1
|
Lindrova I, Kolackova M, Svadlakova T, Vankova R, Chmelarova M, Rosecka M, Jozifkova E, Sembera M, Krejsek J, Slezak R. Unsolved mystery of Fas: mononuclear cells may have trouble dying in patients with Sjögren's syndrome. BMC Immunol 2023; 24:12. [PMID: 37353767 PMCID: PMC10288785 DOI: 10.1186/s12865-023-00544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/01/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Patients with Sjögren's syndrome, like other patients with autoimmune disorders, display dysregulation in the function of their immune system. Fas and Fas Ligand (FasL) are among the dysregulated proteins. METHODS We studied Fas and FasL on IL-2Rα+ cells and in serum of patients with Sjögren's syndrome (n = 16) and healthy individuals (n = 16); both from same ethnic and geographical background. We used flow cytometry and enzyme-linked immunosorbent for this purpose. We also measured the expression of Bcl-2 and Bax by reverse transcription quantitative real-time PCR (RT-qPCR) and percentage of apoptotic and dead cells using Annexin V and 7-AAD staining in lymphocytes. RESULTS FasL was increased in patients' T and B cells while Fas was increased in patients' monocytes, T and B cells. No signs of increased apoptosis were found. sFas and sFasL in patients' serum were increased, although the increase in sFasL was not significant. We suspect an effect of non-steroidal anti-inflammatory therapy on B cells, explaining the decrease of the percentage Fas+ B cells found within our samples. In healthy individuals, there was a noticeable pattern in the expression of FasL which mutually correlated to populations of mononuclear cells; this correlation was absent in the patients with Sjögren's syndrome. CONCLUSIONS Mononuclear cells expressing IL-2Rα+ had upregulated Fas in Sjögren's syndrome. However, the rate of apoptosis based on Annexin V staining and the Bcl-2/Bax expression was not observed in mononuclear cells. We suspect a functional role of abnormal levels of Fas and FasL which has not been cleared yet.
Collapse
Affiliation(s)
- Irena Lindrova
- Department of Dentistry, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic.
| | - Tereza Svadlakova
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Radka Vankova
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Marcela Chmelarova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Michaela Rosecka
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Eva Jozifkova
- Department of Biology, Jan Evangelista Purkyne University, Za Valcovnou 1000/8, 400 96, Usti and Labem, Czech Republic
| | - Martin Sembera
- Department of Dentistry, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Radovan Slezak
- Department of Dentistry, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
3
|
Jiang H, Yuan FF, Wang HN, Liu W, Ye XP, Yang SY, Xie HJ, Yu SS, Ma YR, Zhang LL, Zhao SX, Song HD. Compelling Evidence Linking CD40 Gene With Graves' Disease in the Chinese Han Population. Front Endocrinol (Lausanne) 2021; 12:759597. [PMID: 34867801 PMCID: PMC8639283 DOI: 10.3389/fendo.2021.759597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations in CD40 have been widely reported to be risk factors for Graves' disease (GD). The gene, along with its cognate ligand CD40L, may regulate pro-inflammatory and immune responses. Rs1883832, located at the -1 position of the Kozak sequence, is the most well-studied single nucleotide polymorphism (SNP) of CD40, and has been confirmed to predispose those with the alteration to GD, regardless of ethnicity. Our genome-wide association study (GWAS) indicated that several SNPs, including rs1883832 located within the vicinity of CD40 were associated with GD in the Han Chinese population. Aiming at identifying the most consequential SNP and its underlying pathogenic mechanism, we performed a two-stage refined study on 8,171 patients with GD and 7,906 controls, and found rs1883832 was the most significantly GD-associated SNP in the CD40 gene region (PCombined = 9.17×10-11, OR = 1.18). Through searching the cis-expression quantitative trait locus database and using quantitative RT-PCR, we further discovered that the rs1883832 genotype can influence CD40 gene transcription. Furthermore, we demonstrated that rs1883832 is a susceptibility locus for pTRAb+ GD patients. In conclusion, the current study provides robust evidence that rs1883832 can regulate CD40 gene expression and affect serum TRAb levels, which ultimately contributes to the development of GD.
Collapse
Affiliation(s)
- He Jiang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei-Fei Yuan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Ning Wang
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Ye
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao-Ying Yang
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Jun Xie
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sha-Sha Yu
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ru Ma
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Le-Le Zhang
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shuang-Xia Zhao, ; Huai-Dong Song,
| | - Huai-Dong Song
- Department of Molecular Diagnostic and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shuang-Xia Zhao, ; Huai-Dong Song,
| | | |
Collapse
|
4
|
Abstract
Lupus erythematosus (LE) represents a spectrum of inflammatory autoimmune disease comprising varying clinical entities ranging from primary cutaneous to systemic disease. There is a clear relationship between ultraviolet irradiation (UVR) and the clinical manifestations of LE in both adult and pediatric populations. Although it has been established that UVR exacerbates pre-existing LE, it remains unclear whether UVR induces the development of the disease. This review serves to discuss effective photoprotective measures in LE and describe the pathogenic relationship of UVR and LE.
Collapse
Affiliation(s)
- Jusleen Ahluwalia
- Department of Dermatology, University of California, San Diego School of Medicine, La Jolla, USA
| | - Amanda Marsch
- Department of Dermatology, University of California, San Diego School of Medicine, La Jolla, USA
| |
Collapse
|
5
|
Abstract
Systemic lupus erythematosus (SLE) is a representative systemic autoimmune disease that has various types of manifestations in multiple organs. Additionally, SLE is one of the most variable diseases in its epidemiology and etiology with heterogenous types of immune dysfunction. Since the word 'lupus' has first appeared in the literature in the Middle Ages, clinical/pathological knowledges have massively accumulated that contributed to the establishments and improvements of classification criteria, therapeutic agents or assessments of disease activity. Along with them, the survival rate of patients with SLE has dramatically improved. However, the mortality rate is still higher compared with the healthy population and the progress in basic, translational and clinical research are expected to lead to new insights into pathogenesis and identifying novel targets for therapy.
Collapse
Affiliation(s)
- Kenji Oku
- a Department of Rheumatology, Endocrinology and Nephrology, Graduate School of Medicine and Faculty of Medicine , Hokkaido University , Sapporo , Japan
| | - Tatsuya Atsumi
- a Department of Rheumatology, Endocrinology and Nephrology, Graduate School of Medicine and Faculty of Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
6
|
Li Q, Wu H, Liao W, Zhao M, Chan V, Li L, Zheng M, Chen G, Zhang J, Lau CS, Lu Q. A comprehensive review of immune-mediated dermatopathology in systemic lupus erythematosus. J Autoimmun 2018; 93:1-15. [DOI: 10.1016/j.jaut.2018.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
|
7
|
Sivakumar R, Abboud G, Mathews CE, Atkinson MA, Morel L. Protective Role of Myeloid Cells Expressing a G-CSF Receptor Polymorphism in an Induced Model of Lupus. Front Immunol 2018; 9:1053. [PMID: 29868014 PMCID: PMC5954343 DOI: 10.3389/fimmu.2018.01053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/27/2018] [Indexed: 01/11/2023] Open
Abstract
The genetic analysis of the lupus-prone NZM2410 mouse has identified a suppressor locus, Sle2c2, which confers resistance to spontaneous lupus in combination with NZM2410 susceptibility loci, or in the chronic graft-versus-host disease (cGVHD) induced model of lupus in the B6.Sle2c2 congenic strain. The candidate gene for Sle2c2, the Csf3r gene encoding the granulocyte colony-stimulating factor receptor (G-CSF-R/CD114), was validated when cGVHD was restored in B6.Sle2c2 mice after treatment with G-CSF. The goal of the project reported herein was to investigate the myeloid cells that confer resistance to cGVHD and to ascertain if the mechanism behind their suppression involves the G-CSF pathway. We showed that despite expressing the highest levels of G-CSF-R, neutrophils play only a modest role in the autoimmune activation induced by cGVHD. We also found reduced expression levels of G-CSF-R on the surface of dendritic cells (DCs) and a differential distribution of DC subsets in response to cGVHD in B6.Sle2c2 versus B6 mice. The CD8α+ DC subset, known for its tolerogenic phenotype, was expanded upon induction of cGVHD in B6.Sle2c2 mice. In addition, the deficiency of CD8α+ DC subset enhanced the severity of cGVHD in B6.Batf3-/- and B6.Sle2c2 mice, confirming their role in suppression of cGVHD. B6.Sle2c2DCs presented lowered activation and antigen presentation abilities and expressed lower levels of genes associated with DC activation and maturation. Exposure to exogenous G-CSF reversed the majority of these phenotypes, suggesting that tolerogenic DCs maintained through a defective G-CSF-R pathway mediated the resistance to cGVHD in B6.Sle2c2 mice.
Collapse
Affiliation(s)
- Ramya Sivakumar
- Department of Pathology, Immunology, Laboratory Medicine, University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Georges Abboud
- Department of Pathology, Immunology, Laboratory Medicine, University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Clayton E Mathews
- Department of Pathology, Immunology, Laboratory Medicine, University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Mark A Atkinson
- Department of Pathology, Immunology, Laboratory Medicine, University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, Immunology, Laboratory Medicine, University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Menard LC, Habte S, Gonsiorek W, Lee D, Banas D, Holloway DA, Manjarrez-Orduno N, Cunningham M, Stetsko D, Casano F, Kansal S, Davis PM, Carman J, Zhang CK, Abidi F, Furie R, Nadler SG, Suchard SJ. B cells from African American lupus patients exhibit an activated phenotype. JCI Insight 2016; 1:e87310. [PMID: 27699274 DOI: 10.1172/jci.insight.87310] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease driven by both innate and adaptive immune cells. African Americans tend to present with more severe disease at an earlier age compared with patients of European ancestry. In order to better understand the immunological differences between African American and European American patients, we analyzed the frequencies of B cell subsets and the expression of B cell activation markers from a total of 68 SLE patients and 69 normal healthy volunteers. We found that B cells expressing the activation markers CD86, CD80, PD1, and CD40L, as well as CD19+CD27-IgD- double-negative B cells, were enriched in African American patients vs. patients of European ancestry. In addition to increased expression of CD40L, surface levels of CD40 on B cells were lower, suggesting the engagement of the CD40 pathway. In vitro experiments confirmed that CD40L expressed by B cells could lead to CD40 activation and internalization on adjacent B cells. To conclude, these results indicate that, compared with European American patients, African American SLE patients present with a particularly active B cell component, possibly via the activation of the CD40/CD40L pathway. These data may help guide the development of novel therapies.
Collapse
Affiliation(s)
- Laurence C Menard
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Sium Habte
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Waldemar Gonsiorek
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Deborah Lee
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Dana Banas
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Deborah A Holloway
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | | | - Mark Cunningham
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Dawn Stetsko
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Francesca Casano
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Selena Kansal
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Patricia M Davis
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Julie Carman
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Clarence K Zhang
- Immunoscience Translational Bioinformatics, Bristol-Myers Squibb Company, Pennington, New Jersey, USA
| | - Ferva Abidi
- Division of Rheumatology, Northwell Health, Great Neck, New York, USA
| | - Richard Furie
- Division of Rheumatology, Northwell Health, Great Neck, New York, USA
| | - Steven G Nadler
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Suzanne J Suchard
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| |
Collapse
|
9
|
Photosensitivity, apoptosis, and cytokines in the pathogenesis of lupus erythematosus: a critical review. Clin Rev Allergy Immunol 2015; 47:148-62. [PMID: 24420508 DOI: 10.1007/s12016-013-8403-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The underlying pathomechanisms of lupus erythematosus (LE), a multifactorial autoimmune disease, remain elusive. Due to the clinical evidence demonstrating a clear relationship between ultraviolet (UV) light exposure and skin lesions of LE, photosensitivity has been proven to be an important factor in the pathogenesis of the disease. Standardised photoprovocation with UVA and UVB irradiation has been shown to be a reliable model for evaluating photosensitivity in patients with cutaneous LE (CLE) and analysing the underlying medical conditions of the disease. In this respect, UV irradiation can cause aberrant induction of apoptosis in keratinocytes and contribute to the appearance of excessive apoptotic cells in the skin of CLE patients. Moreover, apoptotic cells that cannot be cleared by phagocytes may undergo secondary necrosis and release proinflammatory compounds and potential autoantigens, which may contribute to the inflammatory micromilieu that leads to formation of skin lesions in the disease. In addition to UV-mediated induction of apoptosis, the molecular and cellular factors that may cause the abnormal long-lasting photoreactivity in CLE include mediators of inflammation, such as cytokines and chemokines. In particular, interferons (IFNs) are important players in the early activation of the immune system and have a specific role in the immunological interface between the innate and the adaptive immune system. The fact that treatment with recombinant type I IFNs (α and β) can induce not only systemic organ manifestations but also LE-like skin lesions provides additional evidence for a pathogenetic role of these IFNs in the disease.
Collapse
|
10
|
Ding Q, Si X, Liu D, Peng J, Tang H, Sun W, Rui M, Chen Q, Wu L, Xu Y. Targeting and liposomal drug delivery to CD40L expressing T cells for treatment of autoimmune diseases. J Control Release 2015; 207:86-92. [PMID: 25839125 DOI: 10.1016/j.jconrel.2015.03.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/05/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
CD40L is considered as an important target for the treatment of autoimmune diseases. There have been many efforts devoted to the development of antibodies and other molecules to disrupt CD40/CD40L interaction for therapeutic benefits. In this study, we designed a CD40L specific peptide ligand - A25 based on CD40L crystal structure and molecular docking studies. Its binding affinity and specificity to CD40L were confirmed by Surface Plasmon Resonance (SPR) measurements. The peptide A25 was then conjugated on the surface of liposomes and shown to be able to mediate specific liposomal drug delivery to CD40L+ cells. Loaded with the cytostatic drug methotrexate (MTX), the A25 modified liposome could significantly reduce the CD40L+ cell ratios in the experimental autoimmune encephalomyelitis (EAE) mice, resulting in great improvement in clinical scores. Since CD40L+ cells are involved in the pathological development of many auto-immune diseases, A25 conjugated drug targeting systems may be useful for developing therapies that are more efficacies and with less side effects.
Collapse
Affiliation(s)
- Qian Ding
- School of Pharmacy, Med-X Research Institute and School of Biomedical, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
| | - Xiaofei Si
- School of Pharmacy, Med-X Research Institute and School of Biomedical, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
| | - Dan Liu
- School of Pharmacy, Med-X Research Institute and School of Biomedical, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
| | - Jinliang Peng
- School of Pharmacy, Med-X Research Institute and School of Biomedical, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
| | - Hailing Tang
- School of Pharmacy, Med-X Research Institute and School of Biomedical, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
| | - Wenqiang Sun
- School of Pharmacy, Med-X Research Institute and School of Biomedical, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
| | - Mengjie Rui
- School of Pharmacy, Med-X Research Institute and School of Biomedical, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
| | - Qunli Chen
- School of Pharmacy, Med-X Research Institute and School of Biomedical, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
| | - Lieyi Wu
- School of Pharmacy, Med-X Research Institute and School of Biomedical, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
| | - Yuhong Xu
- School of Pharmacy, Med-X Research Institute and School of Biomedical, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China.
| |
Collapse
|
11
|
Gatto M, Zen M, Ghirardello A, Bettio S, Bassi N, Iaccarino L, Punzi L, Doria A. Emerging and critical issues in the pathogenesis of lupus. Autoimmun Rev 2012; 12:523-36. [PMID: 23000207 DOI: 10.1016/j.autrev.2012.09.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/10/2012] [Indexed: 01/10/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multisystemic, autoimmune disease, encompassing either mild or severe manifestations. SLE was originally labeled as being an immune complex-mediated disease, but further knowledge suggested its pathogenesis is motlier than that, involving complex interactions between predisposed individuals and their environment. People affected with SLE have their immune system skewed toward aberrant self-recognition usually after encountering a triggering agent. Defeats in early and late immune checkpoints contribute to tolerance breakdown and further generation and expansion of autoreactive cell-clones. B and T cells play a master role in SLE, however clues are emerging about other cell types and new light is being shed on SLE autoantibodies, since some of them display really harmful potential (pathogenic antibodies), while others are just connected with disease development (pathological antibodies) and may even be protective. Autoantibody generation is elicited by abnormal apoptosis and inefficient clearance of cellular debris causing intracellular autoantigens (e.g. nucleosomes) to persist in the extracellular environment, being further recognized by autoreactive cells. Here we explore the complexity of SLE pathogenesis through five core issues, i.e. genetic predisposition, B and T cell abnormalities, abnormal autoantigen availability, autoantibody generation and organ damage, relying on current knowledge and recent insights into SLE development.
Collapse
Affiliation(s)
- Mariele Gatto
- Division of Rheumatology, Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|