1
|
Lv X, Yao Q, Mao F, Liu M, Wang Y, Wang X, Gao Y, Wang Y, Liao S, Wang P, Huang S. Heat stress and sexual reproduction in maize: unveiling the most pivotal factors and the greatest opportunities. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4219-4243. [PMID: 38183327 DOI: 10.1093/jxb/erad506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
The escalation in the intensity, frequency, and duration of high-temperature (HT) stress is currently unparalleled, which aggravates the challenges for crop production. Yet, the stage-dependent responses of reproductive organs to HT stress at the morphological, physiological, and molecular levels remain inadequately explored in pivotal staple crops. This review synthesized current knowledge regarding the mechanisms by which HT stress induces abnormalities and aberrations in reproductive growth and development, as well as by which it alters the morphology and function of florets, flowering patterns, and the processes of pollination and fertilization in maize (Zea mays L.). We identified the stage-specific sensitivities to HT stress and accurately defined the sensitive period from a time scale of days to hours. The microspore tetrad phase of pollen development and anthesis (especially shortly after pollination) are most sensitive to HT stress, and even brief temperature spikes during these stages can lead to significant kernel loss. The impetuses behind the heat-induced impairments in seed set are closely related to carbon, reactive oxygen species, phytohormone signals, ion (e.g. Ca2+) homeostasis, plasma membrane structure and function, and others. Recent advances in understanding the genetic mechanisms underlying HT stress responses during maize sexual reproduction have been systematically summarized.
Collapse
Affiliation(s)
- Xuanlong Lv
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yudong Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Wang X, Lu J, Han M, Wang Z, Zhang H, Liu Y, Zhou P, Fu J, Xie Y. Genome-wide expression quantitative trait locus analysis reveals silk-preferential gene regulatory network in maize. PHYSIOLOGIA PLANTARUM 2024; 176:e14386. [PMID: 38887947 DOI: 10.1111/ppl.14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Silk of maize (Zea mays L.) contains diverse metabolites with complicated structures and functions, making it a great challenge to explore the mechanisms of metabolic regulation. Genome-wide identification of silk-preferential genes and investigation of their expression regulation provide an opportunity to reveal the regulatory networks of metabolism. Here, we applied the expression quantitative trait locus (eQTL) mapping on a maize natural population to explore the regulation of gene expression in unpollinated silk of maize. We obtained 3,985 silk-preferential genes that were specifically or preferentially expressed in silk using our population. Silk-preferential genes showed more obvious expression variations compared with broadly expressed genes that were ubiquitously expressed in most tissues. We found that trans-eQTL regulation played a more important role for silk-preferential genes compared to the broadly expressed genes. The relationship between 38 transcription factors and 85 target genes, including silk-preferential genes, were detected. Finally, we constructed a transcriptional regulatory network around the silk-preferential gene Bx10, which was proposed to be associated with response to abiotic stress and biotic stress. Taken together, this study deepened our understanding of transcriptome variation in maize silk and the expression regulation of silk-preferential genes, enhancing the investigation of regulatory networks on metabolic pathways.
Collapse
Affiliation(s)
- Xiaoli Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiawen Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingfang Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheyuan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxin Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Viteri DM, Linares-Ramírez AM. Timely Application of Four Insecticides to Control Corn Earworm and Fall Armyworm Larvae in Sweet Corn. INSECTS 2022; 13:insects13030278. [PMID: 35323576 PMCID: PMC8955980 DOI: 10.3390/insects13030278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Insecticide sprays are a common practice to control corn earworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), in corn (Zea mays L.) at reproductive stages. Our objectives were to determine (1) the most appropriate time for insecticide applications and (2) the effect of four insecticides on the survival of larvae as well as their weight. ß-cyfluthrin (0.4 mL/L), chlorantraniliprole (0.6 mL/L), emamectin benzoate (0.2 g/L), and spinetoram (1.5 mL/L) were sprayed on silks of sweet corn planted in Isabela and Lajas, Puerto Rico 3 h before and 24 and 48 h after pollination. The number of kernels produced and the damage of larvae on kernels were quantified at harvest. In addition, percentages of mortality and changes on larval weight were noted at 96 h after insecticide applications. Insecticide sprays at 3 h before pollination reduced the number of kernels or were similar to the control in all treatments. However, emamectin benzoate sprayed in Lajas and chlorantraniliprole applied in Isabela at 48 h after pollination increased the number of kernels (281−294) and reduced the damage of larvae on kernels (<0.5%) compared to the control (201−229; >7%). Furthermore, applications of emamectin benzoate caused higher percentages of fall armyworm larval mortality (>70%). Conversely, ß-cyfluthrin and chlorantraniliprole caused lower percentages of mortality (<30%) and only chlorantraniliprole and spinetoram reduced the weight of corn earworm and fall armyworm larvae collected in both locations. This information may help pest management programs and corn breeders to schedule insecticide sprays and pollination in the field.
Collapse
Affiliation(s)
- Diego M. Viteri
- Department of Agro-Environmental Sciences, University of Puerto Rico, Isabela Research Substation, 2090 Ave. Militar, Isabela, PR 00662, USA
- Correspondence:
| | - Angela M. Linares-Ramírez
- Department of Agro-Environmental Sciences, University of Puerto Rico, Lajas Research Substation, Carr. 101 km 8.5 Barrio Palmarejo, Lajas, PR 00667, USA;
| |
Collapse
|
4
|
Tang Y, Huang C, Li Y, Wang Y, Zhang C. Genome-wide identification, phylogenetic analysis, and expression profiling of glycine-rich RNA-binding protein (GRPs) genes in seeded and seedless grapes ( Vitis vinifera). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2231-2243. [PMID: 34744363 PMCID: PMC8526680 DOI: 10.1007/s12298-021-01082-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Glycine-rich RNA-binding proteins (GRPs) are essential for many physiological and biochemical processes in plants, especially the response to environmental stresses. GRPs exist widely in angiosperms and gymnosperms plant species; however, their roles in Vitis vinifera are still poorly understood. To characterize VviGRP gene family, we performed a genomic survey, bioinformatics and expression analysis of VviGRPs in grape. We identified nineteen VviGRPs gene family members. The result of bioinformatics analysis showed their motif distribution, gene structure characteristics and chromosomal locations. Then we carried out synteny and phylogenetic analysis to study the origin and evolutionary relationship of GRPs. Tissue-specific expression analysis showed that VviGRPs have different expression patterns. Meanwhile, we studied expression profiles of seventeen ovule-expressed genes during seed development of stenospermocarpic seedless and seeded grapes, and the result showed that most of them have much higher relative expression levels in stenospermocarpic seedless grapes than that of seeded one before 25 days after full bloom (DAFB). It is suggested that VviGRPs may involve in the seed development process. Taken together, our research indicated that VviGRPs are related to seed development and will be beneficial for further investigations into the seed abortion mechanism under stenospermocarpic grapes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01082-3.
Collapse
Affiliation(s)
- Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| | - Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| |
Collapse
|
5
|
Li T, Wang Y, Shi Y, Gou X, Yang B, Qu J, Zhang X, Xue J, Xu S. Transcriptome profiling provides insights into the molecular mechanisms of maize kernel and silk development. BMC Genom Data 2021; 22:28. [PMID: 34418952 PMCID: PMC8379809 DOI: 10.1186/s12863-021-00981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background Maize kernel filling, which is closely related to the process of double fertilization and is sensitive to a variety of environmental conditions, is an important component of maize yield determination. Silk is an important tissue of maize ears that can discriminate pollen and conduct pollination. Therefore, investigating the molecular mechanisms of kernel development and silk senescence will provide important information for improving the pollination rate to obtain high maize yields. Results In this study, transcript profiles were determined in an elite maize inbred line (KA105) to investigate the molecular mechanisms functioning in self-pollinated and unpollinated maize kernels and silks. A total of 5285 and 3225 differentially expressed transcripts (DETs) were identified between self-pollinated and unpollinated maize in a kernel group and a silk group, respectively. We found that a large number of genes involved in key steps in the biosynthesis of endosperm storage compounds were upregulated after pollination in kernels, and that abnormal development and senescence appeared in unpollinated kernels (KUP). We also identified several genes with functions in the maintenance of silk structure that were highly expressed in silk. Further investigation suggested that the expression of autophagy-related genes and senescence-related genes is prevalent in maize kernels and silks. In addition, pollination significantly altered the expression levels of senescence-related and autophagy-related genes in maize kernels and silks. Notably, we identified some specific genes and transcription factors (TFs) that are highly expressed in single tissues. Conclusions Our results provide novel insights into the potential regulatory mechanisms of self-pollinated and unpollinated maize kernels and silks. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00981-4.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yapeng Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yaqin Shi
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xiaonan Gou
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Bingpeng Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xinghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
6
|
Takebe N, Nakamura A, Watanabe T, Miyashita A, Satoh S, Iwai H. Cell wall Glycine-rich Protein2 is involved in tapetal differentiation and pollen maturation. JOURNAL OF PLANT RESEARCH 2020; 133:883-895. [PMID: 32929552 DOI: 10.1007/s10265-020-01223-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 05/06/2023]
Abstract
The tapetum plays important roles in anther development by providing materials for pollen-wall formation and nutrients for pollen development. Here, we report the characterization of a male-sterile mutant of glycine-rich protein 2 (OsGRP2), which exhibits irregular cell division and dysfunction of the tapetum. GRP is a cellwall structural protein present in the cell walls of diverse plant species, but its function is unclear in pollen development. We found that few GRP genes are expressed in rice and thus focused on one highly expressed gene, OsGRP2. The tapetal cell walls of an OsGRP2 mutant did not thicken at the pollen mothercell stage, as a result, pollen maturation and fertility rate decreased. High OsGRP2 expression was detected in male-floral organs, and OsGRP2 was distributed in the tapetum. OsGRP2 participated in establishment of the cellwall network during early tapetum development. In conclusion, our results indicate that OsGRP2 plays important roles in the differentiation and function of the tapetum.
Collapse
Affiliation(s)
- Naomi Takebe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan
| | - Atsuko Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan
| | - Tomomi Watanabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan
| | - Aya Miyashita
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan.
| |
Collapse
|
7
|
Turc O, Tardieu F. Drought affects abortion of reproductive organs by exacerbating developmentally driven processes via expansive growth and hydraulics. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3245-3254. [PMID: 29546424 DOI: 10.1093/jxb/ery078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/21/2018] [Indexed: 05/18/2023]
Abstract
Abortion of reproductive organs is a major limiting factor of yield under water deficit, but is also a trait selected for by evolutionary processes. The youngest reproductive organs must be prone to abortion so older organs can finish their development in case of limited resources. Water deficit increases natural abortion via two developmentally driven processes, namely a signal from the first fertilized ovaries and a simultaneous arrest of the expansive growth of all ovaries at a precise stage. In maize (Zea mays) subjected to water deficits typically encountered in dryland agriculture, these developmental mechanisms account for 90% of drought-associated abortion and are irreversible 3 d after silk emergence. Consistently, transcripts and enzyme activities suggest that the molecular events associated with abortion affect expansive growth in silks whereas ovaries maintain a favourable carbon status. Abortion due to carbon starvation is only observed for severe drought scenarios occurring after silking. Both kinetic and genetic evidence indicates that vegetative and reproductive structures share a partly common hydraulic control of expansive growth. Hence, the control of expansive growth of reproductive structures probably has a prominent effect on abortion for mild water deficits occurring at flowering time, while carbon starvation dominates in severe post-flowering drought scenarios.
Collapse
Affiliation(s)
- Olivier Turc
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - François Tardieu
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
8
|
Abstract
ZmbZIP25 (Zea mays bZIP (basic leucine zipper) transcription factor 25) is a function-unknown protein that belongs to the D group of the bZIP transcription factor family. RNA-seq data showed that the expression of ZmbZIP25 was tissue-specific in maize silks, and this specificity was confirmed by RT-PCR (reverse transcription-polymerase chain reaction). In situ RNA hybridization showed that ZmbZIP25 was expressed exclusively in the xylem of maize silks. A 5' RACE (rapid amplification of cDNA ends) assay identified an adenine residue as the transcription start site of the ZmbZIP25 gene. To characterize this silk-specific promoter, we isolated and analyzed a 2450 bp (from -2083 to +367) and a 2600 bp sequence of ZmbZIP25 (from -2083 to +517, the transcription start site was denoted +1). Stable expression assays in Arabidopsis showed that the expression of the reporter gene GUS driven by the 2450 bp ZmbZIP25 5'-flanking fragment occurred exclusively in the papillae of Arabidopsis stigmas. Furthermore, transient expression assays in maize indicated that GUS and GFP expression driven by the 2450 bp ZmbZIP25 5'-flanking sequences occurred only in maize silks and not in other tissues. However, no GUS or GFP expression was driven by the 2600 bp ZmbZIP25 5'-flanking sequences in either stable or transient expression assays. A series of deletion analyses of the 2450 bp ZmbZIP25 5'-flanking sequence was performed in transgenic Arabidopsis plants, and probable elements prediction analysis revealed the possible presence of negative regulatory elements within the 161 bp region from -1117 to -957 that were responsible for the specificity of the ZmbZIP25 5'-flanking sequence.
Collapse
|
9
|
Turc O, Bouteillé M, Fuad-Hassan A, Welcker C, Tardieu F. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize. THE NEW PHYTOLOGIST 2016; 212:377-388. [PMID: 27400762 DOI: 10.1111/nph.14053] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/06/2016] [Indexed: 06/06/2023]
Abstract
The elongation of styles and stigma (silks) of maize (Zea mays) flowers is rapid (1-3 mm h(-1) ), occurs over a short period and plays a pivotal role in reproductive success in adverse environments. Silk elongation rate was measured using displacement transducers in 350 plants of eight genotypes during eight experiments with varying evaporative demand and soil water status. Measured time courses revealed that silk elongation rate closely followed changes in soil water status and evaporative demand, with day-night alternations similar to those in leaves. Day-night alternations were steeper with high than with low plant transpiration rate, manipulated via evaporative demand or by covering part of the leaf area. Half times of changes in silk elongation rate upon changes in evaporative demand or soil water status were 10-30 min, similar to those in leaves. The sensitivity of silk elongation rate to xylem water potential was genetically linked to that of leaf elongation rate. Lines greatly differed for these sensitivities. These results are consistent with a common hydraulic control of expansive growth in vegetative and reproductive structures upon changes in environmental conditions via a close connection with the xylem water potential. They have important implications for breeding, modelling and phenotyping.
Collapse
Affiliation(s)
- Olivier Turc
- UMR LEPSE, INRA, Montpellier SupAgro, 34000, Montpellier, France.
| | - Marie Bouteillé
- UMR LEPSE, INRA, Montpellier SupAgro, 34000, Montpellier, France
| | - Avan Fuad-Hassan
- UMR LEPSE, INRA, Montpellier SupAgro, 34000, Montpellier, France
| | - Claude Welcker
- UMR LEPSE, INRA, Montpellier SupAgro, 34000, Montpellier, France
| | - François Tardieu
- UMR LEPSE, INRA, Montpellier SupAgro, 34000, Montpellier, France
| |
Collapse
|
10
|
Tian J, Chen H, Chen S, Xing L, Wang Y, Wang J. Comparative studies on the constituents, antioxidant and anticancer activities of extracts from different varieties of corn silk. Food Funct 2013; 4:1526-34. [DOI: 10.1039/c3fo60171d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
CHEN X, ZENG QC, LU XP, YU DQ, LI WZ. Characterization and Expression Analysis of Four Glycine-Rich RNA-Binding Proteins Involved in Osmotic Response in Tobacco (Nicotiana tabacum cv. Xanthi). ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60254-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Flinn BS. Plant extracellular matrix metalloproteinases. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:1183-1193. [PMID: 32688865 DOI: 10.1071/fp08182] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 09/18/2008] [Indexed: 06/11/2023]
Abstract
The plant extracellular matrix (ECM) includes a variety of proteins with critical roles in the regulation of plant growth, development, and responses to pests and pathogens. Several studies have shown that various ECM proteins undergo proteolytic modification. In mammals, the extracellular matrix metalloproteinases (MMPs) are known modifiers of the ECM, implicated in tissue architecture changes and the release of biologically active and/or signalling molecules. Although plant MMPs have been identified, little is known about their activity and function. Plant MMPs show structural similarity to mammalian MMPs, including the presence of an auto-regulatory cysteine switch domain and a zinc-binding catalytic domain. Plant MMPs are differentially expressed in cells and tissues during plant growth and development, as well as in response to several biotic and abiotic stresses. The few gene expression and mutant analyses to date indicate their involvement in plant growth, morphogenesis, senescence and adaptation and response to stress. In order to gain a further understanding of their function, an analysis and characterisation of MMP proteins, their activity and their substrates during plant growth and development are still required. This review describes plant MMP work to date, as well as the variety of genomic and proteomic methodologies available to characterise plant MMP activity, function and potential substrates.
Collapse
Affiliation(s)
- Barry S Flinn
- The Institute for Advanced Learning and Research, Institute for Sustainable and Renewable Resources, 150 Slayton Avenue, Danville, VA 24540, USA
| |
Collapse
|