1
|
Badura J, Bernardi B, Muno-Bender J, Matti K, Zimmer K, Wendland J. Isolation and characterization of haploid heterothallic beer yeasts. Appl Microbiol Biotechnol 2025; 109:17. [PMID: 39841271 PMCID: PMC11754353 DOI: 10.1007/s00253-024-13397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025]
Abstract
Improving ale or lager yeasts by conventional breeding is a non-trivial task. Domestication of lager yeasts, which are hybrids between Saccharomyces cerevisiae and Saccharomyces eubayanus, has led to evolved strains with severely reduced or abolished sexual reproduction capabilities, due to, e.g. postzygotic barriers. On the other hand, S. cerevisiae ale yeasts, particularly Kveik ale yeast strains, were shown to produce abundant viable spores (~ 60%; Dippel et al. Microorganisms 10(10):1922, 2022). This led us to investigate the usefulness of Kveik yeasts for conventional yeast breeding. Surprisingly, we could isolate heterothallic colonies from germinated spores of different Kveik strains. These strains presented stable mating types in confrontation assays with pheromone-sensitive tester strains. Heterothallism was due to inactivating mutations in their HO genes. These led to amino acid exchanges in the Ho protein, revealing a known G223D mutation and also a novel G217R mutation, both of which abolished mating type switching. We generated stable MATa or MATα lines of four different Kveik yeasts, named Odin, Thor, Freya and Vör. Analyses of bud scar positions in these strains revealed both axial and bipolar budding patterns. However, the ability of Freya and Vör to form viable meiotic offspring with haploid tester strains demonstrated that these strains are haploid. Fermentation analyses indicated that all four yeast strains were able to ferment maltose and maltotriose. Odin was found to share not only mutations in the HO gene, but also inactivating mutations in the PAD1 and FDC1 genes with lager yeasts, which makes this strain POF-, i.e. not able to generate phenolic off-flavours, a key feature of lager yeasts. These haploid ale yeast-derived strains may open novel avenues also for generating novel lager yeast strains by breeding or mutation and selection utilizing the power of yeast genetics, thus lifting a block that domestication of lager yeasts has brought about. KEY POINTS: • Haploid Kveik ale yeasts with stable MATa and MATα mating types were isolated. • Heterothallic strains bear mutant HO alleles leading to a novel inactivating G217R amino acid change. • One strain was found to be POF- due to inactivating mutations in the PAD1 and FDC1 gene rendering it negative for phenolic off-flavor production. • These strains are highly accessible for beer yeast improvements by conventional breeding, employing yeast genetics and mutation and selection regimes.
Collapse
Affiliation(s)
- Jennifer Badura
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| | - Beatrice Bernardi
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
- Formo Bio GmbH, Weißmüllerstraße 50 60314, Frankfurt Am Main, Germany
| | - Judith Muno-Bender
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| | - Katrin Matti
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| | - Kerstin Zimmer
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany.
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany.
| |
Collapse
|
2
|
Drężek K, Antunovics Z, Grabiec AK. Novel Saccharomyces uvarum x Saccharomyces kudriavzevii synthetic hybrid with enhanced 2-phenylethanol production. Microb Cell Fact 2024; 23:203. [PMID: 39030609 PMCID: PMC11265027 DOI: 10.1186/s12934-024-02473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Over the last two decades, hybridization has been a powerful tool used to construct superior yeast for brewing and winemaking. Novel hybrids were primarily constructed using at least one Saccharomyces cerevisiae parent. However, little is known about hybrids used for other purposes, such as targeted flavor production, for example, 2-phenylethanol (2-PE). 2-PE, an aromatic compound widely utilised in the food, cosmetic, and pharmaceutical industries, presents challenges in biotechnological production due to its toxic nature. Consequently, to enhance productivity and tolerance to 2-PE, various strategies such as mutagenesis and genetic engineering are extensively explored to improved yeast strains. While biotechnological efforts have predominantly focused on S. cerevisiae for 2-PE production, other Saccharomyces species and their hybrids remain insufficiently described. RESULTS To address this gap, in this study, we analysed a new interspecies yeast hybrid, II/6, derived from S. uvarum and S. kudriavzevii parents, in terms of 2-PE bioconversion and resistance to its high concentration, comparing it with the parental strains. Two known media for 2-PE biotransformation and three different temperatures were used during this study to determine optimal conditions. In 72 h batch cultures, the II/6 hybrid achieved a maximum of 2.36 ± 0.03 g/L 2-PE, which was 2-20 times higher than the productivity of the parental strains. Our interest lay not only in determining whether the hybrid improved in productivity but also in assessing whether its susceptibility to high 2-PE titers was also mitigated. The results showed that the hybrid exhibited significantly greater resistance to the toxic product than the original strains. CONCLUSIONS The conducted experiments have confirmed that hybridization is a promising method for modifying yeast strains. As a result, both 2-PE production yield and tolerance to its inhibitory effects can be increased. Furthermore, this strategy allows for the acquisition of non-GMO strains, alleviating concerns related to additional legislative requirements or consumer acceptance issues for producers. The findings obtained have the potential to contribute to the development of practical solutions in the future.
Collapse
Affiliation(s)
- Karolina Drężek
- Department of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland.
| | - Zsuzsa Antunovics
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| | - Agnieszka Karolina Grabiec
- Department of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
3
|
Synthetic two-species allodiploid and three-species allotetraploid Saccharomyces hybrids with euploid (complete) parental subgenomes. Sci Rep 2023; 13:1112. [PMID: 36670139 PMCID: PMC9860037 DOI: 10.1038/s41598-023-27693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Combination of the genomes of Saccharomyces species has great potential for the construction of new industrial strains as well as for the study of the process of speciation. However, these species are reproductively isolated by a double sterility barrier. The first barrier is mainly due to the failure of the chromosomes to pair in allodiploid meiosis. The second barrier ensures that the hybrid remains sterile even after genome duplication, an event that can restore fertility in plant interspecies hybrids. The latter is attributable to the autodiploidisation of the allotetraploid meiosis that results in sterile allodiploid spores (return to the first barrier). Occasionally, mating-competent alloaneuploid spores arise by malsegregation of MAT-carrying chromosomes. These can mate with cells of a third species resulting in aneuploid zygotes having at least one incomplete subgenome. Here we report on the construction of euploid three-species hybrids by making use of "rare mating" between a sterile S. kudriavzevii x S. uvarum allodiploid hybrid and a diploid S. cerevisiae strain. The hybrids have allotetraploid 2nScnSk nSu genomes consisting of complete sets of parental chromosomes. This is the first report on the production of euploid three-species Saccharomyces hybrids by natural mating, without genetic manipulation. The hybrids provide possibilities for studying the interactions of three allospecific genomes and their orthologous genes present in the same cell.
Collapse
|
4
|
Bozdag GO, Ono J. Evolution and molecular bases of reproductive isolation. Curr Opin Genet Dev 2022; 76:101952. [PMID: 35849861 PMCID: PMC10210581 DOI: 10.1016/j.gde.2022.101952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
The most challenging problem in speciation research is disentangling the relative strength and order in which different reproductive barriers evolve. Here, we review recent developments in the study of reproductive isolation in yeasts. With over a thousand genome-sequenced isolates readily available for testing the viability, sterility, and fitness of both intraspecies and interspecies hybrid crosses, Saccharomyces yeasts are an ideal model to study such fundamental questions. Our survey demonstrates that, while chromosomal-level mutations are widespread at the intraspecific level, anti-recombination-driven chromosome missegregation is the primary reproductive barrier between species. Finally, despite their strength, all of these postzygotic barriers can be resolved through the asexual life history of hybrids.
Collapse
Affiliation(s)
- G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA. https://twitter.com/ozan_g_b
| | - Jasmine Ono
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
5
|
The evolutionary and ecological potential of yeast hybrids. Curr Opin Genet Dev 2022; 76:101958. [PMID: 35834944 DOI: 10.1016/j.gde.2022.101958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 01/19/2023]
Abstract
Recent findings in yeast genetics and genomics have advanced our understanding of the evolutionary potential unlocked by hybridization, especially in the genus Saccharomyces. We now have a clearer picture of the prevalence of yeast hybrids in the environment, their ecological and evolutionary history, and the genetic mechanisms driving (and constraining) their adaptation. Here, we describe how the instability of hybrid genomes determines fitness across large evolutionary scales, highlight new hybrid strain engineering techniques, and review tools for comparative hybrid genome analysis. The recent push to take yeast research back 'into the wild' has resulted in new genomic and ecological resources. These provide an arena for quantitative genetics and allow us to investigate the architecture of complex traits and mechanisms of adaptation to rapidly changing environments. The vast genetic diversity of hybrid populations can yield insights beyond those possible with isogenic lines. Hybrids offer a limitless supply of genetic variation that can be tapped for industrial strain improvement but also, combined with experimental evolution, can be used to predict population responses to future climate change - a fundamental task for biologists.
Collapse
|
6
|
Solieri L, Cassanelli S, Huff F, Barroso L, Branduardi P, Louis EJ, Morrissey JP. Insights on life cycle and cell identity regulatory circuits for unlocking genetic improvement in Zygosaccharomyces and Kluyveromyces yeasts. FEMS Yeast Res 2021; 21:foab058. [PMID: 34791177 PMCID: PMC8673824 DOI: 10.1093/femsyr/foab058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/14/2021] [Indexed: 11/14/2022] Open
Abstract
Evolution has provided a vast diversity of yeasts that play fundamental roles in nature and society. This diversity is not limited to genotypically homogeneous species with natural interspecies hybrids and allodiploids that blur species boundaries frequently isolated. Thus, life cycle and the nature of breeding systems have profound effects on genome variation, shaping heterozygosity, genotype diversity and ploidy level. The apparent enrichment of hybrids in industry-related environments suggests that hybridization provides an adaptive route against stressors and creates interest in developing new hybrids for biotechnological uses. For example, in the Saccharomyces genus where regulatory circuits controlling cell identity, mating competence and meiosis commitment have been extensively studied, this body of knowledge is being used to combine interesting traits into synthetic F1 hybrids, to bypass F1 hybrid sterility and to dissect complex phenotypes by bulk segregant analysis. Although these aspects are less known in other industrially promising yeasts, advances in whole-genome sequencing and analysis are changing this and new insights are being gained, especially in the food-associated genera Zygosaccharomyces and Kluyveromyces. We discuss this new knowledge and highlight how deciphering cell identity circuits in these lineages will contribute significantly to identify the genetic determinants underpinning complex phenotypes and open new avenues for breeding programmes.
Collapse
Affiliation(s)
- Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Franziska Huff
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute, University College Cork, Cork T12 K8AF, Ireland
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Liliane Barroso
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy
| | - Edward J Louis
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - John P Morrissey
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
7
|
Marsit S, Hénault M, Charron G, Fijarczyk A, Landry CR. The neutral rate of whole-genome duplication varies among yeast species and their hybrids. Nat Commun 2021; 12:3126. [PMID: 34035259 PMCID: PMC8149824 DOI: 10.1038/s41467-021-23231-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Hybridization and polyploidization are powerful mechanisms of speciation. Hybrid speciation often coincides with whole-genome duplication (WGD) in eukaryotes. This suggests that WGD may allow hybrids to thrive by increasing fitness, restoring fertility and/or increasing access to adaptive mutations. Alternatively, it has been suggested that hybridization itself may trigger WGD. Testing these models requires quantifying the rate of WGD in hybrids without the confounding effect of natural selection. Here we show, by measuring the spontaneous rate of WGD of more than 1300 yeast crosses evolved under relaxed selection, that some genotypes or combinations of genotypes are more prone to WGD, including some hybrids between closely related species. We also find that higher WGD rate correlates with higher genomic instability and that WGD increases fertility and genetic variability. These results provide evidence that hybridization itself can promote WGD, which in turn facilitates the evolution of hybrids.
Collapse
Affiliation(s)
- S Marsit
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada.
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada.
| | - M Hénault
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada
| | - G Charron
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - A Fijarczyk
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada
| | - C R Landry
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, QC, Canada.
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada.
| |
Collapse
|
8
|
Toyomura K, Hisatomi T. Postzygotic reproductive isolation among three Saccharomyces yeast species. Yeast 2021; 38:326-335. [PMID: 33444464 DOI: 10.1002/yea.3549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022] Open
Abstract
We have previously isolated heterothallic haploid strains from original homothallic diploids of two yeast species in the family Saccharomycetaceae. In this study, heterothallic haploid strains were isolated from an original homothallic diploid of Saccharomyces kudriavzevii type strain, followed by investigation of sexual interactions among these yeast strains, in addition to S. cerevisiae laboratory strains. It has been shown that prezygotic reproductive isolation was observed between Kazachstania naganishii and S. cerevisiae with α-factor mating pheromones representing crossaction with each other beyond the genus boundary. Using heterothallic strains, postzygotic reproductive isolation system was shown to reside in the genus Saccharomyces by mass mating and cell-cell contact experiments. In mass mating experiments, crossaction of α-factor and a-factor mating pheromones and sexual agglutination effectively occurred beyond species boundaries among S. kudriavzevii, S. paradoxus, and S. cerevisiae. When the fates of cell-cell pairs from these Saccharomyces yeast species were systematically chased one by one, interspecific F1 hybrids were effectively produced, while sporulations were partially prohibited, with spore germination perfectly blocked in the hybrids. These results indicated that postzygotic reproductive isolation definitively resides among these Saccharomyces yeast species and that disorder of chromosome organization had to some extent occurred in interspecific F1 hybrids.
Collapse
Affiliation(s)
- Kousuke Toyomura
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Fukuyama University, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Taisuke Hisatomi
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Fukuyama University, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan
| |
Collapse
|
9
|
Lengeler KB, Stovicek V, Fennessy RT, Katz M, Förster J. Never Change a Brewing Yeast? Why Not, There Are Plenty to Choose From. Front Genet 2020; 11:582789. [PMID: 33240329 PMCID: PMC7677575 DOI: 10.3389/fgene.2020.582789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022] Open
Abstract
Fermented foods and particularly beer have accompanied the development of human civilization for thousands of years. Saccharomyces cerevisiae, the dominant yeast in the production of alcoholic beverages, probably co-evolved with human activity. Considering that alcoholic fermentations emerged worldwide, the number of strains used in beer production nowadays is surprisingly low. Thus, the genetic diversity is often limited. This is among others related to the switch from a household brewing style to a more artisan brewing regime during the sixteenth century and latterly the development of single yeast isolation techniques at the Carlsberg Research Laboratory in 1883, resulting in process optimizations in the brewing industry. However, due to fierce competition within the beer market and the increasing demand for novel beer styles, diversification is becoming increasingly important. Moreover, the emergence of craft brewing has influenced big breweries to rediscover yeast as a significant contributor to a beer's aroma profile and realize that there is still room for innovation in the fermentation process. Here, we aim at giving a brief overview on how currently used S. cerevisiae brewing yeasts emerged and comment on the rationale behind replacing them with novel strains. We will present potential sources of yeasts that have not only been used in beer brewing before, including natural sources and sources linked to human activity but also an overlooked source, such as yeast culture collections. We will briefly comment on common yeast isolation techniques and finally touch on additional challenges for the brewing industry in replacing their current brewer's yeasts.
Collapse
Affiliation(s)
| | | | | | | | - Jochen Förster
- Carlsberg Research Laboratory, Carlsberg A/S, Copenhagen, Denmark
| |
Collapse
|