1
|
Spiridon-Bodi M, Ros-Carrero C, Igual JC, Gomar-Alba M. Dual regulation of the levels and function of Start transcriptional repressors drives G1 arrest in response to cell wall stress. Cell Commun Signal 2025; 23:31. [PMID: 39819572 PMCID: PMC11737188 DOI: 10.1186/s12964-025-02027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Many different stress signaling pathways converge in a common response: slowdown or arrest cell cycle in the G1 phase. The G1/S transition (called Start in budding yeast) is a key checkpoint controlled by positive and negative regulators. Among them, Whi7 and Whi5 are transcriptional repressors of the G1/S transcriptional program, yeast functional homologs of the Retinoblastoma family proteins in mammalian cells. Under standard conditions, Whi7 plays a lesser role than Whi5 in Start inhibition. However, under cell wall stress, Whi7 is induced and plays a more important role in G1/S control. In this work, we investigated the functional hallmarks of Whi7 and Whi5, which determine their strength as Start inhibitors under cell wall stress. METHODS The response of Saccharomyces cerevisiae to Calcofluor White was investigated to characterize the regulation and function of Whi7 and Whi5 under cell wall stress. To control their protein levels, we used dose-dependent β-estradiol-induced expression and auxin-induced degron protein fusions. We also performed Chromatin Immunoprecipitation assays to investigate Whi7 and Whi5 association with Start promoters and scored cell cycle arrest and re-entry using cell microscopy assays. RESULTS We found that cell wall stress promoted the specific upregulation of the Whi7 Start repressor. First, although cell wall stress increases Whi7 protein levels, this is not the only determinant behind the Whi7 function in promoting G1 arrest. Indeed, artificial induction of Whi5 at the same protein level resulted in a lower G1 block. Second, under cell wall stress, Whi7 was specifically recruited to SBF-target promoters, independent of the increase in its protein levels or cell cycle stage. Finally, we found that Whi7 protein instability further increased during cell wall stress and that Whi7 degradation triggered advanced cell cycle re-entry. CONCLUSIONS Here, we show that cell wall stress signaling specifically enhances Whi7 function as a Start transcriptional repressor. Importantly, we identified new Whi7-specific regulatory mechanisms that do not operate in the Whi5 repressor. Our results indicate that cells may benefit from stress-specific repressors to ensure the stress-induced G1 arrest and that Whi7 rapid degradation may be particularly important to resume cell cycle upon adaptation.
Collapse
Affiliation(s)
- Mihai Spiridon-Bodi
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, 46100, Spain
| | - Cristina Ros-Carrero
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, 46100, Spain
| | - J Carlos Igual
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, 46100, Spain
| | - Mercè Gomar-Alba
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, 46100, Spain.
| |
Collapse
|
2
|
Wang L, Klionsky DJ, Shen HM. The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol 2023; 24:186-203. [PMID: 36097284 DOI: 10.1038/s41580-022-00529-z] [Citation(s) in RCA: 199] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 02/08/2023]
Abstract
'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.
Collapse
Affiliation(s)
- Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
A feedback mechanism controls rDNA copy number evolution in yeast independently of natural selection. PLoS One 2022; 17:e0272878. [PMID: 36048821 PMCID: PMC9436098 DOI: 10.1371/journal.pone.0272878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Ribosomal DNA (rDNA) is the genetic loci that encodes rRNA in eukaryotes. It is typically arranged as tandem repeats that vary in copy number within the same species. We have recently shown that rDNA repeats copy number in the yeast Saccharomyces cerevisiae is controlled by cell volume via a feedback circuit that senses cell volume by means of the concentration of the free upstream activator factor (UAF). The UAF strongly binds the rDNA gene promoter, but is also able to repress SIR2 deacetylase gene transcription that, in turn, represses rDNA amplification. In this way, the cells with a smaller DNA copy number than what is optimal evolve to increase that copy number until they reach a number that sequestrates free UAF and provokes SIR2 derepression that, in turn, blocks rDNA amplification. Here we propose a mathematical model to show that this evolutionary process can amplify rDNA repeats independently of the selective advantage of yeast cells having bigger or smaller rDNA copy numbers. We test several variants of this process and show that it can explain the observed experimental results independently of natural selection. These results predict that an autoregulated feedback circuit may, in some instances, drive to non Darwinian deterministic evolution for a limited time period.
Collapse
|
4
|
Choudhary K, Itzkovich Z, Alonso-Perez E, Bishara H, Dunn B, Sherlock G, Kupiec M. S. cerevisiae Cells Can Grow without the Pds5 Cohesin Subunit. mBio 2022; 13:e0142022. [PMID: 35708277 PMCID: PMC9426526 DOI: 10.1128/mbio.01420-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 12/11/2022] Open
Abstract
During DNA replication, the newly created sister chromatids are held together until their separation at anaphase. The cohesin complex is in charge of creating and maintaining sister chromatid cohesion (SCC) in all eukaryotes. In Saccharomyces cerevisiae cells, cohesin is composed of two elongated proteins, Smc1 and Smc3, bridged by the kleisin Mcd1/Scc1. The latter also acts as a scaffold for three additional proteins, Scc3/Irr1, Wpl1/Rad61, and Pds5. Although the HEAT-repeat protein Pds5 is essential for cohesion, its precise function is still debated. Deletion of the ELG1 gene, encoding a PCNA unloader, can partially suppress the temperature-sensitive pds5-1 allele, but not a complete deletion of PDS5. We carried out a genetic screen for high-copy-number suppressors and another for spontaneously arising mutants, allowing the survival of a pds5Δ elg1Δ strain. Our results show that cells remain viable in the absence of Pds5 provided that there is both an elevation in the level of Mcd1 (which can be due to mutations in the CLN2 gene, encoding a G1 cyclin), and an increase in the level of SUMO-modified PCNA on chromatin (caused by lack of PCNA unloading in elg1Δ mutants). The elevated SUMO-PCNA levels increase the recruitment of the Srs2 helicase, which evicts Rad51 molecules from the moving fork, creating single-stranded DNA (ssDNA) regions that serve as sites for increased cohesin loading and SCC establishment. Thus, our results delineate a double role for Pds5 in protecting the cohesin ring and interacting with the DNA replication machinery. IMPORTANCE Sister chromatid cohesion is vital for faithful chromosome segregation, chromosome folding into loops, and gene expression. A multisubunit protein complex known as cohesin holds the sister chromatids from S phase until the anaphase stage. In this study, we explore the function of the essential cohesin subunit Pds5 in the regulation of sister chromatid cohesion. We performed two independent genetic screens to bypass the function of the Pds5 protein. We observe that Pds5 protein is a cohesin stabilizer, and elevating the levels of Mcd1 protein along with SUMO-PCNA accumulation on chromatin can compensate for the loss of the PDS5 gene. In addition, Pds5 plays a role in coordinating the DNA replication and sister chromatid cohesion establishment. This work elucidates the function of cohesin subunit Pds5, the G1 cyclin Cln2, and replication factors PCNA, Elg1, and Srs2 in the proper regulation of sister chromatid cohesion.
Collapse
Affiliation(s)
- Karan Choudhary
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Ziv Itzkovich
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Elisa Alonso-Perez
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Hend Bishara
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Barbara Dunn
- Departments of Genetics, Stanford University, Stanford, California, USA
| | - Gavin Sherlock
- Departments of Genetics, Stanford University, Stanford, California, USA
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
5
|
Buskirk S, Skibbens RV. G1-Cyclin2 (Cln2) promotes chromosome hypercondensation in eco1/ctf7 rad61 null cells during hyperthermic stress in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:6613937. [PMID: 35736360 PMCID: PMC9339302 DOI: 10.1093/g3journal/jkac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Eco1/Ctf7 is a highly conserved acetyltransferase that activates cohesin complexes and is critical for sister chromatid cohesion, chromosome condensation, DNA damage repair, nucleolar integrity, and gene transcription. Mutations in the human homolog of ECO1 (ESCO2/EFO2), or in genes that encode cohesin subunits, result in severe developmental abnormalities and intellectual disabilities referred to as Roberts syndrome and Cornelia de Lange syndrome, respectively. In yeast, deletion of ECO1 results in cell inviability. Codeletion of RAD61 (WAPL in humans), however, produces viable yeast cells. These eco1 rad61 double mutants, however, exhibit a severe temperature-sensitive growth defect, suggesting that Eco1 or cohesins respond to hyperthermic stress through a mechanism that occurs independent of Rad61. Here, we report that deletion of the G1 cyclin CLN2 rescues the temperature-sensitive lethality otherwise exhibited by eco1 rad61 mutant cells, such that the triple mutant cells exhibit robust growth over a broad range of temperatures. While Cln1, Cln2, and Cln3 are functionally redundant G1 cyclins, neither CLN1 nor CLN3 deletions rescue the temperature-sensitive growth defects otherwise exhibited by eco1 rad61 double mutants. We further provide evidence that CLN2 deletion rescues hyperthermic growth defects independent of START and impacts the state of chromosome condensation. These findings reveal novel roles for Cln2 that are unique among the G1 cyclin family and appear critical for cohesin regulation during hyperthermic stress.
Collapse
Affiliation(s)
- Sean Buskirk
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
6
|
Costanza A, Guaragnella N, Bobba A, Manzari C, L'Abbate A, Giudice CL, Picardi E, D'Erchia AM, Pesole G, Giannattasio S. Yeast as a Model to Unravel New BRCA2 Functions in Cell Metabolism. Front Oncol 2022; 12:908442. [PMID: 35734584 PMCID: PMC9207209 DOI: 10.3389/fonc.2022.908442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in BRCA2 gene increase the risk for breast cancer and for other cancer types, including pancreatic and prostate cancer. Since its first identification as an oncosupressor in 1995, the best-characterized function of BRCA2 is in the repair of DNA double-strand breaks (DSBs) by homologous recombination. BRCA2 directly interacts with both RAD51 and single-stranded DNA, mediating loading of RAD51 recombinase to sites of single-stranded DNA. In the absence of an efficient homologous recombination pathway, DSBs accumulate resulting in genome instability, thus supporting tumorigenesis. Yet the precise mechanism by which BRCA2 exerts its tumor suppressor function remains unclear. BRCA2 has also been involved in other biological functions including protection of telomere integrity and stalled replication forks, cell cycle progression, transcriptional control and mitophagy. Recently, we and others have reported a role of BRCA2 in modulating cell death programs through a molecular mechanism conserved in yeast and mammals. Here we hypothesize that BRCA2 is a multifunctional protein which exerts specific functions depending on cell stress response pathway. Based on a differential RNA sequencing analysis carried out on yeast cells either growing or undergoing a regulated cell death process, either in the absence or in the presence of BRCA2, we suggest that BRCA2 causes central carbon metabolism reprogramming in response to death stimuli and encourage further investigation on the role of metabolic reprogramming in BRCA2 oncosuppressive function.
Collapse
Affiliation(s)
- Alessandra Costanza
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Bobba
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Alberto L'Abbate
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Claudio Lo Giudice
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Maria D'Erchia
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| |
Collapse
|
7
|
Miyata N, Ito T, Nakashima M, Fujii S, Kuge O. Mitochondrial phosphatidylethanolamine synthesis affects mitochondrial energy metabolism and quiescence entry through attenuation of Snf1/AMPK signaling in yeast. FASEB J 2022; 36:e22355. [PMID: 35639425 DOI: 10.1096/fj.202101600rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022]
Abstract
The Ups2-Mdm35 complex mediates intramitochondrial phosphatidylserine (PS) transport to facilitate mitochondrial phosphatidylethanolamine (PE) synthesis. In the present study, we found that ups2∆ yeast showed increased mitochondrial ATP production and enhanced quiescence (G0) entry in the post-diauxic shift phase. Transcriptomic and biochemical analyses revealed that the depletion of Ups2 leads to overactivation of the yeast AMPK homolog Snf1. Inactivation of Snf1 by depletion of an Snf1-activating kinase, Sak1 canceled the changes in mitochondrial ATP production and quiescence entry observed in ups2∆ cells. Furthermore, among the factors regulated by Snf1, upregulation of pyruvate carboxylase, Pyc1 and downregulation of acetyl-CoA carboxylase, Acc1, respectively, were sufficient to increase mitochondrial ATP production and quiescence entry. These results suggested that a normal PE synthesis mediated by Ups2-Mdm35 complex attenuates Snf1/AMPK activity, and that Snf1-mediated regulation of carbon metabolisms has great impacts on mitochondrial energy metabolism and quiescence entry. We also found that depletion of Ups2 together with the cell-cycle regulators Whi5 and Whi7, functional orthologs of the Rb1 tumor suppressor, caused a synthetic growth defect in yeast. Similarly, knockdown of PRELID3b, the human homolog of Ups2, decreased the viability of Rb1-deficient breast cancer cells, suggesting that PRELID3b is a potential target for cancer therapy.
Collapse
Affiliation(s)
- Non Miyata
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Takanori Ito
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Miyu Nakashima
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Satoru Fujii
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Osamu Kuge
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Meng Y, Zeng F, Hu J, Li P, Xiao S, Zhou L, Gong J, Liu Y, Hao Z, Cao Z, Dong J. Novel factors contributing to fungal pathogenicity at early stages of Setosphaeria turcica infection. MOLECULAR PLANT PATHOLOGY 2022; 23:32-44. [PMID: 34628700 PMCID: PMC8659557 DOI: 10.1111/mpp.13140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 05/06/2023]
Abstract
The fungal pathogen Setosphaeria turcica causes leaf blight on maize, which leads to considerable crop losses. However, how S. turcica establishes sustained systemic infection is largely unknown. Here, we report several novel factors contributing to S. turcica pathogenicity, identified using a genomic and transcriptional screen at different stages of S. turcica appressorium development. We identified two cytoskeleton regulators, SLM1 and SLM2, that are crucial for hypha and appressorium development. The SLM1 and SLM2 transcripts accumulated during germling stage but their levels were notably reduced at the appressorium stage. Deletion of SLM2 dramatically affected cell morphology, penetration ability, and pathogenicity. We also identified three different types of S. turcica glycosyl hydrolases that are critical for plant cell wall degradation. Their transcripts accumulated during the appressorium infection stage induced by cellophane and maize leaf. Most importantly, we characterized a novel and specific S. turcica effector, appressorium-coupled effector 1 (StACE1), whose expression is coupled to appressorium formation in S. turcica. This protein is required for maize infection and induces cell death on expression in Nicotiana benthamiana. These observations suggest that the phytopathogen S. turcica is primed in advance with multiple strategies for maize infection, which are coupled to appressorium formation at the early infection stages.
Collapse
Affiliation(s)
- Yanan Meng
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Jingjing Hu
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Pan Li
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Shenglin Xiao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Lihong Zhou
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Jiangang Gong
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Yuwei Liu
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
- College of Plant ProtectionHebei Agricultural UniversityBaodingChina
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
- College of Plant ProtectionHebei Agricultural UniversityBaodingChina
| |
Collapse
|
9
|
Mohanan G, Das A, Rajyaguru PI. Genotoxic stress response: What is the role of cytoplasmic mRNA fate? Bioessays 2021; 43:e2000311. [PMID: 34096096 DOI: 10.1002/bies.202000311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Genotoxic stress leads to DNA damage which can be detrimental to the cell. A well-orchestrated cellular response is mounted to manage and repair the genotoxic stress-induced DNA damage. Our understanding of genotoxic stress response is derived mainly from studies focused on transcription, mRNA splicing, and protein turnover. Surprisingly not as much is understood about the role of mRNA translation and decay in genotoxic stress response. This is despite the fact that regulation of gene expression at the level of mRNA translation and decay plays a critical role in a myriad of cellular processes. This review aims to summarize some of the known findings of the role of mRNA translation and decay by focusing on two categories of examples. We discuss examples of mRNA whose fates are regulated in the cytoplasm and RNA-binding proteins that regulate mRNA fates in response to genotoxic stress.
Collapse
Affiliation(s)
- Gayatri Mohanan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amiyaranjan Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|