1
|
Liu R, Feng X, Yin X, Zhu P. Mining and identification of factors influencing multi-branch plasticity in ornamental kale. PLANTA 2025; 261:134. [PMID: 40348855 DOI: 10.1007/s00425-025-04708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
MAIN CONCLUSION Transcriptome-revealed plant hormones and nutrients are key factors influencing branching in ornamental kale. Topping treatment and exogenous hormones application revealed that auxin and SLs inhibited lateral buds outgrowth, respectively. Plant architecture is a crucial horticultural characteristic in ornamental kale as the variety of branching patterns significantly enhances the esthetic appeal of garden plants. The factors influencing multi-branch plasticity in ornamental kale are yet to be elucidated. In this study, we mined the key branching genes by comparing the transcriptomes of a single-branched inbred line 'P29' and its natural multi-branched mutant, revealing a total of 3727 differentially expressed genes (DEGs) between them. A Kyoto Encyclopedia of Genes and Genome enrichment analysis identified 41 auxin-related DEGs, 5 strigolactones (SLs)-related DEGs, 12 cytokinin-related DEGs, 3 abscisic acid-related DEGs, and 1 gibberellin-related DEG. Nutrients, such as sugar, nitrogen, and phosphorus, might also influence branching. To investigate the effects of auxin and SLs on branch outgrowth, we conducted a topping treatment (removed rosette head) and externally applied the SL analog GR24 and corresponding SL biosynthesis inhibitor TIS108 to the single-branch inbred line 'P23'. GR24 effectively inhibited lateral bud outgrowth while TIS108 promoted lateral bud initiation. This work provides a novel perspective of the multi-branch plasticity in ornamental kale and also highlights potential key elements regulating plant morphology, which could be targeted to improve the architecture of valuable plant species.
Collapse
Affiliation(s)
- Rui Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Xin Feng
- College of Forestry, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China.
| | - Xiyuan Yin
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Pengfang Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China.
| |
Collapse
|
2
|
Su X, Zheng J, Diao X, Yang Z, Yu D, Huang F. MtTCP18 Regulates Plant Structure in Medicago truncatula. PLANTS (BASEL, SWITZERLAND) 2024; 13:1012. [PMID: 38611541 PMCID: PMC11013128 DOI: 10.3390/plants13071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Plant structure has a large influence on crop yield formation, with branching and plant height being the important factors that make it up. We identified a gene, MtTCP18, encoding a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor highly conserved with Arabidopsis gene BRC1 (BRANCHED1) in Medicago truncatula. Sequence analysis revealed that MtTCP18 included a conserved basic helix-loop-helix (BHLH) motif and R domain. Expression analysis showed that MtTCP18 was expressed in all organs examined, with relatively higher expression in pods and axillary buds. Subcellular localization analysis showed that MtTCP18 was localized in the nucleus and exhibited transcriptional activation activity. These results supported its role as a transcription factor. Meanwhile, we identified a homozygous mutant line (NF14875) with a mutation caused by Tnt1 insertion into MtTCP18. Mutant analysis showed that the mutation of MtTCP18 altered plant structure, with increased plant height and branch number. Moreover, we found that the expression of auxin early response genes was modulated in the mutant. Therefore, MtTCP18 may be a promising candidate gene for breeders to optimize plant structure for crop improvement.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Huang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China; (X.S.); (J.Z.); (X.D.); (Z.Y.); (D.Y.)
| |
Collapse
|
3
|
Liu T, Liu X, He J, Dong K, Zhang L, Li Y, Ren R, Yang T. Comparative transcriptome analysis and genetic dissection of vegetative branching traits in foxtail millet (Setaria italica). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:39. [PMID: 38294546 DOI: 10.1007/s00122-023-04524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024]
Abstract
KEY MESSAGE Two major genetic loci, qTN5.1 and qAB9.1, were identified and finely mapped to the 255 Kb region with one potential candidate gene for tiller number and the 521 Kb region with eight candidate genes for axillary branch number, respectively. Vegetative branching including tillering and axillary branching are vital traits affecting both the plant architecture and the biomass in cereal crops. However, the mechanism underlying the formation of vegetative branching in foxtail millet is largely unknown. Here, a foxtail millet cultivar and its bushy wild relative Setaria viridis accession were used to construct segregating populations to identify candidate genes regulating tiller number and axillary branch number. Transcriptome analysis using vegetative branching bud samples of parental accessions was performed, and key differentially expressed genes and pathways regulating vegetative branching were pointed out. Bulk segregant analysis on their F2:3 segregating population was carried out, and a major QTL for tiller number (qTN5.1) and two major QTLs for axillary branch number (qAB2.1 and qAB9.1) were detected. Fine-mapping strategy was further performed on F2:4 segregate population, and Seita.5G356600 encoding β-glucosidase 11 was identified as the promising candidate gene for qTN5.1, and eight genes, especially Seita.9G125300 and Seita.9G125400 annotated as B-S glucosidase 44, were finally identified as candidate genes for regulating axillary branching. Findings in this study will help to elucidate the genetic basis of the vegetative branching formation of foxtail millet and lay a foundation for breeding foxtail millet varieties with ideal vegetative branching numbers.
Collapse
Affiliation(s)
- Tianpeng Liu
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Xueying Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Jihong He
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Kongjun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Lei Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yawei Li
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Ruiyu Ren
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Tianyu Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Si Y, Tian S, Niu J, Yu Z, Ma S, Lu Q, Wu H, Ling HQ, Zheng S. Dissection and validation of a promising QTL controlling spikelet number on 5B in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:240. [PMID: 37930446 DOI: 10.1007/s00122-023-04488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
KEY MESSAGE Five environmentally stable QTLs for spikelet number per spike and days to heading were identified using a high-genetic map containing 95,444 SNPs, among which QSns.ucas-5B was validated using residual heterozygous line at multiple environments. Spikelet number per spike (SNS) and days to heading (DTH) play pivotal roles in the improvement of wheat yield. In this study, a high-density genetic map for a recombinant inbred lines (RILs) population derived from Zhengnong 17 (ZN17) and Yangbaimai (YBM) was constructed using 95,444 single-nucleotide polymorphism (SNP) markers from the Wheat660K SNP array. Our study identified a total of five environmentally stable QTLs for SNS and DTH, one of which was named QSns.ucas-5B, with a physical interval of approximately 545.4-552.1 Mb on the 5BL chromosome arm. Importantly, the elite haplotype within QSns.ucas-5B showed a consistent and positive effect on SNS, grain number and weight per spike, without extending the days to heading. These findings provide a foundation for future efforts to map and clone the gene(s) responsible for QSns.ucas-5B and further indicate the potential application of the developed and validated InDel marker of QSns.ucas-5B for molecular breeding purposes, aimed at improving wheat grain yield.
Collapse
Affiliation(s)
- Yaoqi Si
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuiquan Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqing Niu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongqing Yu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Shengwei Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiao Lu
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huilan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Cárdenas-Aquino MDR, Camas-Reyes A, Valencia-Lozano E, López-Sánchez L, Martínez-Antonio A, Cabrera-Ponce JL. The Cytokinins BAP and 2-iP Modulate Different Molecular Mechanisms on Shoot Proliferation and Root Development in Lemongrass ( Cymbopogon citratus). PLANTS (BASEL, SWITZERLAND) 2023; 12:3637. [PMID: 37896100 PMCID: PMC10610249 DOI: 10.3390/plants12203637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The known activities of cytokinins (CKs) are promoting shoot multiplication, root growth inhibition, and delaying senescence. 6-Benzylaminopurine (BAP) has been the most effective CK to induce shoot proliferation in cereal and grasses. Previously, we reported that in lemongrass (Cymbopogon citratus) micropropagation, BAP 10 µM induces high shoot proliferation, while the natural CK 6-(γ,γ-Dimethylallylamino)purine (2-iP) 10 µM shows less pronounced effects and developed rooting. To understand the molecular mechanisms involved, we perform a protein-protein interaction (PPI) network based on the genes of Brachypodium distachyon involved in shoot proliferation/repression, cell cycle, stem cell maintenance, auxin response factors, and CK signaling to analyze the molecular mechanisms in BAP versus 2-iP plants. A different pattern of gene expression was observed between BAP- versus 2-iP-treated plants. In shoots derived from BAP, we found upregulated genes that have already been demonstrated to be involved in de novo shoot proliferation development in several plant species; CK receptors (AHK3, ARR1), stem cell maintenance (STM, REV and CLV3), cell cycle regulation (CDKA-CYCD3 complex), as well as the auxin response factor (ARF5) and CK metabolism (CKX1). In contrast, in the 2-iP culture medium, there was an upregulation of genes involved in shoot repression (BRC1, MAX3), ARR4, a type A-response regulator (RR), and auxin metabolism (SHY2).
Collapse
Affiliation(s)
- María del Rosario Cárdenas-Aquino
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Alberto Camas-Reyes
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Lorena López-Sánchez
- Red de Estudios Moleculares Avanzados, Unidad de Microscopia Avanzada, Instituto de Ecología, A.C. INECOL 1975–2023, Carretera antigua a Coatepec 351, Col. El Haya, Xalapa 91073, Mexico;
| | - Agustino Martínez-Antonio
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| |
Collapse
|
6
|
Mansilla N, Fonouni-Farde C, Ariel F, Lucero L. Differential chromatin binding preference is the result of the neo-functionalization of the TB1 clade of TCP transcription factors in grasses. THE NEW PHYTOLOGIST 2023; 237:2088-2103. [PMID: 36484138 DOI: 10.1111/nph.18664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The understanding of neo-functionalization of plant transcription factors (TFs) after gene duplication has been extensively focused on changes in protein-protein interactions, the expression pattern of TFs, or the variation of cis-elements bound by TFs. Yet, the main molecular role of a TF, that is, its specific chromatin binding for the direct regulation of target gene expression, continues to be mostly overlooked. Here, we studied the TB1 clade of the TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTORS (TCP) TF family within the grasses (Poaceae). We identified an Asp/Gly amino acid replacement within the TCP domain, originated within a paralog TIG1 clade exclusive for grasses. The heterologous expression of Zea mays TB1 and its two paralogs BAD1 and TIG1 in Arabidopsis mutant plants lacking the TB1 ortholog BRC1 revealed distinct functions in plant development. Notably, the Gly acquired in the TIG1 clade does not impair TF homodimerization and heterodimerization, while it modulates chromatin binding preferences. We found that in vivo TF recognition of target promoters depends on this Asp/Gly mutation and directly impacts downstream gene expression and subsequent plant development. These results provided new insights into how natural selection fine-tunes gene expression regulation after duplication of TFs to define plant architecture.
Collapse
Affiliation(s)
- Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| |
Collapse
|
7
|
Liu DK, Zhang C, Zhao X, Ke S, Li Y, Zhang D, Zheng Q, Li MH, Lan S, Liu ZJ. Genome-wide analysis of the TCP gene family and their expression pattern in Cymbidium goeringii. FRONTIERS IN PLANT SCIENCE 2022; 13:1068969. [PMID: 36570938 PMCID: PMC9772009 DOI: 10.3389/fpls.2022.1068969] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
TCP gene family are specific transcription factors for plant, and considered to play an important role in development and growth. However, few related studies investigated the TCP gene trait and how it plays a role in growth and development of Orchidaceae. In this study, we obtained 14 TCP genes (CgTCPs) from the Spring Orchid Cymbidium goeringii genome. The classification results showed that 14 CgTCPs were mainly divided into two clades as follows: four PCF genes (Class I), nine CIN genes and one CYC gene (Class II). The sequence analysis showed that the TCP proteins of C. goeringii contain four conserved regions (basic Helix-Loop-Helix) in the TCP domain. The exon-intron structure varied in the clade according to a comparative investigation of the gene structure, and some genes had no introns. There are fewer CgTCP homologous gene pairs compared with Dendrobium catenatum and Phalaenopsis equestris, suggesting that the TCP genes in C. goeringii suffered more loss events. The majority of the cis-elements revealed to be enriched in the function of light responsiveness, followed by MeJA and ABA responsiveness, demonstrating their functions in regulating by light and phytohormones. The collinearity study revealed that the TCPs in D. catenatum, P. equestris and C. goeringii almost 1:1. The transcriptomic data and real-time reverse transcription-quantitative PCR (RT-qPCR) expression profiles showed that the flower-specific expression of the TCP class II genes (CgCIN2, CgCIN5 and CgCIN6) may be related to the regulation of florescence. Altogether, this study provides a comprehensive analysis uncovering the underlying function of TCP genes in Orchidaceae.
Collapse
Affiliation(s)
- Ding-Kun Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuili Zhang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuewei Zhao
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijie Ke
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Li
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Diyang Zhang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinyao Zheng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-He Li
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Jian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Xiao J, Liu B, Yao Y, Guo Z, Jia H, Kong L, Zhang A, Ma W, Ni Z, Xu S, Lu F, Jiao Y, Yang W, Lin X, Sun S, Lu Z, Gao L, Zhao G, Cao S, Chen Q, Zhang K, Wang M, Wang M, Hu Z, Guo W, Li G, Ma X, Li J, Han F, Fu X, Ma Z, Wang D, Zhang X, Ling HQ, Xia G, Tong Y, Liu Z, He Z, Jia J, Chong K. Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
Affiliation(s)
- Jun Xiao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, 130024, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Fei Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wuyun Yang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xuelei Lin
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Silong Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangyao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuanghe Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Chen
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kunpu Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fangpu Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| | - Yiping Tong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiyong Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- CIMMYT China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Zhang L, Fang W, Chen F, Song A. The Role of Transcription Factors in the Regulation of Plant Shoot Branching. PLANTS (BASEL, SWITZERLAND) 2022; 11:1997. [PMID: 35956475 PMCID: PMC9370718 DOI: 10.3390/plants11151997] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022]
Abstract
Transcription factors, also known as trans-acting factors, balance development and stress responses in plants. Branching plays an important role in plant morphogenesis and is closely related to plant biomass and crop yield. The apical meristem produced during plant embryonic development repeatedly produces the body of the plant, and the final aerial structure is regulated by the branching mode generated by axillary meristem (AM) activities. These branching patterns are regulated by two processes: AM formation and axillary bud growth. In recent years, transcription factors involved in regulating these processes have been identified. In addition, these transcription factors play an important role in various plant hormone pathways and photoresponses regulating plant branching. In this review, we start from the formation and growth of axillary meristems, including the regulation of hormones, light and other internal and external factors, and focus on the transcription factors involved in regulating plant branching and development to provide candidate genes for improving crop architecture through gene editing or directed breeding.
Collapse
Affiliation(s)
| | | | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Z.); (W.F.)
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Z.); (W.F.)
| |
Collapse
|
10
|
Tang Y, Gao X, Cui Y, Xu H, Yu J. 植物TCP转录因子研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Wang S, Shen Y, Guo L, Tan L, Ye X, Yang Y, Zhao X, Nie Y, Deng D, Liu S, Wu W. Innovation and Emerging Roles of Populus trichocarpa TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR Transcription Factors in Abiotic Stresses by Whole-Genome Duplication. FRONTIERS IN PLANT SCIENCE 2022; 13:850064. [PMID: 35356113 DOI: 10.3389/fpls.2022.850064if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 06/05/2023]
Abstract
The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family proteins are plant-specific transcription factors that have been well-acknowledged for designing the architectures of plant branch, shoot, and inflorescence. However, evidence for their innovation and emerging role in abiotic stress has been lacking. In this study, we identified a total of 36 TCP genes in Populus trichocarpa, 50% more than that in Arabidopsis (i.e., 24). Comparative intra-genomes showed that such significant innovation was mainly due to the most recent whole genome duplication (rWGD) in Populus lineage around Cretaceous-Paleogene (K-Pg) boundary after the divergence from Arabidopsis. Transcriptome analysis showed that the expressions of PtrTCP genes varied among leaf, stem, and root, and they could also be elaborately regulated by abiotic stresses (e.g., cold and salt). Moreover, co-expression network identified a cold-associated regulatory module including PtrTCP31, PtrTCP10, and PtrTCP36. Of them, PtrTCP10 was rWGD-duplicated from PtrTCP31 and evolved a strong capability of cold induction, which might suggest a neofunctionalization of PtrTCP genes and contribute to the adaptation of Populus lineage during the Cenozoic global cooling. Evidentially, overexpression of PtrTCP10 into Arabidopsis increased freezing tolerance and salt susceptibility. Integrating co-expression network and cis-regulatory element analysis confirmed that PtrTCP10 can regulate the well-known cold- and salt-relevant genes (e.g., ZAT10, GolS2, and SOS1), proving that PtrTCP10 is an evolutionary innovation in P. trichocarpa response to environmental changes. Altogether, our results provide evidence of the rWGD in P. trichocarpa responsible for the innovation of PtrTCP genes and their emerging roles in environmental stresses.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yirong Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Lingling Tan
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiaoxue Ye
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yanmei Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xijuan Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yuqi Nie
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
12
|
Wang S, Shen Y, Guo L, Tan L, Ye X, Yang Y, Zhao X, Nie Y, Deng D, Liu S, Wu W. Innovation and Emerging Roles of Populus trichocarpa TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR Transcription Factors in Abiotic Stresses by Whole-Genome Duplication. FRONTIERS IN PLANT SCIENCE 2022; 13:850064. [PMID: 35356113 PMCID: PMC8959825 DOI: 10.3389/fpls.2022.850064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 05/25/2023]
Abstract
The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family proteins are plant-specific transcription factors that have been well-acknowledged for designing the architectures of plant branch, shoot, and inflorescence. However, evidence for their innovation and emerging role in abiotic stress has been lacking. In this study, we identified a total of 36 TCP genes in Populus trichocarpa, 50% more than that in Arabidopsis (i.e., 24). Comparative intra-genomes showed that such significant innovation was mainly due to the most recent whole genome duplication (rWGD) in Populus lineage around Cretaceous-Paleogene (K-Pg) boundary after the divergence from Arabidopsis. Transcriptome analysis showed that the expressions of PtrTCP genes varied among leaf, stem, and root, and they could also be elaborately regulated by abiotic stresses (e.g., cold and salt). Moreover, co-expression network identified a cold-associated regulatory module including PtrTCP31, PtrTCP10, and PtrTCP36. Of them, PtrTCP10 was rWGD-duplicated from PtrTCP31 and evolved a strong capability of cold induction, which might suggest a neofunctionalization of PtrTCP genes and contribute to the adaptation of Populus lineage during the Cenozoic global cooling. Evidentially, overexpression of PtrTCP10 into Arabidopsis increased freezing tolerance and salt susceptibility. Integrating co-expression network and cis-regulatory element analysis confirmed that PtrTCP10 can regulate the well-known cold- and salt-relevant genes (e.g., ZAT10, GolS2, and SOS1), proving that PtrTCP10 is an evolutionary innovation in P. trichocarpa response to environmental changes. Altogether, our results provide evidence of the rWGD in P. trichocarpa responsible for the innovation of PtrTCP genes and their emerging roles in environmental stresses.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yirong Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Lingling Tan
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiaoxue Ye
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yanmei Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xijuan Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yuqi Nie
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
13
|
Systematic Characterization of TCP Gene Family in Four Cotton Species Revealed That GhTCP62 Regulates Branching in Arabidopsis. BIOLOGY 2021; 10:biology10111104. [PMID: 34827097 PMCID: PMC8614845 DOI: 10.3390/biology10111104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023]
Abstract
TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play an essential role in regulating various physiological and biochemical functions during plant growth. However, the function of TCP transcription factors in G. hirsutum has not yet been studied. In this study, we performed genome-wide identification and correlation analysis of the TCP transcription factor family in G. hirsutum. We identified 72 non-redundant GhTCP genes and divided them into seven subfamilies, based on phylogenetic analysis. Most GhTCP genes in the same subfamily displayed similar exon and intron structures and featured highly conserved motif structures in their subfamily. Additionally, the pattern of chromosomal distribution demonstrated that GhTCP genes were unevenly distributed on 24 out of 26 chromosomes, and that fragment replication was the main replication event of GhTCP genes. In TB1 sub-family genes, GhTCP62 was highly expressed in the axillary buds, suggesting that GhTCP62 significantly affected cotton branching. Additionally, subcellular localization results indicated that GhTCP62 is located in the nucleus and possesses typical transcription factor characteristics. The overexpression of GhTCP62 in Arabidopsis resulted in fewer rosette-leaf branches and cauline-leaf branches. Furthermore, the increased expression of HB21 and HB40 genes in Arabidopsis plants overexpressing GhTCP62 suggests that GhTCP62 may regulate branching by positively regulating HB21 and HB40.
Collapse
|
14
|
Zhao D, Yang L, Xu K, Cao S, Tian Y, Yan J, He Z, Xia X, Song X, Zhang Y. Identification and validation of genetic loci for tiller angle in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3037-3047. [PMID: 32685984 DOI: 10.1007/s00122-020-03653-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/08/2020] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE Two major QTL for tiller angle were identified on chromosomes 1AL and 5DL, and TaTAC-D1 might be the candidate gene for QTA.caas-5DL. An ideal plant architecture is important for achieving high grain yield in crops. Tiller angle (TA) is an important factor influencing yield. In the present study, 266 recombinant inbred lines (RILs) derived from a cross between Zhongmai 871 (ZM871) and its sister line Zhongmai 895 (ZM895) was used to map TA by extreme pool-genotyping and inclusive composite interval mapping (ICIM). Two quantitative trait loci (QTL) on chromosomes 1AL and 5DL were identified with reduced tiller angle alleles contributed by ZM895. QTA.caas-1AL was detected in six environments, explaining 5.4-11.2% of the phenotypic variances. The major stable QTL, QTA.caas-5DL, was identified in all eight environments, accounting for 13.8-24.8% of the phenotypic variances. The two QTL were further validated using BC1F4 populations derived from backcrosses ZM871/ZM895//ZM871 (121 lines) and ZM871/ZM895//ZM895 (175 lines). Gene TraesCS5D02G322600, located in the 5DL QTL and designated TaTAC-D1, had a SNP in the third exon with 'A' and 'G' in ZM871 and ZM895, respectively, resulting in a Thr169Ala amino acid change. A KASP marker based on this SNP was validated in two sets of germplasm, providing further evidence for the significant effects of TaTAC-D1 on TA. Thus extreme pool-genotyping can be employed to detect QTL for plant architecture traits and KASP markers tightly linked with the QTL can be used in wheat breeding programs targeting improved plant architecture.
Collapse
Affiliation(s)
- Dehui Zhao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi province, China
| | - Li Yang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Kaijie Xu
- Institute of Cotton Research, CAAS, 38 Huanghe Dadao, Anyang, 455000, Henan province, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yubing Tian
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jun Yan
- Institute of Cotton Research, CAAS, 38 Huanghe Dadao, Anyang, 455000, Henan province, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- CIMMYT-China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi province, China.
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
15
|
Daba SD, Liu X, Aryal U, Mohammadi M. A proteomic analysis of grain yield-related traits in wheat. AOB PLANTS 2020; 12:plaa042. [PMID: 33133478 PMCID: PMC7586745 DOI: 10.1093/aobpla/plaa042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/19/2020] [Indexed: 05/13/2023]
Abstract
Grain yield, which is mainly contributed by tillering capacity as well as kernel number and weight, is the most important trait to plant breeders and agronomists. Label-free quantitative proteomics was used to analyse yield-contributing organs in wheat. These were leaf sample, tiller initiation, spike initiation, ovary and three successive kernel development stages at 5, 10 and 15 days after anthesis (DAA). We identified 3182 proteins across all samples. The largest number was obtained for spike initiation (1673), while the smallest was kernel sample at 15 DAA (709). Of the 3182 proteins, 296 of them were common to all seven organs. Organ-specific proteins ranged from 148 in ovary to 561 in spike initiation. When relative protein abundances were compared to that of leaf sample, 347 and 519 proteins were identified as differentially abundant in tiller initiation and spike initiation, respectively. When compared with ovary, 81, 35 and 96 proteins were identified as differentially abundant in kernels sampled at 5, 10 and 15 DAA, respectively. Our study indicated that two Argonaute proteins were solely expressed in spike initiation. Of the four expansin proteins detected, three of them were mainly expressed during the first 10 days of kernel development after anthesis. We also detected cell wall invertases and sucrose and starch synthases mainly during the kernel development period. The manipulation of these proteins could lead to increases in tillers, kernels per spike or final grain weight, and is worth exploring in future studies.
Collapse
Affiliation(s)
- Sintayehu D Daba
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Xiaoqin Liu
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Uma Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Mohsen Mohammadi
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
16
|
Dixon LE, Pasquariello M, Boden SA. TEOSINTE BRANCHED1 regulates height and stem internode length in bread wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4742-4750. [PMID: 32449515 PMCID: PMC7410180 DOI: 10.1093/jxb/eraa252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/18/2020] [Indexed: 05/26/2023]
Abstract
Regulation of plant height and stem elongation has contributed significantly to improvement of cereal productivity by reducing lodging and improving distribution of assimilates to the inflorescence and grain. In wheat, genetic control of height has been largely contributed by the Reduced height-1 alleles that confer gibberellin insensitivity; the beneficial effects of these alleles are associated with less favourable effects involving seedling emergence, grain quality, and inflorescence architecture that have driven new research investigating genetic variation of stem growth. Here, we show that TEOSINTE BRANCHED1 (TB1) regulates height of wheat, with TB1 being expressed at low levels in nodes of the main culm prior to elongation, and increased dosage of TB1 restricting elongation of stem internodes. The effect of TB1 on stem growth is not accompanied by poor seedling emergence, as transgenic lines with increased activity of TB1 form longer coleoptiles than null transgenic controls. Analysis of height in a multiparent mapping population also showed that allelic variation for TB1 on the B genome influences height, with plants containing the variant TB-B1b allele being taller than those with the wild-type TB-B1a allele. Our results show that TB1 restricts height and stem elongation in wheat, suggesting that variant alleles that alter the expression or function of TB1 could be used as a new source of genetic diversity for optimizing architecture of wheat in breeding programmes.
Collapse
Affiliation(s)
- Laura E Dixon
- Department of Crop Genetics, John Innes Centre, Colney Lane, Norwich, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Scott A Boden
- Department of Crop Genetics, John Innes Centre, Colney Lane, Norwich, UK
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
17
|
Li J, Wen S, Fan C, Zhang M, Tian S, Kang W, Zhao W, Bi C, Wang Q, Lu S, Guo W, Ni Z, Xie C, Sun Q, You M. Characterization of a major quantitative trait locus on the short arm of chromosome 4B for spike number per unit area in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2259-2269. [PMID: 32347319 DOI: 10.1007/s00122-020-03595-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
An InDel marker closely linked with a major and stable quantitative trait locus (QTL) on chromosome 4BS, QSnpa.cau-4B, controlling spike number per unit area will benefit wheat yield improvement. Spike number per unit area (SNPA) is an essential yield-related trait, and analyzing its genetic basis is important for cultivar improvement in wheat (Triticum aestivum L.). In this study, we used the F2 population derived from a cross between two wheat accessions displaying significant differences in SNPA to perform quantitative trait locus (QTL) analysis. Through bulked segregant analysis, a major and stable QTL that explained 18.11-82.11% of the phenotypic variation was identified on chromosome 4BS. The QTL interval was validated using F4:5 and F6:7 families and narrowed it to a 24.91-38.36 Mb region of chromosome 4BS according to the 'Chinese Spring' reference genome sequence. In this region, variations in 16 genes caused amino acid changes and three genes were present in only one parent. Among these, we annotated a gene orthologous to TB1 in maize (Zea mays), namely TraesCS4B01G042700, which carried a 44-bp deletion in its promoter in the higher-SNPA parent. An InDel marker based on the insertion/deletion polymorphism was designed and used to diagnose the allelic distribution within a natural population. The frequency of the 44-bp deletion allele associated with higher SNPA was relatively low (13.24%), implying that this favorable allele has not been widely utilized and could be valuable for wheat yield improvement. In summary, we identified a major and stable QTL for SNPA and developed a diagnostic marker for the more-spiked trait, which will be beneficial for molecular-assisted breeding in wheat.
Collapse
Affiliation(s)
- Jinghui Li
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China
| | - Shaozhe Wen
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China
| | - Chaofeng Fan
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Minghu Zhang
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China
| | - Shuai Tian
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China
| | - Wenjing Kang
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China
| | - Wenxin Zhao
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China
| | - Chan Bi
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China
| | - Qiuyan Wang
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China
| | - Shuang Lu
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Chaojie Xie
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Mingshan You
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193,, China.
| |
Collapse
|
18
|
Hu J, Ji Y, Hu X, Sun S, Wang X. BES1 Functions as the Co-regulator of D53-like SMXLs to Inhibit BRC1 Expression in Strigolactone-Regulated Shoot Branching in Arabidopsis. PLANT COMMUNICATIONS 2020; 1:100014. [PMID: 33404550 PMCID: PMC7748003 DOI: 10.1016/j.xplc.2019.100014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 05/27/2023]
Abstract
Shoot branching, determining plant architecture and crop yield, is critically controlled by strigolactones (SLs). However, how SLs inhibit shoot branching after its perception by the receptor complex remains largely obscure. In this study, using the transcriptomic and genetic analyss as well as biochemical studies, we reveal the key role of BES1 in the SL-regulated shoot branching. We demonstrate that BES1 and D53-like SMXLs, the substrates of SL receptor complex D14-MAX2, interact with each other to inhibit BRC1 expression, which specifically triggers the SL-regulated transcriptional network in shoot branching. BES1 directly binds the BRC1 promoter and recruits SMXLs to inhibit BRC1 expression. Interestingly, despite being the shared component by SL and brassinosteroid (BR) signaling, BES1 gains signal specificity through different mechanisms in response to BR and SL signals.
Collapse
Affiliation(s)
- Jie Hu
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Ji
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaotong Hu
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyong Sun
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuelu Wang
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Molecular characterization of teosinte branched1 gene governing branching architecture in cultivated maize and wild relatives. 3 Biotech 2020; 10:77. [PMID: 32058540 DOI: 10.1007/s13205-020-2052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022] Open
Abstract
We sequenced the entire tb1 gene in six maize inbreds and its wild relatives (parviglumis, mexicana, perennis and luxurians) to characterize it at molecular level. Hopscotch and Tourist transposable elements were observed in the upstream of tb1 in all maize inbreds, while they were absent in wild relatives. In maize, tb1 consisted of 431-443 bp 5'UTR, 1101 bp coding sequence and 211-219 bp 3'UTR. In promoter region, mutations in the light response element in mexicana (~ 35 bp and ~ 55 bp upstream of TSS) and perennis (at ~ 35 bp upstream of TSS) were found. A 6 bp insertion at 420 bp downstream of the polyA signal site was present among teosinte accessions, while it was not observed in maize. A codominant marker flanking the 6 bp InDel was developed, and it differentiated the teosintes from maize. In Tb1 protein, alanine (12.7-14.6%) was the most abundant amino acid with tryptophan as the rarest (0.5-0.9%). The molecular weight of Tb1 protein was 38757.15 g/mol except 'Palomero Toluqueno' and HKI1128. R and TCP motifs in Tb1 protein were highly conserved across maize, teosinte and orthologues, while TCP domain differed for tb1 paralogue. Tb1 possessed important role in light-, auxin-, stress-response and meristem identity maintenance. Presence of molecular signal suggested its localization in mitochondria, nucleus and nucleolus. Parviglumis and mexicana shared closer relationship with maize than perennis and luxurians. A highly conserved 59-60 amino acids long bHLH region was observed across genotypes. Information generated here assumes significance in evolution of tb1 gene and breeding for enhancement of prolificacy in maize.
Collapse
|
20
|
Xu D, Wen W, Fu L, Li F, Li J, Xie L, Xia X, Ni Z, He Z, Cao S. Genetic dissection of a major QTL for kernel weight spanning the Rht-B1 locus in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3191-3200. [PMID: 31515582 DOI: 10.1007/s00122-019-03418-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 05/18/2023]
Abstract
Genetic dissection uncovered a major QTL QTKW.caas-4BS corresponding with a 483 kb deletion that included genes ZnF, EamA and Rht-B1. This deletion was associated with increased grain weight and semi-dwarf phenotype. Previous studies identified quantitative trait loci (QTL) for thousand kernel weight (TKW) in the region spanning the Rht-B1 locus in wheat (Triticum aestivum L.). We recently mapped a major QTL QTKW.caas-4BS for TKW spanning the Rht-B1 locus in a recombinant inbred line (RIL) population derived from Doumai/Shi 4185 using the wheat 90K array. The allele from Doumai at QTKW.caas-4BS significantly increased TKW and kernel number per spike, and conferred semi-dwarf trait, which was beneficial to improve grain yield without a penalty to lodging. To further dissect QTKW.caas-4BS, we firstly re-investigated the genotypes and phenotypes of the RILs and confirmed the QTL using cleaved amplified polymorphic sequence (CAPS) markers developed from flanking SNP markers IWA102 and IWB54814. The target sequences of the CAPS markers were used as queries to BLAST the wheat reference genome RefSeq v1.0 and hit an approximate 10.4 Mb genomic region. Based on genomic mining and SNP loci from the wheat 660K SNP array in the above genomic region, we developed eight new markers and narrowed QTKW.caas-4BS to a genetic interval of 1.5 cM. A 483 kb deletion in Doumai corresponded with QTKW.caas-4BS genetically, including three genes ZnF, EamA and Rht-B1. The other 15 genes with either differential expressions and/or sequence variations between parents were also potential candidate genes for QTKW.caas-4BS. The findings not only provide a toolkit for marker-assisted selection of QTKW.caas-4BS but also defined candidate genes for further functional analysis.
Collapse
Affiliation(s)
- Dengan Xu
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- Department of Plant Genetics & Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100094, China
| | - Weie Wen
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Luping Fu
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Faji Li
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jihu Li
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Li Xie
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhongfu Ni
- Department of Plant Genetics & Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100094, China
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Shuanghe Cao
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
21
|
Wang Z, Shi H, Yu S, Zhou W, Li J, Liu S, Deng M, Ma J, Wei Y, Zheng Y, Liu Y. Comprehensive transcriptomics, proteomics, and metabolomics analyses of the mechanisms regulating tiller production in low-tillering wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2181-2193. [PMID: 31020386 DOI: 10.1007/s00122-019-03345-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Tiller development in low-tillering wheat is related to several differentially expressed genes, proteins, and metabolites, as determined by an integrated omics approach combining transcriptome analysis, iTRAQ, and HPLC-MS on multiple NILs. Tillering is an important aspect of plant morphology that affects spike number, thereby contributing to the final crop yield. However, the mechanisms inhibiting tiller production in low-tillering wheat are poorly characterized. To investigate this aspect of wheat biology, two pairs of near-isogenic lines were developed, and an integrated omics approach combining transcriptome analysis, isobaric tags for relative and absolute quantification, and high-performance liquid chromatography-mass spectrometry were used to compare the free-tillering and low-tillering caused by an allele at Qltn.sicau-2D in wheat samples. Overall, 474 genes, 166 proteins, and 28 metabolites were identified as tillering-associated differentially expressed genes, proteins, and metabolites (DEGs, DEPs, and DEMs, respectively). Functional analysis indicated that the abundance of DEGs/DEPs/DEMs was related to lignin and cellulose metabolism, cell division, cell cycle processes, and glycerophospholipid metabolism; three transcription factor families, GRAS, GRF, and REV, might be related to the decrease in tillering in low-tillering wheat. These findings contribute to improve our understanding of the mechanisms responsible for the inhibition of tiller development in low-tillering wheat cultivars.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Haoran Shi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Shifan Yu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Wanlin Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Shihang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
22
|
Zwirek M, Waugh R, McKim SM. Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. THE NEW PHYTOLOGIST 2019; 221:1950-1965. [PMID: 30339269 PMCID: PMC6492131 DOI: 10.1111/nph.15548] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/22/2018] [Indexed: 05/24/2023]
Abstract
Hordeum species develop a central spikelet flanked by two lateral spikelets at each inflorescence node. In 'two-rowed' spikes, the central spikelet alone is fertile and sets grain, while in 'six-rowed' spikes, lateral spikelets can also produce grain. Induced loss-of-function alleles of any of five Six-rowed spike (VRS) genes (VRS1-5) cause complete to intermediate gains of lateral spikelet fertility. Current six-row cultivars contain natural defective vrs1 and vrs5 alleles. Little information is known about VRS mechanism(s). We used comparative developmental, expression and genetic analyses on single and double vrs mutants to learn more about how VRS genes control development and assess their agronomic potential. We show that all VRS genes repress fertility at carpel and awn emergence in developing lateral spikelets. VRS4, VRS3 and VRS5 work through VRS1 to suppress fertility, probably by inducing VRS1 expression. Pairing vrs3, vrs4 or vrs5 alleles increased lateral spikelet fertility, despite the presence of a functional VRS1 allele. The vrs3 allele caused loss of spikelet identity and determinacy, improved grain homogeneity and increased tillering in a vrs4 background, while with vrs5, decreased tiller number and increased grain weight. Interactions amongst VRS genes control spikelet infertility, determinacy and outgrowth, and novel routes to improving six-row grain.
Collapse
Affiliation(s)
- Monika Zwirek
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Robbie Waugh
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
- Division of Plant SciencesUniversity of Dundee at The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Sarah M. McKim
- Division of Plant SciencesUniversity of Dundee at The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| |
Collapse
|
23
|
Zhao Z, Hu J, Chen S, Luo Z, Luo D, Wen J, Tu T, Zhang D. Evolution of CYCLOIDEA-like genes in Fabales: Insights into duplication patterns and the control of floral symmetry. Mol Phylogenet Evol 2018; 132:81-89. [PMID: 30508631 DOI: 10.1016/j.ympev.2018.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022]
Abstract
Cycloidea-like (CYC-like) genes are the key regulatory factors in the development of flower symmetry. Duplication and/or reduction of CYC-like genes have occurred several times in various angiosperm groups and are hypothesized to be correlated with the evolution of flower symmetry, which in turn has contributed to the evolutionary success of these groups. However, less is known about the evolutionary scenario of CYC-like genes in the whole Fabales, which contains four families with either symmetric or actinomorphic flowers. Here we investigated the evolution of CYC-like genes in all the four families of Fabales and recovered one to nine CYC-like genes (CYC1, CYC2, and CYC3) depending on which lineages, but the CYC3 genes were most likely lost in the ancestor of Leguminosae. Phylogenetic analysis suggested that the CYC-like genes could have undergone multiple duplications and losses in different plant lineages and formed distinct paralogous/orthologous clades. The ancestor of the Papilionoideae and Caesalpinioideae may possess two paralogs of CYC1 genes but one of them was subsequently lost in Papilionoideae and was retained only in several species of Caesalpinioideae. CYC2 genes were more frequently duplicated in Papilionoideae than in other legumes. We propose that the diversification patterns of both CYC1 and CYC2 genes are not related to the floral symmetry in non-papilionoid Fabales groups, however, gene duplication and functional divergence of CYC2 are essential for the floral zygomorphy of Papilionoideae. This is the first systematic analysis of the CYC-like genes in Fabales and could form the basis for further study of molecular mechanisms controlling floral symmetry in non-model plants of Fabales.
Collapse
Affiliation(s)
- Zhongtao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jin Hu
- Guangdong Eco-engineering Polytechnic, Guangzhou 510520, China
| | - Shi Chen
- Beneficial Insects Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhonglai Luo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Da Luo
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
24
|
Zhang B, Liu J. Molecular cloning and sequence variance analysis of the TEOSINTE BRANCHED1 (TB1) gene in bermudagrass [Cynodon dactylon (L.) Pers]. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:142-150. [PMID: 30081253 DOI: 10.1016/j.jplph.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 05/20/2023]
Abstract
TEOSINTE BRANCHED1 (TB1) encodes a TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATING CELL FACTOR (TCP) transcription factor that represses axillary bud outgrowth and lateral branch formation in plants. Previous studies have elucidated the essential tillering regulatory roles of TB1 in many grasses, including maize and rice; however, the functions of TB1 in turf grasses remain unclear. In this study, we cloned the CdTB1 gene from bermudagrass, an important turfgrass species, and characterized the transactivation function of the CdTB1 protein. Sequencing the CdTB1 gene locus in a mini-core germplasm collection of Chinese bermudagrasses led to the successful identification of 66 SNP and 2 indel mutations in the protein-coding region as well as 28 SNP and 11 indel mutations in the promoter region. Interestingly, mutations in the C-terminal transactivation domain of the CdTB1 protein had no significant influence on the transactivation activity, whereas a novel 335-bp insertion mutation located in the promoter region could significantly increase the expression of the CdTB1 gene. Furthermore, wild accessions of bermudagrass harboring the novel insertion mutation were found to have significantly reduced tillers compared with other accessions, suggesting a negative correlation between the mutation and tillering. The results of this study not only expanded our knowledge of TB1 gene expression regulation but also provided possible molecular markers to breed cultivars of turf and forage grasses with specific architectural features.
Collapse
Affiliation(s)
- Bing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
25
|
He R, Ni Y, Li J, Jiao Z, Zhu X, Jiang Y, Li Q, Niu J. Quantitative Changes in the Transcription of Phytohormone-Related Genes: Some Transcription Factors Are Major Causes of the Wheat Mutant dmc Not Tillering. Int J Mol Sci 2018; 19:ijms19051324. [PMID: 29710831 PMCID: PMC5983577 DOI: 10.3390/ijms19051324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/17/2023] Open
Abstract
Tiller number is an important agronomic trait for grain yield of wheat (Triticum aestivum L.). A dwarf-monoculm wheat mutant (dmc) was obtained from cultivar Guomai 301 (wild type, WT). Here, we explored the molecular basis for the restrained tiller development of the mutant dmc. Two bulked samples of the mutant dmc (T1, T2 and T3) and WT (T4, T5 and T6) with three biological replicates were comparatively analyzed at the transcriptional level by bulked RNA sequencing (RNA-Seq). In total, 68.8 Gb data and 463 million reads were generated, 80% of which were mapped to the wheat reference genome of Chinese Spring. A total of 4904 differentially expressed genes (DEGs) were identified between the mutant dmc and WT. DEGs and their related major biological functions were characterized based on GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) categories. These results were confirmed by quantitatively analyzing the expression profiles of twelve selected DEGs via real-time qRT-PCR. The down-regulated gene expressions related to phytohormone syntheses of auxin, zeatin, cytokinin and some transcription factor (TF) families of TALE, and WOX might be the major causes of the mutant dmc, not tillering. Our work provides a foundation for subsequent tiller development research in the future.
Collapse
Affiliation(s)
- Ruishi He
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, Henan, China.
| | - Junchang Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Zhixin Jiao
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Xinxin Zhu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Yumei Jiang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Qiaoyun Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| |
Collapse
|
26
|
Mo Y, Howell T, Vasquez-Gross H, de Haro LA, Dubcovsky J, Pearce S. Mapping causal mutations by exome sequencing in a wheat TILLING population: a tall mutant case study. Mol Genet Genomics 2017. [PMID: 29188438 DOI: 10.1007/s00438‐017‐1401‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Forward genetic screens of induced mutant plant populations are powerful tools to identify genes underlying phenotypes of interest. Using traditional techniques, mapping causative mutations from forward screens is a lengthy, multi-step process, requiring the identification of a broad genetic region followed by candidate gene sequencing to characterize the causal variant. Mapping by whole genome sequencing accelerates the identification of causal mutations by simultaneously defining a mapping region and providing information on the induced genetic variants. In wheat, although the availability of a high-quality draft genome assembly facilitates mapping and mutation calling, whole genome resequencing remains prohibitively expensive due to its large genome. In the current study, we used exome sequencing as a complexity reduction strategy to detect mutations associated with a target phenotype. In a segregating wheat EMS population, we identified a clear peak region on chromosome arm 4BS associated with increased plant height. Although none of the significant SNPs seemed causative for the mutant phenotype, they were sufficient to identify a linked ~ 1.9 Mb deletion encompassing nine genes. These genes included Rht-B1, which is known to have a strong effect on plant height and is a strong candidate for the observed phenotype. We performed simulation experiments to determine the impacts of sequencing depth and bulk size and discuss the importance of considering each factor when designing mapping-by-sequencing experiments in wheat. This approach can accelerate the identification of candidate causal point mutations or linked deletions underlying important phenotypes.
Collapse
Affiliation(s)
- Youngjun Mo
- Department of Plant Sciences, University of California, Davis, CA, USA
- National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| | - Tyson Howell
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Luis Alejandro de Haro
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
27
|
Mo Y, Howell T, Vasquez-Gross H, de Haro LA, Dubcovsky J, Pearce S. Mapping causal mutations by exome sequencing in a wheat TILLING population: a tall mutant case study. Mol Genet Genomics 2017; 293:463-477. [PMID: 29188438 PMCID: PMC5854723 DOI: 10.1007/s00438-017-1401-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/23/2017] [Indexed: 11/23/2022]
Abstract
Forward genetic screens of induced mutant plant populations are powerful tools to identify genes underlying phenotypes of interest. Using traditional techniques, mapping causative mutations from forward screens is a lengthy, multi-step process, requiring the identification of a broad genetic region followed by candidate gene sequencing to characterize the causal variant. Mapping by whole genome sequencing accelerates the identification of causal mutations by simultaneously defining a mapping region and providing information on the induced genetic variants. In wheat, although the availability of a high-quality draft genome assembly facilitates mapping and mutation calling, whole genome resequencing remains prohibitively expensive due to its large genome. In the current study, we used exome sequencing as a complexity reduction strategy to detect mutations associated with a target phenotype. In a segregating wheat EMS population, we identified a clear peak region on chromosome arm 4BS associated with increased plant height. Although none of the significant SNPs seemed causative for the mutant phenotype, they were sufficient to identify a linked ~ 1.9 Mb deletion encompassing nine genes. These genes included Rht-B1, which is known to have a strong effect on plant height and is a strong candidate for the observed phenotype. We performed simulation experiments to determine the impacts of sequencing depth and bulk size and discuss the importance of considering each factor when designing mapping-by-sequencing experiments in wheat. This approach can accelerate the identification of candidate causal point mutations or linked deletions underlying important phenotypes.
Collapse
Affiliation(s)
- Youngjun Mo
- Department of Plant Sciences, University of California, Davis, CA, USA.,National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| | - Tyson Howell
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Luis Alejandro de Haro
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
28
|
Chai W, Jiang P, Huang G, Jiang H, Li X. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:779-791. [PMID: 29158628 PMCID: PMC5671458 DOI: 10.1007/s12298-017-0476-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/24/2017] [Accepted: 09/19/2017] [Indexed: 05/20/2023]
Abstract
The TCP family is a group of plant-specific transcription factors. TCP genes encode proteins harboring bHLH structure, which is implicated in DNA binding and protein-protein interactions and known as the TCP domain. TCP genes play important roles in plant development and have been evolutionarily and functionally elaborated in various plants, however, no overall phylogenetic analysis or expression profiling of TCP genes in Zea mays has been reported. In the present study, a systematic analysis of molecular evolution and functional prediction of TCP family genes in maize (Z. mays L.) has been conducted. We performed a genome-wide survey of TCP genes in maize, revealing the gene structure, chromosomal location and phylogenetic relationship of family members. Microsynteny between grass species and tissue-specific expression profiles were also investigated. In total, 29 TCP genes were identified in the maize genome, unevenly distributed on the 10 maize chromosomes. Additionally, ZmTCP genes were categorized into nine classes based on phylogeny and purifying selection may largely be responsible for maintaining the functions of maize TCP genes. What's more, microsynteny analysis suggested that TCP genes have been conserved during evolution. Finally, expression analysis revealed that most TCP genes are expressed in the stem and ear, which suggests that ZmTCP genes influence stem and ear growth. This result is consistent with the previous finding that maize TCP genes represses the growth of axillary organs and enables the formation of female inflorescences. Altogether, this study presents a thorough overview of TCP family in maize and provides a new perspective on the evolution of this gene family. The results also indicate that TCP family genes may be involved in development stage in plant growing conditions. Additionally, our results will be useful for further functional analysis of the TCP gene family in maize.
Collapse
Affiliation(s)
- Wenbo Chai
- National Engineering Laboratory of Crop Stress Resistance/Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Pengfei Jiang
- National Engineering Laboratory of Crop Stress Resistance/Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Guoyu Huang
- National Engineering Laboratory of Crop Stress Resistance/Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance/Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance/Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
29
|
|
30
|
Vaschetto LM. Understanding the role of protein interaction motifs in transcriptional regulators: implications for crop improvement. Brief Funct Genomics 2017; 16:152-155. [PMID: 27288433 DOI: 10.1093/bfgp/elw022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, the conjunction of disciplines such as developmental biology and proteomics enabled the dissection of diverse cellular processes, by analysis of their transcriptional regulatory pathways. In particular, it has been shown that transcription factor interactions play critical roles in the development of many complex traits and control cellular phenotypic plasticity, whereas protein phosphorylation modifications regulate protein activity at the posttranslational level. The present work posits that protein-protein interactions by functional motifs, as well as the phosphorylation state in these sites, are fundamental plant biological phenotype determinants, whose elucidation and understanding will allow manipulation of complex traits, thereby contributing to the design of novel methodologies for molecular breeders and plant physiologists.
Collapse
|
31
|
Zheng M, Peng C, Liu H, Tang M, Yang H, Li X, Liu J, Sun X, Wang X, Xu J, Hua W, Wang H. Genome-Wide Association Study Reveals Candidate Genes for Control of Plant Height, Branch Initiation Height and Branch Number in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1246. [PMID: 28769955 PMCID: PMC5513965 DOI: 10.3389/fpls.2017.01246] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/30/2017] [Indexed: 05/13/2023]
Abstract
Plant architecture is crucial for rapeseed yield and is determined by plant height (PH), branch initiation height (BIH), branch number (BN) and leaf and inflorescence morphology. In this study, we measured three major factors (PH, BIH, and BN) in a panel of 333 rapeseed accessions across 4 years. A genome-wide association study (GWAS) was performed via Q + K model and the panel was genotyped using the 60 k Brassica Infinium SNP array. We identified seven loci for PH, four for BIH, and five for BN. Subsequently, by determining linkage disequilibrium (LD) decay associated with 38 significant SNPs, we gained 31, 15, and 17 candidate genes for these traits, respectively. We also showed that PH is significantly correlated with BIH, while no other correlation was revealed. Notably, a GA signaling gene (BnRGA) and a flowering gene (BnFT) located on chromosome A02 were identified as the most likely candidate genes associated with PH regulation. Furthermore, a meristem initiation gene (BnLOF2) and a NAC domain transcriptional factor (BnCUC3) that may be associated with BN were identified on the chromosome A07. This study reveals novel insight into the genetic control of plant architecture and may facilitate marker-based breeding for rapeseed.
Collapse
Affiliation(s)
- Ming Zheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Cheng Peng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Hongfang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Min Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Xiaokang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Jinglin Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Xingchao Sun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Junfeng Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
- *Correspondence: Hanzhong Wang
| |
Collapse
|
32
|
Mauro-Herrera M, Doust AN. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria. PLoS One 2016; 11:e0151346. [PMID: 26985990 PMCID: PMC4795695 DOI: 10.1371/journal.pone.0151346] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/05/2016] [Indexed: 01/12/2023] Open
Abstract
The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture.
Collapse
Affiliation(s)
- Margarita Mauro-Herrera
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Andrew N. Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, United States of America
| |
Collapse
|
33
|
Rodríguez-Mega E, Piñeyro-Nelson A, Gutierrez C, García-Ponce B, Sánchez MDLP, Zluhan-Martínez E, Álvarez-Buylla ER, Garay-Arroyo A. Role of transcriptional regulation in the evolution of plant phenotype: A dynamic systems approach. Dev Dyn 2015; 244:1074-1095. [PMID: 25733163 DOI: 10.1002/dvdy.24268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence suggests that alterations in transcriptional regulation of genes involved in modulating development are an important part of phenotypic evolution, and this can be documented among species and within populations. While the effects of differential transcriptional regulation in organismal development have been preferentially studied in animal systems, this phenomenon has also been addressed in plants. In this review, we summarize evidence for cis-regulatory mutations, trans-regulatory changes and epigenetic modifications as molecular events underlying important phenotypic alterations, and thus shaping the evolution of plant development. We postulate that a mechanistic understanding of why such molecular alterations have a key role in development, morphology and evolution will have to rely on dynamic models of complex regulatory networks that consider the concerted action of genetic and nongenetic components, and that also incorporate the restrictions underlying the genotype to phenotype mapping process. Developmental Dynamics 244:1074-1095, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emiliano Rodríguez-Mega
- Laboratorio de Genética Molecular, Desarrollo, Evolución y Epigenética de Plantas, Universidad Nacional Autónoma de México, 3er Circuito Exterior junto al Jardín Botánico, Ciudad Universitaria, México
| | - Alma Piñeyro-Nelson
- Department of Plant and Microbial Biology, University of California, Berkeley, California
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo, Evolución y Epigenética de Plantas, Universidad Nacional Autónoma de México, 3er Circuito Exterior junto al Jardín Botánico, Ciudad Universitaria, México
| | - María De La Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo, Evolución y Epigenética de Plantas, Universidad Nacional Autónoma de México, 3er Circuito Exterior junto al Jardín Botánico, Ciudad Universitaria, México
| | - Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo, Evolución y Epigenética de Plantas, Universidad Nacional Autónoma de México, 3er Circuito Exterior junto al Jardín Botánico, Ciudad Universitaria, México
| | - Elena R Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo, Evolución y Epigenética de Plantas, Universidad Nacional Autónoma de México, 3er Circuito Exterior junto al Jardín Botánico, Ciudad Universitaria, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo, Evolución y Epigenética de Plantas, Universidad Nacional Autónoma de México, 3er Circuito Exterior junto al Jardín Botánico, Ciudad Universitaria, México.,Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
34
|
Teichmann T, Muhr M. Shaping plant architecture. FRONTIERS IN PLANT SCIENCE 2015; 6:233. [PMID: 25914710 PMCID: PMC4390985 DOI: 10.3389/fpls.2015.00233] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/23/2015] [Indexed: 05/18/2023]
Abstract
Plants exhibit phenotypical plasticity. Their general body plan is genetically determined, but plant architecture and branching patterns are variable and can be adjusted to the prevailing environmental conditions. The modular design of the plant facilitates such morphological adaptations. The prerequisite for the formation of a branch is the initiation of an axillary meristem. Here, we review the current knowledge about this process. After its establishment, the meristem can develop into a bud which can either become dormant or grow out and form a branch. Many endogenous factors, such as photoassimilate availability, and exogenous factors like nutrient availability or shading, have to be integrated in the decision whether a branch is formed. The underlying regulatory network is complex and involves phytohormones and transcription factors. The hormone auxin is derived from the shoot apex and inhibits bud outgrowth indirectly in a process termed apical dominance. Strigolactones appear to modulate apical dominance by modification of auxin fluxes. Furthermore, the transcription factor BRANCHED1 plays a central role. The exact interplay of all these factors still remains obscure and there are alternative models. We discuss recent findings in the field along with the major models. Plant architecture is economically significant because it affects important traits of crop and ornamental plants, as well as trees cultivated in forestry or on short rotation coppices. As a consequence, plant architecture has been modified during plant domestication. Research revealed that only few key genes have been the target of selection during plant domestication and in breeding programs. Here, we discuss such findings on the basis of various examples. Architectural ideotypes that provide advantages for crop plant management and yield are described. We also outline the potential of breeding and biotechnological approaches to further modify and improve plant architecture for economic needs.
Collapse
Affiliation(s)
- Thomas Teichmann
- *Correspondence: Thomas Teichmann, Plant Cell Biology, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, Göttingen, Germany
| | | |
Collapse
|
35
|
Ma J, Wang Q, Sun R, Xie F, Jones DC, Zhang B. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii. Sci Rep 2014; 4:6645. [PMID: 25322260 PMCID: PMC5377578 DOI: 10.1038/srep06645] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/30/2014] [Indexed: 12/04/2022] Open
Abstract
Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Qinglian Wang
- Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, P. R. China
| | - Runrun Sun
- 1] Department of Biology, East Carolina University, Greenville, NC 27858, USA [2] Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, P. R. China
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | - Baohong Zhang
- 1] Department of Biology, East Carolina University, Greenville, NC 27858, USA [2] Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
36
|
Waldie T, McCulloch H, Leyser O. Strigolactones and the control of plant development: lessons from shoot branching. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:607-22. [PMID: 24612082 DOI: 10.1111/tpj.12488] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/05/2014] [Accepted: 02/14/2014] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) were originally identified through their activities as root exudates in the rhizosphere; however, it is now clear that they have many endogenous signalling roles in plants. In this review we discuss recent progress in understanding SL action in planta, particularly in the context of the regulation of shoot branching, one of the best-characterized endogenous roles for SLs. Rapid progress has been made in understanding SL biosynthesis, but many questions remain unanswered. There are hints of as yet unidentified sources of SL, as well as unknown SL-like molecules with important signalling functions. SL signalling is even more enigmatic. Although a likely receptor has been identified, along with some candidate immediate downstream targets, our understanding of how these targets mediate SL signalling is limited. There is still considerable uncertainty about whether the targets of SL signalling are primarily transcriptional or not. There is at least one non-transcriptional target, because a rapid primary response to SL is the removal of PIN1 auxin exporter proteins from the plasma membrane in vascular-associated cells of the stem. We discuss how the various early events in SL signalling could result in the observed changes in shoot branching.
Collapse
Affiliation(s)
- Tanya Waldie
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | | | | |
Collapse
|
37
|
Gaudin ACM, McClymont SA, Soliman SSM, Raizada MN. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize. BMC Genet 2014; 15:23. [PMID: 24524734 PMCID: PMC3930895 DOI: 10.1186/1471-2156-15-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There was ancient human selection on the wild progenitor of modern maize, Balsas teosinte, for decreased shoot branching (tillering), in order to allow more nutrients to be diverted to grain. Mechanistically, the decline in shoot tillering has been associated with selection for increased expression of the major domestication gene Teosinte Branched 1 (Tb1) in shoot primordia. Therefore, TB1 has been defined as a repressor of shoot branching. It is known that plants respond to changes in shoot size by compensatory changes in root growth and architecture. However, it has not been reported whether altered TB1 expression affects any plant traits below ground. Previously, changes in dosage of a well-studied mutant allele of Tb1 in modern maize, called tb1-ref, from one to two copies, was shown to increase tillering. As a result, plants with two copies of the tb1-ref allele have a larger shoot biomass than heterozygotes. Here we used aeroponics to phenotype the effects of tb1-ref copy number on maize roots at macro-, meso- and micro scales of development. RESULTS An increase in the tb1-ref copy number from one to two copies resulted in: (1) an increase in crown root number due to the cumulative initiation of crown roots from successive tillers; (2) higher density of first and second order lateral roots; and (3) reduced average lateral root length. The resulting increase in root system biomass in homozygous tb1-ref mutants balanced the increase in shoot biomass caused by enhanced tillering. These changes caused homozygous tb1-ref mutants of modern maize to more closely resemble its ancestor Balsas teosinte below ground. CONCLUSION We conclude that a decrease in TB1 function in maize results in a larger root system, due to an increase in the number of crown roots and lateral roots. Given that decreased TB1 expression results in a more highly branched and larger shoot, the impact of TB1 below ground may be direct or indirect. We discuss the potential implications of these findings for whole plant coordination of biomass accumulation and maize domestication.
Collapse
Affiliation(s)
| | | | | | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph, 50 Stone Road, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
38
|
Damerval C, Citerne H, Le Guilloux M, Domenichini S, Dutheil J, Ronse de Craene L, Nadot S. Asymmetric morphogenetic cues along the transverse plane: shift from disymmetry to zygomorphy in the flower of Fumarioideae. AMERICAN JOURNAL OF BOTANY 2013; 100:391-402. [PMID: 23378492 DOI: 10.3732/ajb.1200376] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY Zygomorphy has evolved multiple times in angiosperms. Near-actinomorphy is the ancestral state in the early diverging eudicot family Papaveraceae. Zygomorphy evolved once in the subfamily Fumarioideae from a disymmetric state. Unusual within angiosperms, zygomorphy takes place along the transverse plane of the flower. METHODS We investigated floral development to understand the developmental bases of the evolution of floral symmetry in Papaveraceae. We then assessed the expression of candidate genes for the key developmental events responsible for the shift from disymmetry to transverse zygomorphy, namely CrabsClaw for nectary formation (PapCRC), ShootMeristemless (PapSTL) for spur formation, and Cycloidea (PapCYL) for growth control. KEY RESULTS We found that an early disymmetric groundplan is common to all species studied, and that actinomorphy was acquired after sepal initiation in Papaveroideae. The shift from disymmetry to zygomorphy in Fumarioideae was associated with early asymmetric growth of stamen filaments, followed by asymmetric development of nectary outgrowth and spur along the transverse plane. Patterns of PapSTL expression could not be clearly related to spur formation. PapCRC and PapCYL genes were expressed in the nectary outgrowths, with a pattern of expression correlated with asymmetric nectary development in the zygomorphic species. Additionally, PapCYL genes were found asymmetrically expressed along the transverse plane in the basal region of outer petals in the zygomorphic species. CONCLUSION Genes of PapCRC and PapCYL families could be direct or indirect targets of the initial transversally asymmetric cue responsible for the shift from disymmetry to zygomorphy in Fumarioideae.
Collapse
Affiliation(s)
- Catherine Damerval
- UMR de Génétique Végétale, CNRS/Université Paris-Sud/INRA, Ferme du Moulon 91190 Gif-sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Choi MS, Woo MO, Koh EB, Lee J, Ham TH, Seo HS, Koh HJ. Teosinte Branched 1 modulates tillering in rice plants. PLANT CELL REPORTS 2012; 31:57-65. [PMID: 21912860 DOI: 10.1007/s00299-011-1139-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/11/2011] [Accepted: 08/18/2011] [Indexed: 05/04/2023]
Abstract
Tillering is an important trait of cereal crops that optimizes plant architecture for maximum yield. Teosinte Branched 1 (TB1) is a negative regulator of lateral branching and an inducer of female inflorescence formation in Zea mays (maize). Recent studies indicate that TB1 homologs in Oryza sativa (rice), Sorghum bicolor and Arabidopsis thaliana act downstream of the auxin and MORE AUXILIARY GROWTH (MAX) pathways. However, the molecular mechanism by which rice produces tillers remains unknown. In this study, transgenic rice plants were produced that overexpress the maize TB1 (mTB1) or rice TB1 (OsTB1) genes and silence the OsTB1 gene through RNAi-mediated knockdown. Because lateral branching in rice is affected by the environmental conditions, the phenotypes of transgenic plants were observed in both the greenhouse and the paddy field. Compared to wild-type plants, the number of tillers and panicles was reduced and increased in overexpressed and RNAi-mediated knockdown OsTB1 rice plants, respectively, under both environmental conditions. However, the effect was small for plants grown in paddy fields. These results demonstrate that both mTB1 and OsTB1 moderately regulate the tiller development in rice.
Collapse
Affiliation(s)
- Min-Seon Choi
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Müller D, Leyser O. Auxin, cytokinin and the control of shoot branching. ANNALS OF BOTANY 2011; 107:1203-12. [PMID: 21504914 PMCID: PMC3091808 DOI: 10.1093/aob/mcr069] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
41
|
Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N, Hayes PM, Lundqvist U, Franckowiak JD, Close TJ, Muehlbauer GJ, Waugh R. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 2011; 43:169-72. [PMID: 21217754 DOI: 10.1038/ng.745] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/10/2010] [Indexed: 01/06/2023]
Abstract
The domestication of cereals has involved common changes in morphological features, such as seed size, seed retention and modification of vegetative and inflorescence architecture that ultimately contributed to an increase in harvested yield. In barley, this process has resulted in two different cultivated types, two-rowed and six-rowed forms, both derived from the wild two-rowed ancestor, with archaeo-botanical evidence indicating the origin of six-rowed barley early in the domestication of the species, some 8,600-8,000 years ago. Variation at SIX-ROWED SPIKE 1 (VRS1) is sufficient to control this phenotype. However, phenotypes imposed by VRS1 alleles are modified by alleles at the INTERMEDIUM-C (INT-C) locus. Here we show that INT-C is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1 (TB1) and identify 17 coding mutations in barley TB1 correlated with lateral spikelet fertility phenotypes.
Collapse
Affiliation(s)
- Luke Ramsay
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kebrom TH, Brutnell TP, Finlayson SA. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. PLANT, CELL & ENVIRONMENT 2010; 33:48-58. [PMID: 19843258 DOI: 10.1111/j.1365-3040.2009.02050.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In recent years, several genetic components of vegetative axillary bud development have been defined in both monocots and eudicots, but our understanding of environmental inputs on branching remains limited. Recent work in sorghum (Sorghum bicolor) has revealed a role for phytochrome B (phyB) in the control of axillary bud outgrowth through the regulation of Teosinte Branched1 (TB1) gene. In maize (Zea mays), TB1 is a dosage-dependent inhibitor of axillary meristem progression, and the expression level of TB1 is a sensitive measure of axillary branch development. To further explore the mechanistic basis of branching, the expression of branching and cell cycle-related genes were examined in phyB-1 and wild-type sorghum axillary buds following treatment with low-red : far-red light and defoliation. Although defoliation inhibited bud outgrowth, it did not influence the expression of sorghum TB1 (SbTB1), whereas changes in SbMAX2 expression, a homolog of the Arabidopsis (Arabidopsis thaliana) branching inhibitor MAX2, were associated with the regulation of bud outgrowth by both light and defoliation. The expression of several cell cycle-related genes was also decreased dramatically in buds repressed by defoliation, but not by phyB deficiency. The data suggest that there are at least two distinct molecular pathways that respond to light and endogenous signals to regulate axillary bud outgrowth.
Collapse
|
43
|
Reardon W, Fitzpatrick DA, Fares MA, Nugent JM. Evolution of flower shape in Plantago lanceolata. PLANT MOLECULAR BIOLOGY 2009; 71:241-50. [PMID: 19593661 DOI: 10.1007/s11103-009-9520-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/25/2009] [Indexed: 05/08/2023]
Abstract
Plantago lanceolata produces small actinomorphic (radially symmetric), wind-pollinated flowers that have evolved from a zygomorphic, biotically pollinated ancestral state. To understand the developmental mechanisms that might underlie this change in flower shape, and associated change in pollination syndrome, we analyzed the role of CYC-like genes in P. lanceolata. Related zygomorphic species have two CYC-like genes that are expressed asymmetrically in the dorsal region of young floral meristems and in developing flowers, where they affect the rate of development of dorsal petals and stamens. Plantago has a single CYC-like gene (PlCYC) that is not expressed in early floral meristems and there is no apparent asymmetry in the pattern of PlCYC expression during later flower development. Thus, the evolution of actinomorphy in Plantago correlates with loss of dorsal-specific CYC-like gene function. PlCYC is expressed in the inflorescence stem, in pedicels, and relatively late in stamen development, suggesting a novel role for PlCYC in compacting the inflorescence and retarding stamen elongation in this wind pollinated species.
Collapse
Affiliation(s)
- Wesley Reardon
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Paula McSteen
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|