1
|
Molesini B, Dusi V, Pennisi F, Di Sansebastiano GP, Zanzoni S, Manara A, Furini A, Martini F, Rotino GL, Pandolfini T. TCMP-2 affects tomato flowering and interacts with BBX16, a homolog of the arabidopsis B-box MiP1b. PLANT DIRECT 2020; 4:e00283. [PMID: 33204936 PMCID: PMC7648202 DOI: 10.1002/pld3.283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 10/06/2020] [Indexed: 05/06/2023]
Abstract
Flowering and fruiting are processes subject to complex control by environmental and endogenous signals. Endogenous signals comprise, besides classical phytohormones, also signaling peptides and miniproteins. Tomato cystine-knot miniproteins (TCMPs), which belong to a Solanaceous-specific group of Cys-rich protein family, have been recently involved in fruit development. TCMP-1 and TCMP-2 display a highly modulated expression pattern during flower and fruit development. A previous study reported that a change in the ratio of the two TCMPs affects the timing of fruit production. In this work, to investigate TCMP-2 mode of action, we searched for its interacting partners. One of the interactors identified by a yeast two hybrid screen, was the B-box domain-containing protein 16 (SlBBX16), whose closest homolog is the Arabidopsis microProtein 1b implicated in flowering time control. We demonstrated the possibility for the two proteins to interact in vivo in tobacco epidermal cells. Arabidopsis plants ectopically overexpressing the TCMP-2 exhibited an increased level of FLOWERING LOCUS T (FT) mRNA and anticipated flowering. Similarly, in previously generated transgenic tomato plants with increased TCMP-2 expression in flower buds, we observed an augmented expression of SINGLE-FLOWER TRUSS gene, the tomato ortholog of FT, whereas the expression of the antiflorigen SELF-PRUNING was unchanged. Consistently, these transgenic plants showed alterations in the flowering pattern, with an accelerated termination of the sympodial units. Overall, our study reveals a novel function for TCMP-2 as regulatory factor that might integrate, thanks to its capacity to interact with SlBBX16, into the signaling pathways that control flowering, and converge toward florigen regulation.
Collapse
Affiliation(s)
| | - Valentina Dusi
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | | | - Serena Zanzoni
- Centro Piattaforme TecnologicheUniversity of VeronaVeronaItaly
| | - Anna Manara
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | - Flavio Martini
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | | |
Collapse
|
2
|
Sun X, Tie HC, Chen B, Lu L. Glycans function as a Golgi export signal to promote the constitutive exocytic trafficking. J Biol Chem 2020; 295:14750-14762. [PMID: 32826314 PMCID: PMC7586228 DOI: 10.1074/jbc.ra120.014476] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/17/2020] [Indexed: 11/15/2022] Open
Abstract
Most proteins in the secretory pathway are glycosylated. However, the role of glycans in membrane trafficking is still unclear. Here, we discovered that transmembrane secretory cargos, such as interleukin 2 receptor α subunit or Tac, transferrin receptor, and cluster of differentiation 8a, unexpectedly displayed substantial Golgi localization when their O-glycosylation was compromised. By quantitatively measuring their Golgi residence times, we found that the observed Golgi localization of O-glycan–deficient cargos is due to their slow Golgi export. Using a superresolution microscopy method that we previously developed, we revealed that O-glycan–deficient Tac chimeras localize at the interior of the trans-Golgi cisternae. O-Glycans were observed to be both necessary and sufficient for the efficient Golgi export of Tac chimeras. By sequentially introducing O-glycosylation sites to ST6GAL1, we demonstrated that O-glycan's effect on Golgi export is probably additive. Finally, the finding that N-glycosylated GFP substantially reduces the Golgi residence time of a Tac chimera suggests that N-glycans might have a similar effect. Therefore, both O- and N-glycans might function as a generic Golgi export signal at the trans-Golgi to promote the constitutive exocytic trafficking.
Collapse
Affiliation(s)
- Xiuping Sun
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Hieng Chiong Tie
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Bing Chen
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
3
|
Vieira V, Peixoto B, Costa M, Pereira S, Pissarra J, Pereira C. N-Linked Glycosylation Modulates Golgi-Independent Vacuolar Sorting Mediated by the Plant Specific Insert. PLANTS 2019; 8:plants8090312. [PMID: 31480247 PMCID: PMC6784193 DOI: 10.3390/plants8090312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 01/06/2023]
Abstract
In plant cells, the conventional route to the vacuole involves the endoplasmic reticulum, the Golgi and the prevacuolar compartment. However, over the years, unconventional sorting to the vacuole, bypassing the Golgi, has been described, which is the case of the Plant-Specific Insert (PSI) of the aspartic proteinase cardosin A. Interestingly, this Golgi-bypass ability is not a characteristic shared by all PSIs, since two related PSIs showed to have different sensitivity to ER-to-Golgi blockage. Given the high sequence similarity between the PSI domains, we sought to depict the differences in terms of post-translational modifications. In fact, one feature that draws our attention is that one is N-glycosylated and the other one is not. Using site-directed mutagenesis to obtain mutated versions of the two PSIs, with and without the glycosylation motif, we observed that altering the glycosylation pattern interferes with the trafficking of the protein as the non-glycosylated PSI-B, unlike its native glycosylated form, is able to bypass ER-to-Golgi blockage and accumulate in the vacuole. This is also true when the PSI domain is analyzed in the context of the full-length cardosin. Regardless of opening exciting research gaps, the results obtained so far need a more comprehensive study of the mechanisms behind this unconventional direct sorting to the vacuole.
Collapse
Affiliation(s)
- Vanessa Vieira
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal
| | - Bruno Peixoto
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Mónica Costa
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Susana Pereira
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Center, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vila do Conde, Portugal
| | - José Pissarra
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Center, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vila do Conde, Portugal
| | - Cláudia Pereira
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal.
- GreenUPorto-Sustainable Agrifood Production Research Center, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vila do Conde, Portugal.
| |
Collapse
|
4
|
Barozzi F, Di Sansebastiano GP, Sabella E, Aprile A, Piro G, De Bellis L, Nutricati E. Glutathione S-transferase related detoxification processes are correlated with receptor-mediated vacuolar sorting mechanisms. PLANT CELL REPORTS 2017; 36:1361-1373. [PMID: 28577236 DOI: 10.1007/s00299-017-2159-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/25/2017] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE Triticum durum Glutathione S-transferase Z1 is specifically responsive to glyphosate. Its expression influences the receptor-mediated vacuolar sorting mechanisms involved in tolerance mechanisms. A zeta subfamily glutathione S-transferase gene from Triticum durum (cv Cappelli) (TdGSTZ1) was characterized as part of a complex detoxification mechanism. The effect of different abiotic stresses on TdGSTZ1 revealed that the gene is unexpectedly responsive to glyphosate (GLY) herbicide despite it should not be part of tolerance mechanisms. Its role in the non-target-site mechanism of GLY resistance was then investigated. To analyze the GLY and the TdGSTZ1 overexpression effects on vacuolar sorting mechanisms, we performed transient transformation experiments in Nicotiana tabacum protoplasts using two vacuolar markers, AleuGFPgl133 and GFPgl133Chi, labeling the Sar1 dependent or independent sorting, respectively. We observed that the adaptive reaction of tobacco protoplasts vacuolar system to the treatment with GLY could be partially mimicked by the overexpression of TdGSTZ1 gene. To confirm the influence of GLY on the two vacuolar markers accumulation and the potential involvement of the secretion pathway activity in detoxification events, Arabidopsis thaliana transgenic plants overexpressing the non-glycosylated versions of the two markers were analyzed. The results suggested that GLY treatment specifically altered different vacuolar sorting characteristics, suggesting an involvement of the receptor-mediated AleuGFP sorting mechanism in GLY resistance. Finally, the expression analysis of selected genes confirmed that the non-target-site GLY resistance mechanisms are related to vacuolar sorting.
Collapse
Affiliation(s)
- Fabrizio Barozzi
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy
| | - Gian-Pietro Di Sansebastiano
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy
| | - Erika Sabella
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy
| | - Alessio Aprile
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy
| | - Gabriella Piro
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy
| | - Luigi De Bellis
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy
| | - Eliana Nutricati
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
5
|
Roulston C, Luke GA, de Felipe P, Ruan L, Cope J, Nicholson J, Sukhodub A, Tilsner J, Ryan MD. '2A-Like' Signal Sequences Mediating Translational Recoding: A Novel Form of Dual Protein Targeting. Traffic 2016; 17:923-39. [PMID: 27161495 PMCID: PMC4981915 DOI: 10.1111/tra.12411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Abstract
We report the initial characterization of an N‐terminal oligopeptide ‘2A‐like’ sequence that is able to function both as a signal sequence and as a translational recoding element. Owing to this translational recoding activity, two forms of nascent polypeptide are synthesized: (i) when 2A‐mediated translational recoding has not occurred: the nascent polypeptide is fused to the 2A‐like N‐terminal signal sequence and the fusion translation product is targeted to the exocytic pathway, and, (ii) a translation product where 2A‐mediated translational recoding has occurred: the 2A‐like signal sequence is synthesized as a separate translation product and, therefore, the nascent (downstream) polypeptide lacks the 2A‐like signal sequence and is localized to the cytoplasm. This type of dual‐functional signal sequence results, therefore, in the partitioning of the translation products between the two sub‐cellular sites and represents a newly described form of dual protein targeting.
Collapse
Affiliation(s)
- Claire Roulston
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Garry A Luke
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Pablo de Felipe
- Spanish Medicines Agency (AEMPS), Parque Empresarial "Las Mercedes", Campezo 1 - Edificio 8, 28022, Madrid, Spain
| | - Lin Ruan
- Oakland Innovation, Harston Mill, Harston, Cambridge, CB22 7GG, UK
| | - Jonathan Cope
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John Nicholson
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Andriy Sukhodub
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Jens Tilsner
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Martin D Ryan
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| |
Collapse
|
6
|
Di Sansebastiano GP, Rizzello F, Durante M, Caretto S, Nisi R, De Paolis A, Faraco M, Montefusco A, Piro G, Mita G. Subcellular compartmentalization in protoplasts from Artemisia annua cell cultures: engineering attempts using a modified SNARE protein. J Biotechnol 2014; 202:146-52. [PMID: 25451863 DOI: 10.1016/j.jbiotec.2014.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/03/2014] [Accepted: 11/20/2014] [Indexed: 12/18/2022]
Abstract
Plants are ideal bioreactors for the production of macromolecules but transport mechanisms are not fully understood and cannot be easily manipulated. Several attempts to overproduce recombinant proteins or secondary metabolites failed. Because of an independent regulation of the storage compartment, the product may be rapidly degraded or cause self-intoxication. The case of the anti-malarial compound artemisinin produced by Artemisia annua plants is emblematic. The accumulation of artemisinin naturally occurs in the apoplast of glandular trichomes probably involving autophagy and unconventional secretion thus its production by undifferentiated tissues such as cell suspension cultures can be challenging. Here we characterize the subcellular compartmentalization of several known fluorescent markers in protoplasts derived from Artemisia suspension cultures and explore the possibility to modify compartmentalization using a modified SNARE protein as molecular tool to be used in future biotechnological applications. We focused on the observation of the vacuolar organization in vivo and the truncated form of AtSYP51, 51H3, was used to induce a compartment generated by the contribution of membrane from endocytosis and from endoplasmic reticulum to vacuole trafficking. The artificial compartment crossing exocytosis and endocytosis may trap artemisinin stabilizing it until extraction; indeed, it is able to increase total enzymatic activity of a vacuolar marker (RGUSChi), probably increasing its stability. Exploring the 51H3-induced compartment we gained new insights on the function of the SNARE SYP51, recently shown to be an interfering-SNARE, and new hints to engineer eukaryote endomembranes for future biotechnological applications.
Collapse
Affiliation(s)
- Gian Pietro Di Sansebastiano
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy.
| | - Francesca Rizzello
- CNR - ISPA (Istituto di Scienze delle Produzioni Alimentari), Via Monteroni, 73100 Lecce, Italy
| | - Miriana Durante
- CNR - ISPA (Istituto di Scienze delle Produzioni Alimentari), Via Monteroni, 73100 Lecce, Italy
| | - Sofia Caretto
- CNR - ISPA (Istituto di Scienze delle Produzioni Alimentari), Via Monteroni, 73100 Lecce, Italy
| | - Rossella Nisi
- CNR - ISPA (Istituto di Scienze delle Produzioni Alimentari), Via Monteroni, 73100 Lecce, Italy; DII (Dipartimento di Ingegneria dell'Innovazione), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy
| | - Angelo De Paolis
- CNR - ISPA (Istituto di Scienze delle Produzioni Alimentari), Via Monteroni, 73100 Lecce, Italy
| | - Marianna Faraco
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy
| | - Anna Montefusco
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy
| | - Gabriella Piro
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy
| | - Giovanni Mita
- CNR - ISPA (Istituto di Scienze delle Produzioni Alimentari), Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
7
|
Shen J, Fu J, Ma J, Wang X, Gao C, Zhuang C, Wan J, Jiang L. Isolation, culture, and transient transformation of plant protoplasts. CURRENT PROTOCOLS IN CELL BIOLOGY 2014; 63:2.8.1-17. [PMID: 24894837 DOI: 10.1002/0471143030.cb0208s63] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transient gene expression in protoplasts, which has been used in several plant species, is an important and versatile tool for rapid functional gene analysis, protein subcellular localization, and biochemical manipulations. This unit describes transient gene expression by electroporation of DNA into protoplasts of Arabidopsis or tobacco suspension-cultured cells and by polyethylene glycol (PEG)-mediated DNA transformation into protoplasts derived from rice leaf sheaths. PEG-mediated DNA transformation for transient gene expression in rice protoplasts in suspension culture is also described as an alternative technique. Methods for collecting intracellular and secreted proteins are also provided.
Collapse
Affiliation(s)
- Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Delivering of proteins to the plant vacuole--an update. Int J Mol Sci 2014; 15:7611-23. [PMID: 24802873 PMCID: PMC4057694 DOI: 10.3390/ijms15057611] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/17/2023] Open
Abstract
Trafficking of soluble cargo to the vacuole is far from being a closed issue as it can occur by different routes and involve different intermediates. The textbook view of proteins being sorted at the post-Golgi level to the lytic vacuole via the pre-vacuole or to the protein storage vacuole mediated by dense vesicles is now challenged as novel routes are being disclosed and vacuoles with intermediate characteristics described. The identification of Vacuolar Sorting Determinants is a key signature to understand protein trafficking to the vacuole. Despite the long established vacuolar signals, some others have been described in the last few years, with different properties that can be specific for some cells or some types of vacuoles. There are also reports of proteins having two different vacuolar signals and their significance is questionable: a way to increase the efficiency of the sorting or different sorting depending on the protein roles in a specific context? Along came the idea of differential vacuolar sorting, suggesting a possible specialization of the trafficking pathways according to the type of cell and specific needs. In this review, we show the recent advances in the field and focus on different aspects of protein trafficking to the vacuoles.
Collapse
|
9
|
Stigliano E, Faraco M, Neuhaus JM, Montefusco A, Dalessandro G, Piro G, Di Sansebastiano GP. Two glycosylated vacuolar GFPs are new markers for ER-to-vacuole sorting. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:337-43. [PMID: 24184454 DOI: 10.1016/j.plaphy.2013.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/10/2013] [Indexed: 05/02/2023]
Abstract
Vacuolar Sorting Determinants (VSDs) have been extensively studied in plants but the mechanisms for the accumulation of storage proteins in somatic tissues are not yet fully understood. In this work we used two mutated versions of well-documented vacuolar fluorescent reporters, a GFP fusion in frame with the C-terminal VSD of tobacco chitinase (GFPChi) and an N-terminal fusion in frame with the sequence-specific VSD of the barley cysteine protease aleurain (AleuGFP). The GFP sequence was mutated to present an N-glycosylation site at the amino-acid position 133. The reporters were transiently expressed in Nicotiana tabacum protoplasts and agroinfiltrated in Nicotiana benthamiana leaves and their distribution was identical to that of the non-glycosylated versions. With the glycosylated GFPs we could highlight a differential ENDO-H sensitivity and therefore differential glycan modifications. This finding suggests two different and independent routes to the vacuole for the two reporters. BFA also had a differential effect on the two markers and further, inhibition of COPII trafficking by a specific dominant-negative mutant (NtSar1h74l) confirmed that GFPChi transport from the ER to the vacuole is not fully dependent on the Golgi apparatus.
Collapse
Affiliation(s)
- Egidio Stigliano
- Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland; CNR-IGV, Institute of Plant Genetics, Thematic Center for the Preservation of Mediterranean Plant Biodiversity, via Nazionale 44, 75025 Policoro, MT, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Pereira C, Pereira S, Satiat-Jeunemaitre B, Pissarra J. Cardosin A contains two vacuolar sorting signals using different vacuolar routes in tobacco epidermal cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:87-100. [PMID: 23808398 DOI: 10.1111/tpj.12274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Several vacuolar sorting determinants (VSDs) have been described for protein trafficking to the vacuoles in plant cells. Because of the variety in plant models, cell types and experimental approaches used to decipher vacuolar targeting processes, it is not clear whether the three well-known groups of VSDs identified so far exhaust all the targeting mechanisms, nor if they reflect certain protein types or families. The vacuolar targeting mechanisms of the aspartic proteinases family, for instance, are not yet fully understood. In previous studies, cardosin A has proven to be a good reporter for studying the vacuolar sorting of aspartic proteinases. We therefore propose to explore the roles of two different cardosin A domains, common to several aspartic proteinases [i.e. the plant-specific insert (PSI) and the C-terminal peptide VGFAEAA] in vacuolar sorting. Several truncated versions of the protein conjugated with fluorescent protein were made, with and without these putative sorting determinants. These domains were also tested independently, for their ability to sort other proteins, rather than cardosin A, to the vacuole. Fluorescent chimaeras were tracked in vivo, by confocal laser scanning microscopy, in Nicotiana tabacum cells. Results demonstrate that either the PSI or the C terminal was necessary and sufficient to direct fluorescent proteins to the vacuole, confirming that they are indeed vacuolar sorting determinants. Further analysis using blockage experiments of the secretory pathway revealed that these two VSDs mediate two different trafficking pathways.
Collapse
Affiliation(s)
- Cláudia Pereira
- BioFig - Centre for Biodiversity, Functional and Integrative Genomics, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/nº, 4169-007, Porto, Portugal; Laboratoire Dynamique de la Compartimentation Cellulaire, CNRS UPR2355/IFR87, Institut des Sciences du Végétal, Centre de Recherche de Gif (FRC3115), 91198, Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
11
|
A glycosyltransferase-enriched reconstituted membrane system for the synthesis of branched O-linked glycans in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1509-19. [PMID: 21081110 DOI: 10.1016/j.bbamem.2010.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/14/2010] [Accepted: 11/02/2010] [Indexed: 11/23/2022]
Abstract
Mimicking the biochemical reactions that take place in cell organelles is becoming one of the most important challenges in biological chemistry. In particular, reproducing the Golgi glycosylation system in vitro would allow the synthesis of bioactive glycan polymers and glycoconjugates for many future applications including treatments of numerous pathologies. In the present study, we reconstituted a membrane system enriched in glycosyltransferases obtained by combining the properties of the wheat germ lectin with the dialysable detergent n-octylglucoside. When applied to cells engineered to express the O-glycan branching enzyme core2 beta (1,6)-N-acetylglucosaminyltransferase (C2GnT-I), this combination led to the reconstitution of lipid vesicles exhibiting an enzyme activity 11 times higher than that found in microsomal membranes. The enzyme also showed a slightly higher affinity than its soluble counterpart toward the acceptor substrate. Moreover, the use of either the detergent re-solubilization, glycoprotein substrates or N-glycanase digestion suggests that most of the reconstituted glycosyltransferases have their catalytic domains in an extravesicular orientation. Using the disaccharide substrate Galβ1-3GalNAc-O-p-nitrophenyl as a primer, we performed sequential glycosylation reactions and compared the recovered oligosaccharides to those synthesized by cultured parental cells. After three successive glycosylation reactions using a single batch of the reconstituted vesicles and without changing the buffer, the acceptor was transformed into an O-glycan with chromatographic properties similar to glycans produced by C2GnT-I-expressing cells. Therefore, this new and efficient approach would greatly improve the synthesis of bioactive carbohydrates and glycoconjugates in vitro and could be easily adapted for the study of other reactions naturally occurring in the Golgi apparatus such as N-glycosylation or sulfation.
Collapse
|