1
|
Basu U, Parida SK. Restructuring plant types for developing tailor-made crops. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1106-1122. [PMID: 34260135 PMCID: PMC10214764 DOI: 10.1111/pbi.13666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 05/27/2023]
Abstract
Plants have adapted to different environmental niches by fine-tuning the developmental factors working together to regulate traits. Variations in the developmental factors result in a wide range of quantitative variations in these traits that helped plants survive better. The major developmental pathways affecting plant architecture are also under the control of such pathways. Most notable are the CLAVATA-WUSCHEL pathway regulating shoot apical meristem fate, GID1-DELLA module influencing plant height and tillering, LAZY1-TAC1 module controlling branch/tiller angle and the TFL1-FT determining the floral fate in plants. Allelic variants of these key regulators selected during domestication shaped the crops the way we know them today. There is immense yield potential in the 'ideal plant architecture' of a crop. With the available genome-editing techniques, possibilities are not restricted to naturally occurring variations. Using a transient reprogramming system, one can screen the effect of several developmental gene expressions in novel ecosystems to identify the best targets. We can use the plant's fine-tuning mechanism for customizing crops to specific environments. The process of crop domestication can be accelerated with a proper understanding of these developmental pathways. It is time to step forward towards the next-generation molecular breeding for restructuring plant types in crops ensuring yield stability.
Collapse
Affiliation(s)
- Udita Basu
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| | - Swarup K. Parida
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| |
Collapse
|
2
|
Zhang Y, Wang Y, Sun X, Yuan J, Zhao Z, Gao J, Wen X, Tang F, Kang M, Abliz B, Zhang Z, Zhang H, Wang F, Li Z. Genome-Wide Identification of MDH Family Genes and Their Association with Salt Tolerance in Rice. PLANTS 2022; 11:plants11111498. [PMID: 35684271 PMCID: PMC9182821 DOI: 10.3390/plants11111498] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Malate dehydrogenase (MDH) is widely present in nature and regulates plant growth and development, as well as playing essential roles, especially in abiotic stress responses. Nevertheless, there is no comprehensive knowledge to date on MDH family members in rice. In this study, a total of 12 MDH members in rice were identified through genome-wide analysis and divided into three groups on the basis of their phylogenetic relationship and protein-conserved motifs. Evolutionary analysis showed that MDH proteins from rice, maize and wheat shared a close phylogenetic relationship, and the MDH family was conserved in the long-term process of domestication. We identified two segmental duplication events involving four genes, which could be the major force driving the expansion of the OsMDH family. The expression profile, cis-regulatory elements and qRT-PCR results of these genes revealed that a few OsMDH showed high tissue specificity, almost all of which had stress response elements in the promoter region, and ten MDH members were significantly induced by salt stress. Through gene-based association analysis, we found a significant correlation between salt tolerance at the seedling stage and the genetic variation of OsMDH8.1 and OsMDH12.1. Additionally, we found that the polymorphism in the promoter region of OsMDH8.1 might be related to the salt tolerance of rice. This study aimed to provide valuable information on the functional study of the rice MDH gene family related to salt stress response and revealed that OsMDH8.1 might be an important gene for the cultivar improvement of salt tolerance in rice.
Collapse
Affiliation(s)
- Yanhong Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; (Y.Z.); (Y.W.); (X.S.); (J.G.); (Z.Z.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.Y.); (Z.Z.); (B.A.)
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Yulong Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; (Y.Z.); (Y.W.); (X.S.); (J.G.); (Z.Z.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xingming Sun
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; (Y.Z.); (Y.W.); (X.S.); (J.G.); (Z.Z.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Yuan
- Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.Y.); (Z.Z.); (B.A.)
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Zhiqiang Zhao
- Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.Y.); (Z.Z.); (B.A.)
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Jie Gao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; (Y.Z.); (Y.W.); (X.S.); (J.G.); (Z.Z.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaorong Wen
- Rice Experiment Station in Wensu, Xinjiang Academy of Agricultural Sciences, Wensu, Aksu 843100, China; (X.W.); (F.T.); (M.K.)
| | - Fusen Tang
- Rice Experiment Station in Wensu, Xinjiang Academy of Agricultural Sciences, Wensu, Aksu 843100, China; (X.W.); (F.T.); (M.K.)
| | - Mintai Kang
- Rice Experiment Station in Wensu, Xinjiang Academy of Agricultural Sciences, Wensu, Aksu 843100, China; (X.W.); (F.T.); (M.K.)
| | - Buhaliqem Abliz
- Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.Y.); (Z.Z.); (B.A.)
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; (Y.Z.); (Y.W.); (X.S.); (J.G.); (Z.Z.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; (Y.Z.); (Y.W.); (X.S.); (J.G.); (Z.Z.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fengbin Wang
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
- Rice Experiment Station in Wensu, Xinjiang Academy of Agricultural Sciences, Wensu, Aksu 843100, China; (X.W.); (F.T.); (M.K.)
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Correspondence: (F.W.); (Z.L.)
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; (Y.Z.); (Y.W.); (X.S.); (J.G.); (Z.Z.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Correspondence: (F.W.); (Z.L.)
| |
Collapse
|
3
|
Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol 2021; 19:173. [PMID: 34751850 PMCID: PMC8578521 DOI: 10.1186/s43141-021-00274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The era of first green revolution brought about by the application of chemical fertilizers surely led to the explosion of food grains, but left behind the notable problem of salinity. Continuous application of these fertilizers coupled with fertilizer-responsive crops make the country self-reliant, but continuous deposition of these led to altered the water potential and thus negatively affecting the proper plant functioning from germination to seed setting. MAIN BODY Increased concentration of anion and cations and their accumulation and distribution cause cellular toxicity and ionic imbalance. Plants respond to salinity stress by any one of two mechanisms, viz., escape or tolerate, by either limiting their entry via root system or controlling their distribution and storage. However, the understanding of tolerance mechanism at the physiological, biochemical, and molecular levels will provide an insight for the identification of related genes and their introgression to make the crop more resilient against salinity stress. SHORT CONCLUSION Novel emerging approaches of plant breeding and biotechnologies such as genome-wide association studies, mutational breeding, marker-assisted breeding, double haploid production, hyperspectral imaging, and CRISPR/Cas serve as engineering tools for dissecting the in-depth physiological mechanisms. These techniques have well-established implications to understand plants' adaptions to develop more tolerant varieties and lower the energy expenditure in response to stress and, constitutively fulfill the void that would have led to growth resistance and yield penalty.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Usha Nara
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Hardeep Singh
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sittal Thapa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
4
|
Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, Lenka D, Chand S, Kumar V, Dey P, Indu, Pandey S, Vachova P, Gupta A, Brestic M, El Sabagh A. Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:670369. [PMID: 34484254 PMCID: PMC8414894 DOI: 10.3389/fpls.2021.670369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/28/2021] [Indexed: 10/29/2023]
Abstract
In the era of rapid climate change, abiotic stresses are the primary cause for yield gap in major agricultural crops. Among them, salinity is considered a calamitous stress due to its global distribution and consequences. Salinity affects plant processes and growth by imposing osmotic stress and destroys ionic and redox signaling. It also affects phytohormone homeostasis, which leads to oxidative stress and eventually imbalances metabolic activity. In this situation, signaling compound crosstalk such as gasotransmitters [nitric oxide (NO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), calcium (Ca), reactive oxygen species (ROS)] and plant growth regulators (auxin, ethylene, abscisic acid, and salicylic acid) have a decisive role in regulating plant stress signaling and administer unfavorable circumstances including salinity stress. Moreover, recent significant progress in omics techniques (transcriptomics, genomics, proteomics, and metabolomics) have helped to reinforce the deep understanding of molecular insight in multiple stress tolerance. Currently, there is very little information on gasotransmitters and plant growth regulator crosstalk and inadequacy of information regarding the integration of multi-omics technology during salinity stress. Therefore, there is an urgent need to understand the crucial cell signaling crosstalk mechanisms and integrative multi-omics techniques to provide a more direct approach for salinity stress tolerance. To address the above-mentioned words, this review covers the common mechanisms of signaling compounds and role of different signaling crosstalk under salinity stress tolerance. Thereafter, we mention the integration of different omics technology and compile recent information with respect to salinity stress tolerance.
Collapse
Affiliation(s)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Udit N. Mishra
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Jyoti Chauhan
- Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Jamuhar, India
| | - Laxmi P. Behera
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Devidutta Lenka
- Department of Plant Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Subhash Chand
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Kumar
- Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, India
| | - Prajjal Dey
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Indu
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
5
|
Yu H, Li Q, Li Y, Yang H, Lu Z, Wu J, Zhang Z, Shahid MQ, Liu X. Genomics Analyses Reveal Unique Classification, Population Structure and Novel Allele of Neo-Tetraploid Rice. RICE (NEW YORK, N.Y.) 2021; 14:16. [PMID: 33547986 PMCID: PMC7867503 DOI: 10.1186/s12284-021-00459-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/28/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Neo-tetraploid rice (NTR) is a useful new germplasm that developed from the descendants of the autotetraploid rice (ATR) hybrids. NTR showed improved fertility and yield potential, and produced high yield heterosis when crossed with indica ATR for commercial utilization. However, their classification, population structure and genomic feature remain elusive. RESULTS Here, high-depth genome resequencing data of 15 NTRs and 18 ATRs, together with 38 publicly available data of diploid rice accessions, were analyzed to conduct classification, population structure and haplotype analyses. Five subpopulations were detected and NTRs were clustered into one independent group that was adjacent to japonica subspecies, which maybe the reason for high heterosis when NTRs crossed with indica ATRs. Haplotype patterns of 717 key genes that associated with yield and other agronomic traits were revealed in these NTRs. Moreover, a novel specific SNP variation was detected in the first exon of HSP101, a known heat-inducible gene, which was conserved in all NTRs but absent in ATRs, 3KRG and RiceVarMap2 databases. The novel allele was named as HSP101-1, which was confirmed to be a heat response factor by qRT-PCR, and knockout of HSP101-1 significantly decreased the thermotolerance capacity of NTR. Interestingly, HSP101-1 was also specifically expressed in the anthers of NTR at pre-meiotic and meiosis stages under optimal environment without heat stress, and its loss-of-function mutant showed significant decrease in fertility of NTR. CONCLUSION The construction of first genomic variation repository and the revelation of population structure provide invaluable information for optimizing the designs of tetraploid rice breeding. The detection of specific genomic variations offered useful genomic markers and new directions to resolve high fertility mechanism of NTR.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Qihang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Yudi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Huijing Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
6
|
Solis CA, Yong MT, Vinarao R, Jena K, Holford P, Shabala L, Zhou M, Shabala S, Chen ZH. Back to the Wild: On a Quest for Donors Toward Salinity Tolerant Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:323. [PMID: 32265970 PMCID: PMC7098918 DOI: 10.3389/fpls.2020.00323] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/05/2020] [Indexed: 05/20/2023]
Abstract
Salinity stress affects global food producing areas by limiting both crop growth and yield. Attempts to develop salinity-tolerant rice varieties have had limited success due to the complexity of the salinity tolerance trait, high variation in the stress response and a lack of available donors for candidate genes for cultivated rice. As a result, finding suitable donors of genes and traits for salinity tolerance has become a major bottleneck in breeding for salinity tolerant crops. Twenty-two wild Oryza relatives have been recognized as important genetic resources for quantitatively inherited traits such as resistance and/or tolerance to abiotic and biotic stresses. In this review, we discuss the challenges and opportunities of such an approach by critically analyzing evolutionary, ecological, genetic, and physiological aspects of Oryza species. We argue that the strategy of rice breeding for better Na+ exclusion employed for the last few decades has reached a plateau and cannot deliver any further improvement in salinity tolerance in this species. This calls for a paradigm shift in rice breeding and more efforts toward targeting mechanisms of the tissue tolerance and a better utilization of the potential of wild rice where such traits are already present. We summarize the differences in salinity stress adaptation amongst cultivated and wild Oryza relatives and identify several key traits that should be targeted in future breeding programs. This includes: (1) efficient sequestration of Na+ in mesophyll cell vacuoles, with a strong emphasis on control of tonoplast leak channels; (2) more efficient control of xylem ion loading; (3) efficient cytosolic K+ retention in both root and leaf mesophyll cells; and (4) incorporating Na+ sequestration in trichrome. We conclude that while amongst all wild relatives, O. rufipogon is arguably a best source of germplasm at the moment, genes and traits from the wild relatives, O. coarctata, O. latifolia, and O. alta, should be targeted in future genetic programs to develop salt tolerant cultivated rice.
Collapse
Affiliation(s)
- Celymar A. Solis
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Miing T. Yong
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Ricky Vinarao
- International Rice Research Institute, Metro Manila, Philippines
| | - Kshirod Jena
- International Rice Research Institute, Metro Manila, Philippines
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
7
|
Farhat S, Jain N, Singh N, Sreevathsa R, Dash PK, Rai R, Yadav S, Kumar P, Sarkar AK, Jain A, Singh NK, Rai V. CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Semin Cell Dev Biol 2019; 96:91-99. [PMID: 31075379 DOI: 10.1016/j.semcdb.2019.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
Crop productivity in rice is harshly limited due to high concentration of salt in the soil. To understand the intricacies of the mechanism it is important to unravel the key pathways operating inside the plant cell. Emerging state-of-the art technologies have provided the tools to discover the key components inside the plant cell for salt tolerance. Among the molecular entities, transcription factors and/or other important components of sensing and signaling cascades have been the attractive targets and the role of NHX and SOS1 transporters amply described. Not only marker assisted programs but also transgenic approaches by using reverse genetic strategies (knockout or knockdown) or overexpression have been extensively used to engineer rice crop. CRISPR/Cas is an attractive paradigm and provides the feasibility for manipulating several genes simultaneously. Here, in this review we highlight some of the molecular entities that could be potentially targeted for generating rice amenable to sustain growth under high salinity conditions by employing CRISPR/Cas. We also try to address key questions for rice salt stress tolerance other than what is already known.
Collapse
Affiliation(s)
- Sufia Farhat
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Neha Jain
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Nisha Singh
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Rohini Sreevathsa
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Prasanta K Dash
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Rhitu Rai
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Pramod Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Ajay Jain
- Department of Biotechnology, Amity University, Jaipur, India.
| | - Nagendra K Singh
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Vandna Rai
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| |
Collapse
|
8
|
Identification of QTN and candidate genes for Salinity Tolerance at the Germination and Seedling Stages in Rice by Genome-Wide Association Analyses. Sci Rep 2018; 8:6505. [PMID: 29695843 PMCID: PMC5916932 DOI: 10.1038/s41598-018-24946-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 04/13/2018] [Indexed: 12/31/2022] Open
Abstract
To facilitate developing rice varieties tolerant to salt stress, a panel of 208 rice mini-core accessions collected from 25 countries were evaluated for 13 traits associated with salt tolerance (ST) at the germination and seedling stages. The rice panel showed tremendous variation for all measured ST traits and eight accessions showing high levels of ST at either and/or both the germination and seedling stages. Using 395,553 SNP markers covering ~372 Mb of the rice genome and multi-locus mixed linear models, 20 QTN associated with 11 ST traits were identified by GWAS, including 6 QTN affecting ST at the germination stage and 14 QTN for ST at the seedling stage. The integration of bioinformatic with haplotype analyses for the ST QTN lets us identify 22 candidate genes for nine important ST QTN (qGR3, qSNK1, qSNK12, qSNC1, qSNC6, qRNK2, qSDW9a, qSST5 and qSST9). These candidate genes included three known ST genes (SKC1, OsTZF1 and OsEATB) for QTN qSNK1 qSST5 and qSST9. Candidate genes showed significant phenotypic differences in ST traits were detected between or among 2-4 major haplotypes. Thus, our results provided useful materials and genetic information for improving rice ST in future breeding and for molecular dissection of ST in rice.
Collapse
|
9
|
Singh B, Singh N, Mishra S, Tripathi K, Singh BP, Rai V, Singh AK, Singh NK. Morphological and Molecular Data Reveal Three Distinct Populations of Indian Wild Rice Oryza rufipogon Griff. Species Complex. FRONTIERS IN PLANT SCIENCE 2018; 9:123. [PMID: 29467785 PMCID: PMC5808308 DOI: 10.3389/fpls.2018.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 01/23/2018] [Indexed: 05/17/2023]
Abstract
Wild relatives of crops possess adaptive mutations for agronomically important traits, which could play significant role in crop improvement for sustainable agriculture. However, global climate change and human activities pose serious threats to the natural habitats leading to erosion of genetic diversity of wild rice populations. The purpose of this study was to explore and characterize India's huge untapped wild rice diversity in Oryza rufipogon Griff. species complex from a wide range of ecological niches. We made strategic expeditions around diversity hot spots in 64 districts of nine different agro-climatic zones of the country and collected 418 wild rice accessions. Significant variation was observed among the accessions for 46 morphological descriptors, allowing classification into O. nivara, O. rufipogon, and O. sativa f. spontanea morpho-taxonomic groups. Genome-specific pSINE1 markers confirmed all the accessions having AA genome, which were further classified using ecotype-specific pSINE1 markers into annual, perennial, intermediate, and an unknown type. Principal component analysis revealed continuous variation for the morphological traits in each ecotype group. Genetic diversity analysis based on multi-allelic SSR markers clustered these accessions into three major groups and analysis of molecular variance for nine agro-climatic zones showed that 68% of the genetic variation was inherent amongst individuals while only 11% of the variation separated the zones, though there was significant correlation between genetic and spatial distances of the accessions. Model based population structure analysis using genome wide bi-allelic SNP markers revealed three sub-populations designated 'Pro-Indica,' 'Pro-Aus,' and 'Mid-Gangetic,' which showed poor correspondence with the morpho-taxonomic classification or pSINE1 ecotypes. There was Pan-India distribution of the 'Pro-Indica' and 'Pro-Aus' sub-populations across agro-climatic zones, indicating a more fundamental grouping based on the ancestry closely related to 'Indica' and 'Aus' groups of rice cultivars. The Pro-Indica population has substantial presence in the Eastern Himalayan Region and Lower Gangetic Plains, whereas 'Pro-Aus' sub-population was predominant in the Upper Gangetic Plains, Western Himalayan Region, Gujarat Plains and Hills, and Western Coastal Plains. In contrast 'Mid-Gangetic' population was largely concentrated in the Mid Gangetic Plains. The information presented here will be useful in the utilization of wild rice resources for varietal improvement.
Collapse
Affiliation(s)
- Balwant Singh
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Nisha Singh
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Shefali Mishra
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Kabita Tripathi
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Bikram P. Singh
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ashok K. Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
10
|
Dwivedi SL, Scheben A, Edwards D, Spillane C, Ortiz R. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes. FRONTIERS IN PLANT SCIENCE 2017; 8:1461. [PMID: 28900432 PMCID: PMC5581882 DOI: 10.3389/fpls.2017.01461] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/07/2017] [Indexed: 05/03/2023]
Abstract
There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and overall genetic gain of multigenic traits. An integrated approach involving multiple stakeholders specializing in management and utilization of genetic resources, crop breeding, molecular biology and genomics, agronomy, stress tolerance, and reproductive/seed biology will help to address the global challenge of ensuring food security in the face of growing resource demands and climate change induced stresses.
Collapse
Affiliation(s)
| | - Armin Scheben
- School of Biological Sciences, Institute of Agriculture, University of Western Australia, PerthWA, Australia
| | - David Edwards
- School of Biological Sciences, Institute of Agriculture, University of Western Australia, PerthWA, Australia
| | - Charles Spillane
- Plant and AgriBiosciences Research Centre, Ryan Institute, National University of Ireland GalwayGalway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural SciencesAlnarp, Sweden
| |
Collapse
|
11
|
Ismail AM, Horie T. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:405-434. [PMID: 28226230 DOI: 10.1146/annurev-arplant-042916-040936] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salt stress reduces land and water productivity and contributes to poverty and food insecurity. Increased salinization caused by human practices and climate change is progressively reducing agriculture productivity despite escalating calls for more food. Plant responses to salt stress are well understood, involving numerous critical processes that are each controlled by multiple genes. Knowledge of the critical mechanisms controlling salt uptake and exclusion from functioning tissues, signaling of salt stress, and the arsenal of protective metabolites is advancing. However, little progress has been made in developing salt-tolerant varieties of crop species using standard (but slow) breeding approaches. The genetic diversity available within cultivated crops and their wild relatives provides rich sources for trait and gene discovery that has yet to be sufficiently utilized. Transforming this knowledge into modern approaches using genomics and molecular tools for precision breeding will accelerate the development of tolerant cultivars and help sustain food production.
Collapse
Affiliation(s)
- Abdelbagi M Ismail
- Genetics and Biotechnology Division, International Rice Research Institute, Manila 1301, Philippines;
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan;
| |
Collapse
|
12
|
Quan R, Wang J, Hui J, Bai H, Lyu X, Zhu Y, Zhang H, Zhang Z, Li S, Huang R. Improvement of Salt Tolerance Using Wild Rice Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:2269. [PMID: 29387076 PMCID: PMC5776132 DOI: 10.3389/fpls.2017.02269] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
Salt stress causes significant reductions in rice production worldwide; thus, improving salt tolerance is a promising approach to meet the increasing food demand. Wild rice germplasm is considered a valuable genetic resource for improving rice cultivars. However, information regarding the improvement of salt tolerance in cultivated rice using wild rice genes is limited. In this study, we identified a salt-tolerant line Dongxiang/Ningjing 15 (DJ15) under salt-stress field conditions from the population of a salt tolerant Dongxiang wild rice × a cultivated rice variety Ningjing16 (NJ16). Genomic resequencing analysis of NJ16, DJ15 and Dongxiang wild rice revealed that the introgressed genomic fragments were unevenly distributed over the 12 chromosomes (Chr.) and mainly identified on Chr. 6, 7, 10, and 11. Using quantitative trait locus (QTL) mapping, we found 9 QTL for salt tolerance (qST) at the seedling stage located on Chr. 1, 3, 4, 5, 6, 8, and 10. In addition, sequence variant analysis within the QTL regions demonstrated that SKC1/HKT8/HKT1;5 and HAK6 transporters along with numerous transcriptional factors were the candidate genes for the salt tolerant QTL. The DJ15/Koshihikari recombinant inbred lines that contained both qST1.2 and qST6, two QTL with the highest effect for salt tolerance, were more tolerant than the parental lines under salt-stress field conditions. Furthermore, the qST6 near-isogenic lines with IR29 background were more tolerant than IR29, indicating that qST1.2 and qST6 could improve salt tolerance in rice. Overall, our study indicates that wild rice genes could markedly improve the salt tolerance of cultivated rice.
Collapse
Affiliation(s)
- Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- *Correspondence: Ruidang Quan
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Jian Hui
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Haibo Bai
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xuelian Lyu
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yongxing Zhu
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Shuhua Li
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- Shuhua Li
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- Rongfeng Huang
| |
Collapse
|