1
|
van de Kooij B, Schreuder A, Pavani R, Garzero V, Uruci S, Wendel TJ, van Hoeck A, San Martin Alonso M, Everts M, Koerse D, Callen E, Boom J, Mei H, Cuppen E, Luijsterburg MS, van Vugt MATM, Nussenzweig A, van Attikum H, Noordermeer SM. EXO1 protects BRCA1-deficient cells against toxic DNA lesions. Mol Cell 2024; 84:659-674.e7. [PMID: 38266640 DOI: 10.1016/j.molcel.2023.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/14/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Department of Medical Oncology, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Anne Schreuder
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronica Garzero
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Sidrit Uruci
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Tiemen J Wendel
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Arne van Hoeck
- Oncode Institute, Utrecht 3521 AL, the Netherlands; Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht 3584 CG, the Netherlands
| | - Marta San Martin Alonso
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Marieke Everts
- Department of Medical Oncology, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Dana Koerse
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jasper Boom
- Sequencing Analysis Support Core, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Edwin Cuppen
- Oncode Institute, Utrecht 3521 AL, the Netherlands; Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht 3584 CG, the Netherlands; Hartwig Medical Foundation, Amsterdam 1098 XH, the Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands.
| | - Sylvie M Noordermeer
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands.
| |
Collapse
|
2
|
Li J, Hu H, He J, Hu Y, Liu M, Cao B, Chen D, Ye X, Zhang J, Zhang Z, Long W, Lian H, Chen D, Chen L, Yang L, Zhang Z. Effective sequential combined therapy with carboplatin and a CDC7 inhibitor in ovarian cancer. Transl Oncol 2024; 39:101825. [PMID: 37992591 PMCID: PMC10687335 DOI: 10.1016/j.tranon.2023.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The enhancement of DNA damage repair is one of the important mechanisms of platinum resistance. Protein cell division cycle 7 (CDC7) is a conserved serine/threonine kinase that plays important roles in the initiation of DNA replication and is associated with chemotherapy resistance in ovarian cancer. However, whether the CDC7 inhibitor XL413 has antitumor activity against ovarian cancer and its relationship with chemosensitivity remain poorly elucidated. METHODS We evaluated the antitumor effects of carboplatin combined with XL413 for ovarian cancer in vitro and in vivo. Cell viability inhibition, colony formation and apoptosis were assessed. The molecules related to DNA repair and damage were investigated. The antitumor effects of carboplatin combined with XL413 were also evaluated in SKOV-3 and OVCAR-3 xenografts in subcutaneous and intraperitoneal tumor models. RESULTS Sequential administration of XL413 after carboplatin (CBP) prevented cellular proliferation and promoted apoptosis in ovarian cancer (OC) cells. Compared with the CBP group, the expression level of RAD51 was significantly decreased and the expression level of γH2AX was significantly increased in the sequential combination treatment group. The equential combination treatment could significantly inhibit tumor growth in the subcutaneous and intraperitoneal tumor models, with the expression of RAD51 and Ki67 significantly decreased and the expression of γH2AX increased. CONCLUSIONS Sequential administration of CDC7 inhibitor XL413 after carboplatin can enhance the chemotherapeutic effect of carboplatin on ovarian cancer cells. The mechanism may be that CDC7 inhibitor XL413 increases the accumulation of chemotherapy-induced DNA damage by inhibiting homologous recombination repair activity.
Collapse
Affiliation(s)
- Junping Li
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, China
| | - Hong Hu
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, China
| | - Jinping He
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yuling Hu
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Manting Liu
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Bihui Cao
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Dongni Chen
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaodie Ye
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jian Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhiru Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Wen Long
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hui Lian
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Deji Chen
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Likun Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510200, China.
| | - Lili Yang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhenfeng Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
3
|
Wang Q, Hu J, Lou T, Li Y, Shi Y, Hu H. Integrated agronomic, physiological, microstructure, and whole-transcriptome analyses reveal the role of biomass accumulation and quality formation during Se biofortification in alfalfa. FRONTIERS IN PLANT SCIENCE 2023; 14:1198847. [PMID: 37546260 PMCID: PMC10400095 DOI: 10.3389/fpls.2023.1198847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023]
Abstract
Se-biofortified agricultural products receive considerable interest due to the worldwide severity of selenium (Se) deficiency. Alfalfa (Medicago sativa L.), the king of forage, has a large biomass, a high protein content, and a high level of adaptability, making it a good resource for Se biofortification. Analyses of agronomic, quality, physiological, and microstructure results indicated the mechanism of biomass increase and quality development in alfalfa during Se treatment. Se treatment effectively increased Se content, biomass accumulation, and protein levels in alfalfa. The enhancement of antioxidant capacity contributes to the maintenance of low levels of reactive oxygen species (ROS), which, in turn, serves to increase alfalfa's stress resistance and the stability of its intracellular environment. An increase in the rate of photosynthesis contributes to the accumulation of biomass in alfalfa. To conduct a more comprehensive investigation of the regulatory networks induced by Se treatment, the transcriptome sequencing of non-coding RNA (ncRNA) was employed to compare 100 mg/kg Se treatment and control groups. The analysis identified 1,414, 62, and 5 genes as DE-long non-coding RNAs (DE-lncRNA), DE-microRNAs (DE-miRNA), and DE-circular RNA (DE-circRNA), respectively. The function of miRNA-related regulatory networks during Se biofortification in alfalfa was investigated. Subsequent enrichment analysis revealed significant involvement of transcription factors, DNA replication and repair mechanisms, photosynthesis, carbohydrate metabolism, and protein processing. The antioxidant capacity and protein accumulation of alfalfa were regulated by the modulation of signal transduction, the glyoxalase pathway, proteostasis, and circRNA/lncRNA-related regulatory networks. The findings offer new perspectives on the regulatory mechanisms of Se in plant growth, biomass accumulation, and stress responses, and propose potential strategies for enhancing its utilization in the agricultural sector.
Collapse
Affiliation(s)
- Qingdong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
| | - Jinke Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
| | - Tongbo Lou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
| | - Yan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
| | - Huafeng Hu
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, Henan, China
| |
Collapse
|
4
|
van de Kooij B, Schreuder A, Pavani RS, Garzero V, Van Hoeck A, San Martin Alonso M, Koerse D, Wendel TJ, Callen E, Boom J, Mei H, Cuppen E, Nussenzweig A, van Attikum H, Noordermeer SM. EXO1-mediated DNA repair by single-strand annealing is essential for BRCA1-deficient cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529205. [PMID: 37720033 PMCID: PMC10503826 DOI: 10.1101/2023.02.24.529205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Deficiency for the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR) leads to chromosomal instability and diseases such as cancer. Yet, defective HR also results in vulnerabilities that can be exploited for targeted therapy. Here, we identify such a vulnerability and show that BRCA1-deficient cells are dependent on the long-range end-resection factor EXO1 for survival. EXO1 loss results in DNA replication-induced lesions decorated by poly(ADP-ribose)-chains. In cells that lack both BRCA1 and EXO1, this is accompanied by unresolved DSBs due to impaired single-strand annealing (SSA), a DSB repair process that requires the activity of both proteins. In contrast, BRCA2-deficient cells have increased SSA, also in the absence of EXO1, and hence are not dependent on EXO1 for survival. In agreement with our mechanistic data, BRCA1-mutated tumours have elevated EXO1 expression and contain more genomic signatures of SSA compared to BRCA1-proficient tumours. Collectively, our data indicate that EXO1 is a promising novel target for treatment of BRCA1-deficient tumours.
Collapse
|
5
|
Tsutakawa SE, Bacolla A, Katsonis P, Bralić A, Hamdan SM, Lichtarge O, Tainer JA, Tsai CL. Decoding Cancer Variants of Unknown Significance for Helicase-Nuclease-RPA Complexes Orchestrating DNA Repair During Transcription and Replication. Front Mol Biosci 2021; 8:791792. [PMID: 34966786 PMCID: PMC8710748 DOI: 10.3389/fmolb.2021.791792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
All tumors have DNA mutations, and a predictive understanding of those mutations could inform clinical treatments. However, 40% of the mutations are variants of unknown significance (VUS), with the challenge being to objectively predict whether a VUS is pathogenic and supports the tumor or whether it is benign. To objectively decode VUS, we mapped cancer sequence data and evolutionary trace (ET) scores onto crystallography and cryo-electron microscopy structures with variant impacts quantitated by evolutionary action (EA) measures. As tumors depend on helicases and nucleases to deal with transcription/replication stress, we targeted helicase–nuclease–RPA complexes: (1) XPB-XPD (within TFIIH), XPF-ERCC1, XPG, and RPA for transcription and nucleotide excision repair pathways and (2) BLM, EXO5, and RPA plus DNA2 for stalled replication fork restart. As validation, EA scoring predicts severe effects for most disease mutations, but disease mutants with low ET scores not only are likely destabilizing but also disrupt sophisticated allosteric mechanisms. For sites of disease mutations and VUS predicted to be severe, we found strong co-localization to ordered regions. Rare discrepancies highlighted the different survival requirements between disease and tumor mutations, as well as the value of examining proteins within complexes. In a genome-wide analysis of 33 cancer types, we found correlation between the number of mutations in each tumor and which pathways or functional processes in which the mutations occur, revealing different mutagenic routes to tumorigenesis. We also found upregulation of ancient genes including BLM, which supports a non-random and concerted cancer process: reversion to a unicellular, proliferation-uncontrolled, status by breaking multicellular constraints on cell division. Together, these genes and global analyses challenge the binary “driver” and “passenger” mutation paradigm, support a gradient impact as revealed by EA scoring from moderate to severe at a single gene level, and indicate reduced regulation as well as activity. The objective quantitative assessment of VUS scoring and gene overexpression in the context of functional interactions and pathways provides insights for biology, oncology, and precision medicine.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.,Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Pandey S, Hajikazemi M, Zacheja T, Schalbetter S, Baxter J, Guryev V, Hofmann A, Heermann DW, Juranek SA, Paeschke K. Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage. BMC Biol 2021; 19:247. [PMID: 34801008 PMCID: PMC8605574 DOI: 10.1186/s12915-021-01167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background The main function of telomerase is at the telomeres but under adverse conditions telomerase can bind to internal regions causing deleterious effects as observed in cancer cells. Results By mapping the global occupancy of the catalytic subunit of telomerase (Est2) in the budding yeast Saccharomyces cerevisiae, we reveal that it binds to multiple guanine-rich genomic loci, which we termed “non-telomeric binding sites” (NTBS). We characterize Est2 binding to NTBS. Contrary to telomeres, Est2 binds to NTBS in G1 and G2 phase independently of Est1 and Est3. The absence of Est1 and Est3 renders telomerase inactive at NTBS. However, upon global DNA damage, Est1 and Est3 join Est2 at NTBS and telomere addition can be observed indicating that Est2 occupancy marks NTBS regions as particular risks for genome stability. Conclusions Our results provide a novel model of telomerase regulation in the cell cycle using internal regions as “parking spots” of Est2 but marking them as hotspots for telomere addition. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01167-1.
Collapse
Affiliation(s)
- Satyaprakash Pandey
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Theresa Zacheja
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | | | - Jonathan Baxter
- Department of Life Science, University of Sussex, Brighton, UK
| | - Victor Guryev
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands
| | - Andreas Hofmann
- Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg, Germany
| | - Dieter W Heermann
- Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg, Germany
| | - Stefan A Juranek
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany.
| | - Katrin Paeschke
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands. .,Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Nickoloff JA, Sharma N, Allen CP, Taylor L, Allen SJ, Jaiswal AS, Hromas R. Roles of homologous recombination in response to ionizing radiation-induced DNA damage. Int J Radiat Biol 2021; 99:903-914. [PMID: 34283012 PMCID: PMC9629169 DOI: 10.1080/09553002.2021.1956001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Ionizing radiation induces a vast array of DNA lesions including base damage, and single- and double-strand breaks (SSB, DSB). DSBs are among the most cytotoxic lesions, and mis-repair causes small- and large-scale genome alterations that can contribute to carcinogenesis. Indeed, ionizing radiation is a 'complete' carcinogen. DSBs arise immediately after irradiation, termed 'frank DSBs,' as well as several hours later in a replication-dependent manner, termed 'secondary' or 'replication-dependent DSBs. DSBs resulting from replication fork collapse are single-ended and thus pose a distinct problem from two-ended, frank DSBs. DSBs are repaired by error-prone nonhomologous end-joining (NHEJ), or generally error-free homologous recombination (HR), each with sub-pathways. Clarifying how these pathways operate in normal and tumor cells is critical to increasing tumor control and minimizing side effects during radiotherapy. CONCLUSIONS The choice between NHEJ and HR is regulated during the cell cycle and by other factors. DSB repair pathways are major contributors to cell survival after ionizing radiation, including tumor-resistance to radiotherapy. Several nucleases are important for HR-mediated repair of replication-dependent DSBs and thus replication fork restart. These include three structure-specific nucleases, the 3' MUS81 nuclease, and two 5' nucleases, EEPD1 and Metnase, as well as three end-resection nucleases, MRE11, EXO1, and DNA2. The three structure-specific nucleases evolved at very different times, suggesting incremental acceleration of replication fork restart to limit toxic HR intermediates and genome instability as genomes increased in size during evolution, including the gain of large numbers of HR-prone repetitive elements. Ionizing radiation also induces delayed effects, observed days to weeks after exposure, including delayed cell death and delayed HR. In this review we highlight the roles of HR in cellular responses to ionizing radiation, and discuss the importance of HR as an exploitable target for cancer radiotherapy.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christopher P. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology and Pathology, Flow Cytometry and Cell Sorting Facility, Colorado State University, Fort Collins, CO, USA
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sage J. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Aruna S. Jaiswal
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
8
|
DNA2 in Chromosome Stability and Cell Survival-Is It All about Replication Forks? Int J Mol Sci 2021; 22:ijms22083984. [PMID: 33924313 PMCID: PMC8069077 DOI: 10.3390/ijms22083984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
The conserved nuclease-helicase DNA2 has been linked to mitochondrial myopathy, Seckel syndrome, and cancer. Across species, the protein is indispensable for cell proliferation. On the molecular level, DNA2 has been implicated in DNA double-strand break (DSB) repair, checkpoint activation, Okazaki fragment processing (OFP), and telomere homeostasis. More recently, a critical contribution of DNA2 to the replication stress response and recovery of stalled DNA replication forks (RFs) has emerged. Here, we review the available functional and phenotypic data and propose that the major cellular defects associated with DNA2 dysfunction, and the links that exist with human disease, can be rationalized through the fundamental importance of DNA2-dependent RF recovery to genome duplication. Being a crucial player at stalled RFs, DNA2 is a promising target for anti-cancer therapy aimed at eliminating cancer cells by replication-stress overload.
Collapse
|
9
|
Dou L, Tian Z, Zhao Q, Xu M, Zhu Y, Luo X, Qiao X, Ren R, Zhang X, Li H. Transcriptomic Characterization of the Effects of Selenium on Maize Seedling Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:737029. [PMID: 34887883 PMCID: PMC8650135 DOI: 10.3389/fpls.2021.737029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/14/2021] [Indexed: 05/05/2023]
Abstract
Selenium (Se) is a trace mineral element in soils that can be beneficial to plants in small amounts. Although maize is among the most economically important crops, there are few reports on the effects of Se on maize seedling growth at the molecular level. In this study, the growth of maize seedlings treated with different concentrations of Na2SeO3 was investigated, and the physiological characteristics were measured. Compared with the control, a low Se concentration promoted seedling growth, whereas a high Se concentration inhibited it. To illustrate the transcriptional effects of Se on maize seedling growth, samples from control plants and those treated with low or high concentrations of Se were subjected to RNA sequencing. The differentially expressed gene (DEG) analysis revealed that there were 239 upregulated and 106 downregulated genes in the low Se treatment groups, while there were 845 upregulated and 1,686 downregulated DEGs in the high Se treatment groups. Both the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses showed a low concentration of the Se-stimulated expression of "DNA replication" and "glutathione (GSH) metabolism"-related genes. A high concentration of Se repressed the expression of auxin signal transduction and lignin biosynthesis-related genes. The real-time quantitative reverse transcription PCR (qRT-PCR) results showed that in the low Se treatment, "auxin signal transduction," "DNA replication," and lignin biosynthesis-related genes were upregulated 1.4- to 57.68-fold compared to the control, while, in the high Se concentration treatment, auxin signal transduction and lignin biosynthesis-related genes were downregulated 1.6- to 16.23-fold compared to the control. Based on these transcriptional differences and qRT-PCR validation, it was found that a low dosage of Se may promote maize seedling growth but becomes inhibitory to growth at higher concentrations. This study lays a foundation for the mechanisms underlying the effects of Se on maize seedling growth.
Collapse
Affiliation(s)
- Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Zailong Tian
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qin Zhao
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Mengting Xu
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Yiran Zhu
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Xiaoyue Luo
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xinxing Qiao
- Shaanxi Hygrogeology Engineering Geology and Environment Geology Survey Center, Xi’an, China
| | - Rui Ren
- Shaanxi Hygrogeology Engineering Geology and Environment Geology Survey Center, Xi’an, China
- *Correspondence: Rui Ren,
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Xianliang Zhang,
| | - Huaizhu Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
- Huaizhu Li,
| |
Collapse
|
10
|
Ononye OE, Sausen CW, Bochman ML, Balakrishnan L. Dynamic regulation of Pif1 acetylation is crucial to the maintenance of genome stability. Curr Genet 2020; 67:85-92. [PMID: 33079209 DOI: 10.1007/s00294-020-01116-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023]
Abstract
PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.
Collapse
Affiliation(s)
- Onyekachi E Ononye
- Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, USA
| | - Christopher W Sausen
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA.
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, USA.
| |
Collapse
|