can grow either as a commensal or as an opportunistic pathogen. The genome of C. albicans has long been of considerable interest, given that it is highly plastic and can undergo a wide variety of alterations. These changes play a fundamental role in determining C. albicans traits and have been shown to enable adaptation both to the host and to antifungal drugs. C. albicans isolates contain a heterozygous diploid genome that displays variation from the level of single nucleotides to largescale rearrangements and aneuploidy. The heterozygous nature of the genome is now increasingly recognized as being central to C. albicans biology, as the relative fitness of isolates has been shown to correlate with higher levels of overall heterozygosity. Moreover, loss of heterozygosity (LOH) events can arise frequently, either at single polymorphisms or at a chromosomal level, and both can alter the behavior of C. albicans cells during infection or can modulate drug resistance. In this review, we examine genome plasticity in this pathobiont focusing on how gene dosage variation and loss of heterozygosity events can arise and how these modulate C. albicans behavior.
Collapse
|
7
|
Characterization of the promoter, downstream target genes and recognition DNA sequence of Mhy1, a key filamentation-promoting transcription factor in the dimorphic yeast Yarrowia lipolytica. Curr Genet 2019; 66:245-261. [DOI: 10.1007/s00294-019-01018-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/03/2019] [Accepted: 07/13/2019] [Indexed: 12/15/2022]
|
8
|
Role of Mediator in virulence and antifungal drug resistance in pathogenic fungi. Curr Genet 2019; 65:621-630. [DOI: 10.1007/s00294-019-00932-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
|
9
|
Acharya N, Manohar K, Peroumal D, Khandagale P, Patel SK, Sahu SR, Kumari P. Multifaceted activities of DNA polymerase η: beyond translesion DNA synthesis. Curr Genet 2018; 65:649-656. [PMID: 30535880 DOI: 10.1007/s00294-018-0918-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
DNA polymerases are evolved to extend the 3'-OH of a growing primer annealed to a template DNA substrate. Since replicative DNA polymerases have a limited role while replicating structurally distorted template, translesion DNA polymerases mostly from Y-family come to the rescue of stalled replication fork and maintain genome stability. DNA polymerase eta is one such specialized enzyme whose function is directly associated with casual development of certain skin cancers and chemo-resistance. More than 20 years of extensive studies are available to support TLS activities of Polη in bypassing various DNA lesions, in addition, limited but crucial growing evidence also exist to suggest Polη possessing TLS-independent cellular functions. In this review, we have mostly focused on non-TLS activities of Polη from different organisms including our recent findings from pathogenic yeast Candida albicans.
Collapse
Affiliation(s)
- Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| | - Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Doureradjou Peroumal
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| |
Collapse
|
10
|
Culyba MJ. Ordering up gene expression by slowing down transcription factor binding kinetics. Curr Genet 2018; 65:401-406. [PMID: 30353359 DOI: 10.1007/s00294-018-0896-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Abstract
Efficient regulation of a complex genetic response requires that the gene products, which catalyze the response, be synthesized in a temporally ordered manner to match the sequential nature of the reaction pathway they act upon. Transcription regulation networks coordinate this aspect of cellular control by modulating transcription factor (TF) concentrations through time. The effect a TF has on the timing of gene expression is often modeled assuming that the TF-promoter binding reaction is in thermodynamic equilibrium with changes in TF concentration over time; however, non-equilibrium dynamics resulting from relatively slow TF-binding kinetics can result in different network behavior. Here, I highlight a recent study of the bacterial SOS response, where a single TF regulates multiple target promoters, to show how a disequilibrium of TF binding at promoters results in a more complex behavior, enabling a larger temporal separation of promoter activities that depends not only upon slow TF binding kinetics at promoters, but also on the magnitude of the response stimulus. I also discuss the dependence of network behavior on specific TF regulatory mechanisms and the implications non-equilibrium dynamics have for stochastic gene expression.
Collapse
Affiliation(s)
- Matthew J Culyba
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, 857 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|