1
|
Diaz C, Ayobahan SU, Simon S, Zühl L, Schiermeyer A, Eilebrecht E, Eilebrecht S. Classification of and detection techniques for RNAi-induced effects in GM plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1535384. [PMID: 40123947 PMCID: PMC11925957 DOI: 10.3389/fpls.2025.1535384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/08/2025] [Indexed: 03/25/2025]
Abstract
RNA interference (RNAi) is a biotechnological tool used for gene silencing in plants, with both endogenous and exogenous applications. Endogenous approaches, such as host-induced gene silencing (HIGS), involve genetically modified (GM) plants, while exogenous methods include spray-induced gene silencing (SIGS). The RNAi mechanism hinges on the introduction of double-stranded RNA (dsRNA), which is processed into short interfering RNAs (siRNAs) that degrade specific messenger RNAs (mRNAs). However, unintended effects on non-target organisms and GM plants are a concern due to sequence homologies or siRNA-induced epigenetic changes. Regulatory bodies such as the EPA and EFSA emphasize the need for comprehensive risk assessments. Detecting unintended effects is complex, often relying on bioinformatic tools and untargeted analyses like transcriptomics and metabolomics, though these methods require extensive genomic data. This review aims to classify mechanisms of RNAi effects induced by short interfering RNA from different sources in plants and to identify technologies that can be used to detect these effects. In addition, practical case studies are summarized and discussed in which previously unintended RNAi effects in genetically modified plants have been investigated. Current literature is limited but suggests RNAi is relatively specific, with few unintended effects observed in GM crops. However, further studies are needed to fully understand and mitigate potential risks, particularly those related to transcriptional gene silencing (TGS) mechanisms, which are less predictable than post-transcriptional gene silencing (PTGS). Particularly the application of untargeted approaches such as small RNA sequencing and transcriptomics is recommended for thorough and comprehensive risk assessments.
Collapse
Affiliation(s)
- Cecilia Diaz
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Steve U. Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Samson Simon
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Luise Zühl
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Andreas Schiermeyer
- Department Plant Sciences & Bio-Hybrids, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| |
Collapse
|
2
|
Fang C, Huang K, Wu X, Zhang H, Gu Z, Wang J, Zhang Y. Transcription elongation of the plant RNA polymerase IV is prone to backtracking. SCIENCE ADVANCES 2024; 10:eadq3087. [PMID: 39178250 PMCID: PMC11343019 DOI: 10.1126/sciadv.adq3087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
RNA polymerase IV (Pol IV) forms a complex with RNA-directed RNA polymerase 2 (RDR2) to produce double-stranded RNA (dsRNA) precursors essential for plant gene silencing. In the "backtracking-triggered RNA channeling" model, Pol IV backtracks and delivers its transcript's 3' terminus to RDR2, which synthesizes dsRNA. However, the mechanisms underlying Pol IV backtracking and RNA protection from cleavage are unclear. Here, we determined cryo-electron microscopy structures of Pol IV elongation complexes at four states of its nucleotide addition cycle (NAC): posttranslocation, guanosine triphosphate-bound, pretranslocation, and backtracked states. The structures reveal that Pol IV maintains an open DNA cleft and kinked bridge helix in all NAC states, loosely interacts with the nucleoside triphosphate substrate, and barely contacts proximal backtracked nucleotides. Biochemical data indicate that Pol IV is inefficient in forward translocation and RNA cleavage. These findings suggest that Pol IV transcription elongation is prone to backtracking and incapable of RNA hydrolysis, ensuring efficient dsRNA production by Pol IV-RDR2.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongwei Zhang
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhanxi Gu
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Jin X, Wang Z, Li X, Ai Q, Wong DCJ, Zhang F, Yang J, Zhang N, Si H. Current perspectives of lncRNAs in abiotic and biotic stress tolerance in plants. FRONTIERS IN PLANT SCIENCE 2024; 14:1334620. [PMID: 38259924 PMCID: PMC10800568 DOI: 10.3389/fpls.2023.1334620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Abiotic/biotic stresses pose a major threat to agriculture and food security by impacting plant growth, productivity and quality. The discovery of extensive transcription of large RNA transcripts that do not code for proteins, termed long non-coding RNAs (lncRNAs) with sizes larger than 200 nucleotides in length, provides an important new perspective on the centrality of RNA in gene regulation. In plants, lncRNAs are widespread and fulfill multiple biological functions in stress response. In this paper, the research advances on the biological function of lncRNA in plant stress response were summarized, like as Natural Antisense Transcripts (NATs), Competing Endogenous RNAs (ceRNAs) and Chromatin Modification etc. And in plants, lncRNAs act as a key regulatory hub of several phytohormone pathways, integrating abscisic acid (ABA), jasmonate (JA), salicylic acid (SA) and redox signaling in response to many abiotic/biotic stresses. Moreover, conserved sequence motifs and structural motifs enriched within stress-responsive lncRNAs may also be responsible for the stress-responsive functions of lncRNAs, it will provide a new focus and strategy for lncRNA research. Taken together, we highlight the unique role of lncRNAs in integrating plant response to adverse environmental conditions with different aspects of plant growth and development. We envisage that an improved understanding of the mechanisms by which lncRNAs regulate plant stress response may further promote the development of unconventional approaches for breeding stress-resistant crops.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuan Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qianyi Ai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School Research of Biology, The Australian National University, Acton, ACT, Australia
| | - Feiyan Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Chen L, Sun ZL. PmliHFM: Predicting Plant miRNA-lncRNA Interactions with Hybrid Feature Mining Network. Interdiscip Sci 2023; 15:44-54. [PMID: 36223068 DOI: 10.1007/s12539-022-00540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
Due to the crucial role of interactions between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in biological processes, the study of their biological functions is necessary. So far, the various computational methods have been employed to make predictions of the miRNA-lncRNA interaction, which compensate for the inadequacy of biological experiments. However, the existing methods do not consider the differences between miRNA and lncRNA in feature extraction. In this paper, we propose a hybrid feature mining network, named PmliHFM, for predicting plant miRNA-lncRNA interactions. Firstly, miRNA and lncRNA with different sequence lengths are encoded by different encodings, which can reduce the loss of information caused by using the same coding approach. Then, a hybrid feature mining network is designed to adapt to different encoding methods and extract more useful feature information than a single network. Finally, an ensemble module is utilized to integrate the training results of the hybrid feature mining network, while a prediction module is employed to determine whether there are interactions. By testing on multiple test sets, PmliHFM outperforms several state-of-the-art approaches. The results show that the AUC of PmliHFM achieves 0.8[Formula: see text], 3.1[Formula: see text] and 0.4[Formula: see text] improvement respectively on three balanced datasets, and achieves 2.1[Formula: see text] and 1.8[Formula: see text] improvement respectively on two imbalanced datasets. These experiments demonstrate the feasibility of the proposed method.
Collapse
Affiliation(s)
- Lin Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, China
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, Anhui, China
| | - Zhan-Li Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, China.
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
5
|
Kang Q, Meng J, Luan Y. RNAI-FRID: novel feature representation method with information enhancement and dimension reduction for RNA-RNA interaction. Brief Bioinform 2022; 23:6555402. [PMID: 35352114 DOI: 10.1093/bib/bbac107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/12/2022] Open
Abstract
Different ribonucleic acids (RNAs) can interact to form regulatory networks that play important role in many life activities. Molecular biology experiments can confirm RNA-RNA interactions to facilitate the exploration of their biological functions, but they are expensive and time-consuming. Machine learning models can predict potential RNA-RNA interactions, which provide candidates for molecular biology experiments to save a lot of time and cost. Using a set of suitable features to represent the sample is crucial for training powerful models, but there is a lack of effective feature representation for RNA-RNA interaction. This study proposes a novel feature representation method with information enhancement and dimension reduction for RNA-RNA interaction (named RNAI-FRID). Diverse base features are first extracted from RNA data to contain more sample information. Then, the extracted base features are used to construct the complex features through an arithmetic-level method. It greatly reduces the feature dimension while keeping the relationship between molecule features. Since the dimension reduction may cause information loss, in the process of complex feature construction, the arithmetic mean strategy is adopted to enhance the sample information further. Finally, three feature ranking methods are integrated for feature selection on constructed complex features. It can adaptively retain important features and remove redundant ones. Extensive experiment results show that RNAI-FRID can provide reliable feature representation for RNA-RNA interaction with higher efficiency and the model trained with generated features obtain better performance than other deep neural network predictors.
Collapse
Affiliation(s)
- Qiang Kang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
6
|
Kang Q, Meng J, Su C, Luan Y. Mining plant endogenous target mimics from miRNA-lncRNA interactions based on dual-path parallel ensemble pruning method. Brief Bioinform 2021; 23:6399881. [PMID: 34662389 DOI: 10.1093/bib/bbab440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
The interactions between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) play important roles in biological activities. Specially, lncRNAs as endogenous target mimics (eTMs) can bind miRNAs to regulate the expressions of target messenger RNAs (mRNAs). A growing number of studies focus on animals, but the studies on plants are scarce and many functions of plant eTMs are unknown. This study proposes a novel ensemble pruning protocol for predicting plant miRNA-lncRNA interactions at first. It adaptively prunes the base models based on dual-path parallel ensemble method to meet the challenge of cross-species prediction. Then potential eTMs are mined from predicted results. The expression levels of RNAs are identified through biological experiment to construct the lncRNA-miRNA-mRNA regulatory network, and the functions of potential eTMs are inferred through enrichment analysis. Experiment results show that the proposed protocol outperforms existing methods and state-of-the-art predictors on various plant species. A total of 17 potential eTMs are verified by biological experiment to involve in 22 regulations, and 14 potential eTMs are inferred by Gene Ontology enrichment analysis to involve in 63 functions, which is significant for further research.
Collapse
Affiliation(s)
- Qiang Kang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024 China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024 China
| |
Collapse
|
7
|
Niu Q, Song Z, Tang K, Chen L, Wang L, Ban T, Guo Z, Kim C, Zhang H, Duan CG, Zhang H, Zhu JK, Du J, Lang Z. A histone H3K4me1-specific binding protein is required for siRNA accumulation and DNA methylation at a subset of loci targeted by RNA-directed DNA methylation. Nat Commun 2021; 12:3367. [PMID: 34099688 PMCID: PMC8184781 DOI: 10.1038/s41467-021-23637-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/21/2021] [Indexed: 12/31/2022] Open
Abstract
In plants, RNA-directed DNA methylation (RdDM) is a well-known de novo DNA methylation pathway that involves two plant-specific RNA polymerases, Pol IV and Pol V. In this study, we discovered and characterized an RdDM factor, RDM15. Through DNA methylome and genome-wide siRNA analyses, we show that RDM15 is required for RdDM-dependent DNA methylation and siRNA accumulation at a subset of RdDM target loci. We show that RDM15 contributes to Pol V-dependent downstream siRNA accumulation and interacts with NRPE3B, a subunit specific to Pol V. We also show that the C-terminal tudor domain of RDM15 specifically recognizes the histone 3 lysine 4 monomethylation (H3K4me1) mark. Structure analysis of RDM15 in complex with the H3K4me1 peptide showed that the RDM15 tudor domain specifically recognizes the monomethyllysine through an aromatic cage and a specific hydrogen bonding network; this chemical feature-based recognition mechanism differs from all previously reported monomethyllysine recognition mechanisms. RDM15 and H3K4me1 have similar genome-wide distribution patterns at RDM15-dependent RdDM target loci, establishing a link between H3K4me1 and RDM15-mediated RdDM in vivo. In summary, we have identified and characterized a histone H3K4me1-specific binding protein as an RdDM component, and structural analysis of RDM15 revealed a chemical feature-based lower methyllysine recognition mechanism. In plants, RNA-directed DNA methylation (RdDM) is a de novo DNA methylation pathway that is responsible for transcriptional silencing of repetitive elements. Here, the authors characterized a new RdDM factor, RDM15, and show that it is required for RdDM-dependent DNA methylation and siRNA accumulation at a subset of RdDM target loci.
Collapse
Affiliation(s)
- Qingfeng Niu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhe Song
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Lixian Chen
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lisi Wang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ting Ban
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhongxin Guo
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry Universtiy, Fuzhou, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
8
|
Kang Q, Meng J, Shi W, Luan Y. Ensemble Deep Learning Based on Multi-level Information Enhancement and Greedy Fuzzy Decision for Plant miRNA-lncRNA Interaction Prediction. Interdiscip Sci 2021; 13:603-614. [PMID: 33900552 DOI: 10.1007/s12539-021-00434-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are both non-coding RNAs (ncRNAs) and their interactions play important roles in biological processes. Computational methods, such as machine learning and various bioinformatics tools, can predict potential miRNA-lncRNA interactions, which is significant for studying their mechanisms and biological functions. A growing number of RNA interaction predictors for animal have been reported, but they are unreliable for plant due to the differences of ncRNAs in animal and plant. It is urgent to build a reliable plant predictor, especially for cross-species. This paper proposes an ensemble deep learning model based on multi-level information enhancement and greedy fuzzy decision (PmliPEMG) for plant miRNA-lncRNA interaction prediction. The fusion complex features, multi-scale convolutional long short-term memory networks, and attention mechanism are adopted to enhance the sample information at the feature, scale, and model levels, respectively. An ensemble deep learning model is built based on a novel method (greedy fuzzy decision) which greatly improves the efficiency. The multi-level information enhancement and greedy fuzzy decision are verified to have the positive effects on prediction performance. PmliPEMG can be applied to the cross-species prediction. It shows better performance and stronger generalization ability than state-of-the-art predictors and may provide valuable references for related research.
Collapse
Affiliation(s)
- Qiang Kang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Wenhao Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| |
Collapse
|
9
|
Jia S, Yobi A, Naldrett MJ, Alvarez S, Angelovici R, Zhang C, Holding DR. Deletion of maize RDM4 suggests a role in endosperm maturation as well as vegetative and stress-responsive growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5880-5895. [PMID: 32667993 DOI: 10.1093/jxb/eraa325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Opaque kernels in maize may result from mutations in many genes, such as OPAQUE-2. In this study, a maize null mutant of RNA-DIRECTED DNA METHYLATION 4 (RDM4) showed an opaque kernel phenotype, as well as plant developmental delay, male sterility, and altered response to cold stress. We found that in opaque kernels, all zein proteins were reduced and amino acid content was changed, including increased lysine. Transcriptomic and proteomic analysis confirmed the zein reduction and proteomic rebalancing of non-zein proteins, which was quantitatively and qualitatively different from opaque-2. Global transcriptional changes were found in endosperm and leaf, including many transcription factors and tissue-specific expressed genes. Furthermore, of the more than 8000 significantly differentially expressed genes in wild type in response to cold, a significant proportion (25.9% in moderate cold stress and 40.8% in near freezing stress) were not differentially expressed in response to cold in rdm4, suggesting RDM4 may participate in regulation of abiotic stress tolerance. This initial characterization of maize RDM4 provides a basis for further investigating its function in endosperm and leaf, and as a regulator of normal and stress-responsive development.
Collapse
Affiliation(s)
- Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Pratacultural Science, Beijing Municipality, Beijing, China
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE, USA
| | - Abou Yobi
- Bond Life Sciences Center, Division of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Core facility, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Core facility, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ruthie Angelovici
- Bond Life Sciences Center, Division of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Chi Zhang
- School of Biological Sciences, Center for Plant Science Innovation, Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE, USA
| | - David R Holding
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
10
|
Mariotti R, Belaj A, De La Rosa R, Leòn L, Brizioli F, Baldoni L, Mousavi S. EST-SNP Study of Olea europaea L. Uncovers Functional Polymorphisms between Cultivated and Wild Olives. Genes (Basel) 2020; 11:E916. [PMID: 32785094 PMCID: PMC7465833 DOI: 10.3390/genes11080916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The species Olea europaea includes cultivated varieties (subsp. europaea var. europaea), wild plants (subsp. europaea var. sylvestris), and five other subspecies spread over almost all continents. Single nucleotide polymorphisms in the expressed sequence tag able to underline intra-species differentiation are not yet identified, beyond a few plastidial markers. METHODS In the present work, more than 1000 transcript-specific SNP markers obtained by the genotyping of 260 individuals were studied. These genotypes included cultivated, oleasters, and samples of subspecies guanchica, and were analyzed in silico, in order to identify polymorphisms on key genes distinguishing different Olea europaea forms. RESULTS Phylogeny inference and principal coordinate analysis allowed to detect two distinct clusters, clearly separating wilds and guanchica samples from cultivated olives, meanwhile the structure analysis made possible to differentiate these three groups. Sequences carrying the polymorphisms that distinguished wild and cultivated olives were analyzed and annotated, allowing to identify 124 candidate genes that have a functional role in flower development, stress response, or involvement in important metabolic pathways. Signatures of selection that occurred during olive domestication, were detected and reported. CONCLUSION This deep EST-SNP analysis provided important information on the genetic and genomic diversity of the olive complex, opening new opportunities to detect gene polymorphisms with potential functional and evolutionary roles, and to apply them in genomics-assisted breeding, highlighting the importance of olive germplasm conservation.
Collapse
Affiliation(s)
- Roberto Mariotti
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| | - Angjelina Belaj
- IFAPA—Centro Alameda del Obispo, Avda Menendez Pidal, s/n, E-14004 Cordoba, Spain; (A.B.); (R.D.L.R.); (L.L.)
| | - Raul De La Rosa
- IFAPA—Centro Alameda del Obispo, Avda Menendez Pidal, s/n, E-14004 Cordoba, Spain; (A.B.); (R.D.L.R.); (L.L.)
| | - Lorenzo Leòn
- IFAPA—Centro Alameda del Obispo, Avda Menendez Pidal, s/n, E-14004 Cordoba, Spain; (A.B.); (R.D.L.R.); (L.L.)
| | - Federico Brizioli
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| | - Luciana Baldoni
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| | - Soraya Mousavi
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| |
Collapse
|
11
|
Niedojadło K, Kupiecka M, Kołowerzo-Lubnau A, Lenartowski R, Niedojadło J, Bednarska-Kozakiewicz E. Dynamic distribution of ARGONAUTE1 (AGO1) and ARGONAUTE4 (AGO4) in Hyacinthus orientalis L. pollen grains and pollen tubes growing in vitro. PROTOPLASMA 2020; 257:793-805. [PMID: 31916009 DOI: 10.1007/s00709-019-01463-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The transcriptional and posttranscriptional AGO-mediated control of gene expression may play important roles during male monocot gametophyte development. In this report, we demonstrated dynamic changes in the spatiotemporal distribution of AGO1 and AGO4, which are key proteins of the RNA-induced silencing complex (RISC) in Hyacinthus orientalis male gametophyte development. During maturation of the bicellular pollen grains and in vitro pollen tube growth, the pattern of AGO1 localization was correlated with previously observed transcriptional activity of the cells. During the period of high transcriptional activity, AGO1 is associated with chromatin while the clustered distribution of AGO1 in the interchromatin areas is accompanied by condensation of chromatin and the gradual transcriptional silencing of both cells in mature, dehydrated pollen. During pollen tube growth and the restarting of RNA synthesis in the vegetative nucleus, AGO1 is dispersed in the chromatin. Additionally, the gradual increase in the cytoplasmic pool of AGO1 in the elongating pollen tube indicates the activation of the posttranscriptional gene silencing (PTGS) pathway. During pollen tube growth in the generative cell and in the sperm cells, AGO1 is present mainly in the areas between highly condensed chromatin clusters. Changes in the distribution of AGO4 that indicated the possibility of spatiotemporal organization in the RNA-directed DNA methylation (RdDM) process (cytoplasmic and nuclear steps) were also observed during hyacinth male gametophyte development. Based on our findings, we propose that in the germinating pollen tube, the cytoplasmic assembly of AGO4/siRNA takes place and that the mature complexes could be transported to the nucleus to carry out their function during the next steps of pollen tube growth.
Collapse
Affiliation(s)
- Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland.
| | - Małgorzata Kupiecka
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland
| | - Robert Lenartowski
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| |
Collapse
|
12
|
Pérez-Cañamás M, Hevia E, Hernández C. Epigenetic Changes in Host Ribosomal DNA Promoter Induced by an Asymptomatic Plant Virus Infection. BIOLOGY 2020; 9:biology9050091. [PMID: 32353984 PMCID: PMC7285159 DOI: 10.3390/biology9050091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 11/16/2022]
Abstract
DNA cytosine methylation is one of the main epigenetic mechanisms in higher eukaryotes and is considered to play a key role in transcriptional gene silencing. In plants, cytosine methylation can occur in all sequence contexts (CG, CHG, and CHH), and its levels are controlled by multiple pathways, including de novo methylation, maintenance methylation, and demethylation. Modulation of DNA methylation represents a potentially robust mechanism to adjust gene expression following exposure to different stresses. However, the potential involvement of epigenetics in plant-virus interactions has been scarcely explored, especially with regard to RNA viruses. Here, we studied the impact of a symptomless viral infection on the epigenetic status of the host genome. We focused our attention on the interaction between Nicotiana benthamiana and Pelargonium line pattern virus (PLPV, family Tombusviridae), and analyzed cytosine methylation in the repetitive genomic element corresponding to ribosomal DNA (rDNA). Through a combination of bisulfite sequencing and RT-qPCR, we obtained data showing that PLPV infection gives rise to a reduction in methylation at CG sites of the rDNA promoter. Such a reduction correlated with an increase and decrease, respectively, in the expression levels of some key demethylases and of MET1, the DNA methyltransferase responsible for the maintenance of CG methylation. Hypomethylation of rDNA promoter was associated with a five-fold augmentation of rRNA precursor levels. The PLPV protein p37, reported as a suppressor of post-transcriptional gene silencing, did not lead to the same effects when expressed alone and, thus, it is unlikely to act as suppressor of transcriptional gene silencing. Collectively, the results suggest that PLPV infection as a whole is able to modulate host transcriptional activity through changes in the cytosine methylation pattern arising from misregulation of methyltransferases/demethylases balance.
Collapse
|
13
|
Sasaki K, Ohtsubo N. Production of multi-petaled Torenia fournieri flowers by functional disruption of two class-C MADS-box genes. PLANTA 2020; 251:101. [PMID: 32333191 DOI: 10.1007/s00425-020-03393-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/16/2020] [Indexed: 05/17/2023]
Abstract
Simultaneous knockdown or knockout of Torenia fournieri PLENA (TfPLE) and FALINELLI (TfFAR) genes with RNAi or genome-editing technologies generated a multi-petal phenotype in torenia. The MADS-box gene AGAMOUS (AG) is well known to play important roles in the development of stamens and carpels in Arabidopsis. Mutations in AG cause the morphological transformation of stamens and carpels into petaloid organs. In contrast, torenia (Torenia fournieri Lind.) has two types of class-C MADS-box genes, PLENA (PLE) and FALINELLI (FAR); however, their functions were previously undetermined. To examine the function of TfPLE and TfFAR in torenia, we used RNAi to knockdown expression of these two genes. TfPLE and TfFAR double-knockdown transgenic torenia plants had morphologically altered stamens and carpels that developed into petaloid organs. TfPLE knockdown transgenic plants also exhibited morphological transformations that included shortened styles, enlarged ovaries, and absent stigmata. Furthermore, simultaneous disruption of TfPLE and TfFAR genes by CRISPR/Cas9-mediated genome editing also resulted in the conversion of stamens and carpels into petaloid organs as was observed in the double-knockdown transgenic plants mediated by RNAi. In addition, the carpels of one TfPLE knockout mutant had the same morphological abnormalities as TfPLE knockdown transgenic plants. TfFAR knockdown genome-edited mutants had no morphological changes in their floral organs. These results clearly show that TfPLE and TfFAR cooperatively play important roles in the development of stamens and carpels. Simultaneous disruption of TfPLE and TfFAR functions caused a multi-petal phenotype, which is expected to be a highly valuable commercial floral trait in horticultural flowers.
Collapse
Affiliation(s)
- Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki, 305-0852, Japan.
| | - Norihiro Ohtsubo
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki, 305-0852, Japan
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| |
Collapse
|
14
|
Cheng Y, Cheng L, Cao Q, Zou J, Li X, Ma X, Zhou J, Zhai F, Sun Z, Lan Y, Han L. Heterologous Expression of SvMBD5 from Salix viminalis L. Promotes Flowering in Arabidopsis thaliana L. Genes (Basel) 2020; 11:genes11030285. [PMID: 32156087 PMCID: PMC7140845 DOI: 10.3390/genes11030285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 11/23/2022] Open
Abstract
Methyl-CpG-binding domain (MBD) proteins have diverse molecular and biological functions in plants. Most studies of MBD proteins in plants have focused on the model plant Arabidopsis thaliana L. Here we cloned SvMBD5 from the willow Salix viminalis L. by reverse transcription-polymerase chain reaction (RT-PCR) and analyzed the structure of SvMBD5 and its evolutionary relationships with proteins in other species. The coding sequence of SvMBD5 is 645 bp long, encoding a 214 amino acid protein with a methyl-CpG-binding domain. SvMBD5 belongs to the same subfamily as AtMBD5 and AtMBD6 from Arabidopsis. Subcellular localization analysis showed that SvMBD5 is only expressed in the nucleus. We transformed Arabidopsis plants with a 35S::SvMBD5 expression construct to examine SvMBD5 function. The Arabidopsis SvMBD5-expressing line flowered earlier than the wild type. In the transgenic plants, the expression of FLOWERING LOCUS T and CONSTANS significantly increased, while the expression of FLOWERING LOCUS C greatly decreased. In addition, heterologously expressing SvMBD5 in Arabidopsis significantly inhibited the establishment and maintenance of methylation of CHROMOMETHYLASE 3 and METHYLTRANSFERASE 1, as well as their expression, and significantly increased the expression of the demethylation-related genes REPRESSOR OF SILENCING1 and DEMETER-LIKE PROTEIN3. Our findings suggest that SvMBD5 participates in the flowering process by regulating the methylation levels of flowering genes, laying the foundation for further studying the role of SvMBD5 in regulating DNA demethylation.
Collapse
Affiliation(s)
- Yunhe Cheng
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China; (L.C.); (Q.C.)
| | - Lili Cheng
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China; (L.C.); (Q.C.)
| | - Qingchang Cao
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China; (L.C.); (Q.C.)
| | - Junzhu Zou
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100193, China
| | - Xia Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100193, China
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China
| | - Xiaodong Ma
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100193, China
| | - Jingjing Zhou
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100193, China
| | - Feifei Zhai
- School of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo 454000, China;
| | - Zhenyuan Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100193, China
| | - Yanping Lan
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China; (L.C.); (Q.C.)
- Correspondence: (Y.L.); (L.H.); Tel.: +86-010-827-596-103 (Y.L.); +86-010-62-889-652 (L.H.)
| | - Lei Han
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100193, China; (Y.C.); (J.Z.); (X.L.); (X.M.); (J.Z.); (Z.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100193, China
- Correspondence: (Y.L.); (L.H.); Tel.: +86-010-827-596-103 (Y.L.); +86-010-62-889-652 (L.H.)
| |
Collapse
|
15
|
Kong L, Liu Y, Wang X, Chang C. Insight into the Role of Epigenetic Processes in Abiotic and Biotic Stress Response in Wheat and Barley. Int J Mol Sci 2020; 21:ijms21041480. [PMID: 32098241 PMCID: PMC7073019 DOI: 10.3390/ijms21041480] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental stresses such as salinity, drought, heat, freezing, heavy metal and even pathogen infections seriously threaten the growth and yield of important cereal crops including wheat and barley. There is growing evidence indicating that plants employ sophisticated epigenetic mechanisms to fine-tune their responses to environmental stresses. Here, we provide an overview of recent developments in understanding the epigenetic processes and elements—such as DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs—involved in plant responses to abiotic and biotic stresses in wheat and barley. Potentials of exploiting epigenetic variation for the improvement of wheat and barley are discussed.
Collapse
Affiliation(s)
- Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
| | - Yanna Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
- Correspondence: ; Tel.: +86-532-85953227
| |
Collapse
|
16
|
Dubrovina AS, Aleynova OA, Kalachev AV, Suprun AR, Ogneva ZV, Kiselev KV. Induction of Transgene Suppression in Plants via External Application of Synthetic dsRNA. Int J Mol Sci 2019; 20:ijms20071585. [PMID: 30934883 PMCID: PMC6479969 DOI: 10.3390/ijms20071585] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
Recent investigations show that exogenously applied small interfering RNAs (siRNA) and long double-stranded RNA (dsRNA) precursors can be taken up and translocated in plants to induce RNA interference (RNAi) in the plant or in its fungal pathogen. The question of whether genes in the plant genome can undergo suppression as a result of exogenous RNA application on plant surface is almost unexplored. This study analyzed whether it is possible to influence transcript levels of transgenes, as more prone sequences to silencing, in Arabidopsis genome by direct exogenous application of target long dsRNAs. The data revealed that in vitro synthesized dsRNAs designed to target the gene coding regions of enhanced green fluorescent protein (EGFP) or neomycin phosphotransferase II (NPTII) suppressed their transcript levels in Arabidopsis. The fact that, simple exogenous application of polynucleotides can affect mRNA levels of plant transgenes, opens new opportunities for the development of new scientific techniques and crop improvement strategies.
Collapse
Affiliation(s)
- Alexandra S Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Olga A Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Alexander V Kalachev
- Laboratory of Embryology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia.
| | - Andrey R Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
- Far Eastern Federal University, The School of Natural Sciences, Vladivostok 690090, Russia.
| | - Zlata V Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Konstantin V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
- Far Eastern Federal University, The School of Natural Sciences, Vladivostok 690090, Russia.
| |
Collapse
|
17
|
Movahedi A, Zhang J, Sun W, Mohammadi K, Almasi Zadeh Yaghuti A, Wei H, Wu X, Yin T, Zhuge Q. Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:64-73. [PMID: 29549759 DOI: 10.1016/j.plaphy.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 05/27/2023]
Abstract
Epigenetic modification by DNA methylation is necessary for all cellular processes, including genetic expression events, DNA repair, genomic imprinting and regulation of tissue development. It occurs almost exclusively at the C5 position of symmetric CpG and asymmetric CpHpG and CpHpH sites in genomic DNA. The RNA-directed DNA methylation (RDM1) gene is crucial for heterochromatin and DNA methylation. We overexpressed PtRDM1 gene from Populus trichocarpa to amplify transcripts of orthologous RDM1 in 'Nanlin895' (P. deltoides × P. euramericana 'Nanlin895'). This overexpression resulted in increasing RDM1 transcript levels: by ∼150% at 0 mM NaCl treatment and by ∼300% at 60 mM NaCl treatment compared to WT (control) poplars. Genomic cytosine methylation was monitored within 5.8S rDNA and histone H3 loci by bisulfite sequencing. In total, transgenic poplars revealed more DNA methylation than WT plants. In our results, roots revealed more methylated CG contexts than stems and leaves whereas, histone H3 presented more DNA methylation than 5.8S rDNA in both WT and transgenic poplars. The NaCl stresses enhanced more DNA methylation in transgenic poplars than WT plants through histone H3 and 5.8 rDNA loci. Also, the overexpression of PtRDM1 resulted in hyper-methylation, which affected plant phenotype. Transgenic poplars revealed significantly more regeneration of roots than WT poplars via NaCl treatments. Our results proved that RDM1 protein enhanced the DNA methylation by chromatin remodeling (e.g. histone H3) more than repetitive DNA sequences (e.g. 5.8S rDNA).
Collapse
Affiliation(s)
- Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaxin Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Kourosh Mohammadi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Amir Almasi Zadeh Yaghuti
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaolong Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
18
|
Silva MS, Arraes FBM, Campos MDA, Grossi-de-Sa M, Fernandez D, Cândido EDS, Cardoso MH, Franco OL, Grossi-de-Sa MF. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:72-84. [PMID: 29576088 DOI: 10.1016/j.plantsci.2018.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 05/21/2023]
Abstract
This review emphasizes the biotechnological potential of molecules implicated in the different layers of plant immunity, including, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered susceptibility (ETS), and effector-triggered immunity (ETI) that can be applied in the development of disease-resistant genetically modified (GM) plants. These biomolecules are produced by pathogens (viruses, bacteria, fungi, oomycetes) or plants during their mutual interactions. Biomolecules involved in the first layers of plant immunity, PTI and ETS, include inhibitors of pathogen cell-wall-degrading enzymes (CWDEs), plant pattern recognition receptors (PRRs) and susceptibility (S) proteins, while the ETI-related biomolecules include plant resistance (R) proteins. The biomolecules involved in plant defense PTI/ETI responses described herein also include antimicrobial peptides (AMPs), pathogenesis-related (PR) proteins and ribosome-inhibiting proteins (RIPs), as well as enzymes involved in plant defensive secondary metabolite biosynthesis (phytoanticipins and phytoalexins). Moreover, the regulation of immunity by RNA interference (RNAi) in GM disease-resistant plants is also considered. Therefore, the present review does not cover all the classes of biomolecules involved in plant innate immunity that may be applied in the development of disease-resistant GM crops but instead highlights the most common strategies in the literature, as well as their advantages and disadvantages.
Collapse
Affiliation(s)
- Marilia Santos Silva
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil.
| | - Fabrício Barbosa Monteiro Arraes
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Post-Graduation Program in Molecular and Cellular Biology, Porto Alegre, RS, Brazil.
| | | | | | | | - Elizabete de Souza Cândido
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil
| | - Marlon Henrique Cardoso
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil
| | - Maria Fátima Grossi-de-Sa
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Post-Graduation Program in Molecular and Cellular Biology, Porto Alegre, RS, Brazil; Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil.
| |
Collapse
|
19
|
|
20
|
Li Y, Kumar S, Qian W. Active DNA demethylation: mechanism and role in plant development. PLANT CELL REPORTS 2018; 37:77-85. [PMID: 29026973 PMCID: PMC5758694 DOI: 10.1007/s00299-017-2215-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/05/2017] [Indexed: 05/18/2023]
Abstract
Active DNA demethylation (enzymatic removal of methylated cytosine) regulates many plant developmental processes. In Arabidopsis, active DNA demethylation entails the base excision repair pathway initiated by the Repressor of silencing 1/Demeter family of bifunctional DNA glycosylases. In this review, we first present an introduction to the recent advances in our understanding about the mechanisms of active DNA demethylation. We then focus on the role of active DNA demethylation in diverse developmental processes in various plant species, including the regulation of seed development, pollen tube formation, stomatal development, fruit ripening, and nodule development. Finally, we discuss future directions of research in the area of active DNA demethylation.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M. Non-coding RNAs and Their Roles in Stress Response in Plants. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:301-312. [PMID: 29017967 PMCID: PMC5673675 DOI: 10.1016/j.gpb.2017.01.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/04/2017] [Accepted: 01/26/2017] [Indexed: 02/04/2023]
Abstract
Eukaryotic genomes encode thousands of non-coding RNAs (ncRNAs), which play crucial roles in transcriptional and post-transcriptional regulation of gene expression. Accumulating evidence indicates that ncRNAs, especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), have emerged as key regulatory molecules in plant stress responses. In this review, we have summarized the current progress on the understanding of plant miRNA and lncRNA identification, characteristics, bioinformatics tools, and resources, and provided examples of mechanisms of miRNA- and lncRNA-mediated plant stress tolerance.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianwen Meng
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Oxana B Dobrovolskaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yuriy L Orlov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Kazlauskiene M, Tamulaitis G, Kostiuk G, Venclovas Č, Siksnys V. Spatiotemporal Control of Type III-A CRISPR-Cas Immunity: Coupling DNA Degradation with the Target RNA Recognition. Mol Cell 2017; 62:295-306. [PMID: 27105119 DOI: 10.1016/j.molcel.2016.03.024] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/25/2016] [Accepted: 03/22/2016] [Indexed: 12/26/2022]
Abstract
Streptococcus thermophilus (St) type III-A CRISPR-Cas system restricts MS2 RNA phage and cuts RNA in vitro. However, the CRISPR array spacers match DNA phages, raising the question: does the St CRISPR-Cas system provide immunity by erasing phage mRNA or/and by eliminating invading DNA? We show that it does both. We find that (1) base-pairing between crRNA and target RNA activates single-stranded DNA (ssDNA) degradation by StCsm; (2) ssDNase activity is confined to the HD-domain of Cas10; (3) target RNA cleavage by the Csm3 RNase suppresses Cas10 DNase activity, ensuring temporal control of DNA degradation; and (4) base-pairing between crRNA 5'-handle and target RNA 3'-flanking sequence inhibits Cas10 ssDNase to prevent self-targeting. We propose that upon phage infection, crRNA-guided StCsm binding to the emerging transcript recruits Cas10 DNase to the actively transcribed phage DNA, resulting in degradation of both the transcript and phage DNA, but not the host DNA.
Collapse
Affiliation(s)
- Migle Kazlauskiene
- Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania.
| | - Georgij Kostiuk
- Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania.
| |
Collapse
|
23
|
Increase of DNA Methylation at the HvCKX2.1 Promoter by Terminal Drought Stress in Barley. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1020009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Lu X, Wang X, Chen X, Shu N, Wang J, Wang D, Wang S, Fan W, Guo L, Guo X, Ye W. Single-base resolution methylomes of upland cotton (Gossypium hirsutum L.) reveal epigenome modifications in response to drought stress. BMC Genomics 2017; 18:297. [PMID: 28407801 PMCID: PMC5390369 DOI: 10.1186/s12864-017-3681-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation, with a cryptic role in genome stability, gene transcription and expression, is involved in the drought response process in plants, but the complex regulatory mechanism is still largely unknown. RESULTS Here, we performed whole-genome bisulfite sequencing (WGBS) and identified long non-coding RNAs on cotton leaves under drought stress and re-watering treatments. We obtained 31,223 and 30,997 differentially methylated regions (representing 2.48% of the genome) after drought stress and re-watering treatments, respectively. Our data also showed that three sequence contexts, including mCpG, mCHG, mCHH, all presented a hyper-methylation pattern under drought stress and were nearly restored to normal levels after the re-watering treatment. Among all the methylation variations, asymmetric CHH methylation was the most consistent with external environments, suggesting that methylation/demethylation in a CHH context may constitute a novel epigenetic modification in response to drought stress. Combined with the targets of long non-coding RNAs, we found that long non-coding RNAs may mediate variations in methylation patterns by splicing into microRNAs. Furthermore, the many hormone-related genes with methylation variations suggested that plant hormones might be a potential mechanism in the drought response. CONCLUSIONS Future crop-improvement strategies may benefit by taking into account not only the DNA genetic variations in cotton varieties but also the epigenetic modifications of the genome.
Collapse
Affiliation(s)
- Xuke Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China.,College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xiaoge Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Na Shu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Weili Fan
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xiaoning Guo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China.
| |
Collapse
|
25
|
Qin G, Ma J, Chen X, Chu Z, She YM. Methylated-antibody affinity purification to improve proteomic identification of plant RNA polymerase Pol V complex and the interacting proteins. Sci Rep 2017; 7:42943. [PMID: 28224978 PMCID: PMC5320500 DOI: 10.1038/srep42943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/17/2017] [Indexed: 11/09/2022] Open
Abstract
Affinity purification followed by enzymatic digestion and mass spectrometry has been widely utilized for the sensitive detection of interacting proteins and protein complexes in various organisms. In plants, the method is technically challenging due to the low abundance proteins, non-specific binding and difficulties of eluting interacting proteins from antibody beads. In this report, we describe a strategy to modify antibodies by reductive methylation of lysines without affecting their binding properties, followed by on-bead digestion of bound proteins with endoproteinase Lys-C. By this method, the antibody remains intact and does not interfere with the downstream identification of interacting proteins. Non-specific binding proteins were excluded using 14N/15N-metabolic labeling of wild-type and the transgenic plant counterparts. The method was employed to identify 12 co-immunoprecipitated protein subunits in Pol V complex and to discover 17 potential interacting protein targets in Arabidopsis. Our results demonstrated that the modification of antibodies by reductive dimethylation can improve the reliability and sensitivity of identifying low-abundance proteins through on-bead digestion and mass spectrometry. We also show that coupling this technique with chemical crosslinking enables in-depth characterization of endogenous protein complexes and the protein-protein interaction networks including mapping the surface topology and post-translational modifications of interacting proteins.
Collapse
Affiliation(s)
- Guochen Qin
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, P. R. China
| | - Jun Ma
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, P. R. China
| | - Xiaomei Chen
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, P. R. China
| | - Zhaoqing Chu
- Shanghai Chenshan Plant Science Research Center and Shanghai Chenshan Botanic Garden, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, P. R. China
| | - Yi-Min She
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, P. R. China.,Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| |
Collapse
|
26
|
Torchetti EM, Pegoraro M, Navarro B, Catoni M, Di Serio F, Noris E. A nuclear-replicating viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-related genes and inducing hypermethylation of viral DNA. Sci Rep 2016; 6:35101. [PMID: 27739453 PMCID: PMC5064398 DOI: 10.1038/srep35101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022] Open
Abstract
DNA methylation and post-transcriptional gene silencing play critical roles in controlling infection of single-stranded (ss) DNA geminiviruses and ssRNA viroids, respectively, but both pathogens can counteract these host defense mechanisms and promote their infectivity. Moreover, a specific role of DNA methylation in viroid-host interactions is not yet confirmed. Here, using an experimental system where two nuclear-replicating agents, the geminivirus tomato yellow leaf curl Sardinia virus (TYLCSV) and potato spindle tuber viroid (PSTVd), co-infect their common host tomato, we observed that PSTVd severely interferes with TYLCSV infectivity and accumulation, most likely as a consequence of strong activation of host DNA methylation pathways. In fact, PSTVd alone or in co-infection with TYLCSV significantly upregulates the expression of key genes governing DNA methylation in plants. Using methylation-sensitive restriction and bisulfite conversion assays, we further showed that PSTVd infection promotes a strong hypermethylation of TYLCSV DNA, thus supporting a mechanistic link with the antagonism of the viroid on the virus in co-infected tomato plants. These results describe the interaction between two nuclear-replicating pathogens and show that they differentially interfere with DNA methylation pathways.
Collapse
Affiliation(s)
- Enza Maria Torchetti
- Institute for Sustainable Plant Protection, National Research Council of Italy, Bari, 70126, Italy
| | - Mattia Pegoraro
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, 10135, Italy
| | - Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council of Italy, Bari, 70126, Italy
| | - Marco Catoni
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, United Kingdom
| | - Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council of Italy, Bari, 70126, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, 10135, Italy
| |
Collapse
|
27
|
Kozłowska M, Niedojadło K, Brzostek M, Bednarska-Kozakiewicz E. Epigenetic marks in the Hyacinthus orientalis L. mature pollen grain and during in vitro pollen tube growth. PLANT REPRODUCTION 2016; 29:251-263. [PMID: 27422435 PMCID: PMC4978762 DOI: 10.1007/s00497-016-0289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
During the sexual reproduction of flowering plants, epigenetic control of gene expression and genome integrity by DNA methylation and histone modifications plays an important role in male gametogenesis. In this study, we compared the chromatin modification patterns of the generative, sperm cells and vegetative nuclei during Hyacinthus orientalis male gametophyte development. Changes in the spatial and temporal distribution of 5-methylcytosine, acetylated histone H4 and histone deacetylase indicated potential differences in the specific epigenetic state of all analysed cells, in both the mature cellular pollen grains and the in vitro growing pollen tubes. Interestingly, we observed unique localization of chromatin modifications in the area of the generative and the vegetative nuclei located near each other in the male germ unit, indicating the precise mechanisms of gene expression regulation in this region. We discuss the differences in the patterns of the epigenetic marks along with our previous reports of nuclear metabolism and changes in chromatin organization and activity in hyacinth male gametophyte cells. We also propose that this epigenetic status of the analysed nuclei is related to the different acquired fates and biological functions of these cells.
Collapse
Affiliation(s)
- Marlena Kozłowska
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Katarzyna Niedojadło
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| | - Marta Brzostek
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|