1
|
Kaźmierczak A, Tarkowská D, Plačková L, Doniak M, Doležal K. Hormonal crosstalk controls cell death induced by kinetin in roots of Vicia faba ssp. minor seedlings. Sci Rep 2023; 13:11661. [PMID: 37468550 DOI: 10.1038/s41598-023-38641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Studies of vitality/mortality of cortex cells, as well as of the concentrations of ethylene (ETH), gibberellins (GAs), indolic compounds/auxins (ICs/AUXs) and cytokinins (CKs), were undertaken to explain the hormonal background of kinetin (Kin)-regulated cell death (RCD), which is induced in the cortex of the apical parts of roots of faba bean (Vicia faba ssp. minor) seedlings. Quantification was carried out with fluorescence microscopy, ETH sensors, spectrophotometry and ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC‒MS/MS). The results indicated that Kin was metabolized to the transport form, i.e., kinetin-9-glucoside (Kin9G) and kinetin riboside (KinR). KinR was then converted to cis-zeatin (cZ) in apical parts of roots with meristems, to cis-zeatin riboside (cZR) in apical parts of roots without meristems and finally to cis-zeatin riboside 5'-monophosphate (cZR5'MP), which is indicated to be a ligand of cytokinin-dependent receptors inducing CD. The process may be enhanced by an increase in the amount of dihydrozeatin riboside (DHZR) as a byproduct of the pathway of zeatin metabolism. It seems that crosstalk of ETH, ICs/AUXs, GAs and CKs with the cZR5'MP, the cis-zeatin-dependent pathway, but not the trans-zeatin-dependent pathway, is responsible for Kin-RCD, indicating that the process is very specific and offers a useful model for studies of CD hallmarks in plants.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany Academy of Sciences of the Czech Republic and Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Magdalena Doniak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Karel Doležal
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
- Department of Chemical Biology and Genetics, Center of Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| |
Collapse
|
2
|
Kaźmierczak A, Siatkowska E, Li R, Bothe S, Nick P. Kinetin induces microtubular breakdown, cell cycle arrest and programmed cell death in tobacco BY-2 cells. PROTOPLASMA 2023; 260:787-806. [PMID: 36239807 PMCID: PMC10125952 DOI: 10.1007/s00709-022-01814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Plant cells can undergo regulated cell death in response to exogenous factors (often in a stress context), but also as regular element of development (often regulated by phytohormones). The cellular aspects of these death responses differ, which implies that the early signalling must be different. We use cytokinin-induced programmed cell death as paradigm to get insight into the role of the cytoskeleton for the regulation of developmentally induced cell death, using tobacco BY-2 cells as experimental model. We show that this PCD in response to kinetin correlates with an arrest of the cell cycle, a deregulation of DNA replication, a loss of plasma membrane integrity, a subsequent permeabilisation of the nuclear envelope, an increase of cytosolic calcium correlated with calcium depletion in the culture medium, an increase of callose deposition and the loss of microtubule and actin integrity. We discuss these findings in the context of a working model, where kinetin, mediated by calcium, causes the breakdown of the cytoskeleton, which, either by release of executing proteins or by mitotic catastrophe, will result in PCD.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Faculty of Biology and Environmental Protection, Institute of Experimental Biology, Department of Cytophysiology, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Ewa Siatkowska
- Faculty of Biology and Environmental Protection, Institute of Experimental Biology, Department of Cytophysiology, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland
| | - Ruoxi Li
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Sophie Bothe
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
3
|
Li K, Chen Y, Luo Y, Huang F, Zhao C, Cheng F, Xiang X, Pan G. A 22-bp deletion in OsPLS3 gene encoding a DUF266-containing protein is implicated in rice leaf senescence. PLANT MOLECULAR BIOLOGY 2018; 98:19-32. [PMID: 30117035 DOI: 10.1007/s11103-018-0758-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/18/2018] [Indexed: 05/04/2023]
Abstract
Key message The OsPLS3 locus was isolated by map-based cloning that encodes a DUF266-containing protein. OsPLS3 regulates the onset of leaf senescence in rice. Glycosyltransferases (GTs) are one of the most important enzyme groups required for the modification of plant secondary metabolites and play a crucial role in plant growth and development, however the biological functions of most GTs remain elusive. We reported here the identification and characterization of a novel Oryza sativa premature leaf senescence mutant (ospls3). Through map-based cloning strategy, we determined that 22-bp deletion in the OsPLS3 gene encoding a domain of unknown function 266 (DUF266)-containing protein, a member of GT14-like, underlies the premature leaf senescence phenotype in the ospls3 mutant. The OsPLS3 mRNA levels progressively declined with the age-dependent leaf senescence in wild-type rice, implying a negative role of OsPLS3 in regulating leaf senescence. Physiological analysis, and histochemical staining and transmission electron microscopy assays indicated that the ospls3 mutant accumulated higher levels of ethylene and reactive oxygen species than its wild type. Furthermore, the ospls3 mutant showed hypersensitivity to exogenous 1-aminocyclopropane-1-carboxylic acid, H2O2 and high level of cytokinins. Our results indicated that the DUF266-containing gene OsPLS3 plays an important role in the onset of leaf senescence, in part through cytokinin and ethylene signaling in rice.
Collapse
Affiliation(s)
- Kunyu Li
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yaodong Chen
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yanmin Luo
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Fudeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Chaoyue Zhao
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Fangmin Cheng
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xun Xiang
- Experimental Teaching Center, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Gang Pan
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
4
|
Fate of nuclear material during subsequent steps of the kinetin-induced PCD in apical parts of Vicia faba ssp. minor seedling roots. Micron 2018; 110:79-87. [PMID: 29772476 DOI: 10.1016/j.micron.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
In animals during apoptosis, the best examined type of programmed cell death (PCD), three main phases are distinguished: (i) specification (signaling), (ii) killing and (iii) execution one. It has bean postulated that plant PCD also involves three subsequent phases: (i) transmission of death signals to cells (signaling), (ii) initiation of killing processes and (iii) destruction of cells. One of the most important hallmarks of animal and plant PCD are those regarding nucleus, not thoroughly studied in plants so far. To study kinetin-induced PCD (Kin-PCD) in the context of nuclear material faith, 2-cm apical parts of Vicia faba ssp. minor seedling roots were used. Applied assays involving spectrophotometry, transmission electron microscopy, fluorescence and white light microscopy allowed to examine metabolic and cytomorphologic hallmarks such as changes in DNA content, ssDNA formation and activity of acidic and basic nucleases (DNases and RNases) as well as malformations and fragmentation of nucleoli and nuclei. The obtained results concerning the PCD hallmarks and influence of ZnSO4 on Kin-PCD allowed us to confirmed presence of specification/signaling, killing and execution/degradation phases of the process and broaden the knowledge about processes affecting nuclei during PCD.
Collapse
|