1
|
Tang Y, Zhang G, Jiang X, Shen S, Guan M, Tang Y, Sun F, Hu R, Chen S, Zhao H, Li J, Lu K, Yin N, Qu C. Genome-Wide Association Study of Glucosinolate Metabolites (mGWAS) in Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030639. [PMID: 36771722 PMCID: PMC9921834 DOI: 10.3390/plants12030639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 06/12/2023]
Abstract
Glucosinolates (GSLs) are secondary plant metabolites that are enriched in rapeseed and related Brassica species, and they play important roles in defense due to their anti-nutritive and toxic properties. Here, we conducted a genome-wide association study of six glucosinolate metabolites (mGWAS) in rapeseed, including three aliphatic glucosinolates (m145 gluconapin, m150 glucobrassicanapin and m151 progoitrin), one aromatic glucosinolate (m157 gluconasturtiin) and two indole glucosinolates (m165 indolylmethyl glucosinolate and m172 4-hydroxyglucobrassicin), respectively. We identified 113 candidate intervals significantly associated with these six glucosinolate metabolites. In the genomic regions linked to the mGWAS peaks, 187 candidate genes involved in glucosinolate biosynthesis (e.g., BnaMAM1, BnaGGP1, BnaSUR1 and BnaMYB51) and novel genes (e.g., BnaMYB44, BnaERF025, BnaE2FC, BnaNAC102 and BnaDREB1D) were predicted based on the mGWAS, combined with analysis of differentially expressed genes. Our results provide insight into the genetic basis of glucosinolate biosynthesis in rapeseed and should facilitate marker-based breeding for improved seed quality in Brassica species.
Collapse
Affiliation(s)
- Yunshan Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Guorui Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Xinyue Jiang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Mingwei Guan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yuhan Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Fujun Sun
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Ran Hu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Si Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
2
|
Proteomic Analysis of Proteins Related to Defense Responses in Arabidopsis Plants Transformed with the rolB Oncogene. Int J Mol Sci 2023; 24:ijms24031880. [PMID: 36768198 PMCID: PMC9915171 DOI: 10.3390/ijms24031880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
During Agrobacterium rhizogenes-plant interaction, the rolB gene is transferred into the plant genome and is stably inherited in the plant's offspring. Among the numerous effects of rolB on plant metabolism, including the activation of secondary metabolism, its effect on plant defense systems has not been sufficiently studied. In this work, we performed a proteomic analysis of rolB-expressing Arabidopsis thaliana plants with particular focus on defense proteins. We found a total of 77 overexpressed proteins and 64 underexpressed proteins in rolB-transformed plants using two-dimensional gel electrophoresis and MALDI mass spectrometry. In the rolB-transformed plants, we found a reduced amount of scaffold proteins RACK1A, RACK1B, and RACK1C, which are known as receptors for activated C-kinase 1. The proteomic analysis showed that rolB could suppress the plant immune system by suppressing the RNA-binding proteins GRP7, CP29B, and CP31B, which action are similar to the action of type-III bacterial effectors. At the same time, rolB plants induce the massive biosynthesis of protective proteins VSP1 and VSP2, as well as pathogenesis-related protein PR-4, which are markers of the activated jasmonate pathway. The increased contents of glutathione-S-transferases F6, F2, F10, U19, and DHAR1 and the osmotin-like defense protein OSM34 were found. The defense-associated protein PCaP1, which is required for oligogalacturonide-induced priming and immunity, was upregulated. Moreover, rolB-transformed plants showed the activation of all components of the PYK10 defense complex that is involved in the metabolism of glucosinolates. We hypothesized that various defense systems activated by rolB protect the host plant from competing phytopathogens and created an effective ecological niche for A. rhizogenes. A RolB → RACK1A signaling module was proposed that might exert most of the rolB-mediated effects on plant physiology. Our proteomics data are available via ProteomeXchange with identifier PXD037959.
Collapse
|
3
|
Bao J, Lu X, Ma L, Zhang X, Tian P, Zhang X, Li S, Ma S, Yang J, Lu Y, Wei Y, Zhang C, Shi X. Transcriptome analysis of genes related to glucoraphanin and sulforaphane synthesis in methyl jasmonate treated broccoli (Brassica oleracea var. italica) hairy roots. JOURNAL OF PLANT RESEARCH 2022; 135:757-770. [PMID: 35999478 DOI: 10.1007/s10265-022-01407-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Hairy roots obtained by infecting broccoli (Brassica oleracea var. italica) leaves with Agrobacterium rhizogenes (ATCC15834) have the characteristics of phytohormone autonomy, genetic stability and can produce a large amount of the anti-cancer substance Sulforaphane (SF) and the biosynthetic precursor Glucoraphanin (GRA). Under the induction of the exogenous signaling molecule methyl jasmonate (MeJA), the production of SF in broccoli hairy roots was significantly increased. However, the molecular mechanism of GRA and SF synthesis in hairy roots of broccoli treated with MeJA has not been reported. In this study, according to the yield of GRA and SF, the best concentration of MeJA treatment for hairy roots of broccoli was selected. After 18 days of growth, broccoli hairy roots were treated with 10 mmol L-1 MeJA for 0, 3, 6, 9 and 12 h. Compared with 0 h, the yield of GRA and SF increased under other treatments. The highest yield of GRA and SF occurred at 9 h, which were 2.22-fold and 1.74-fold higher than those at 0 h. Brassica oleracea var. botrytis was used as reference genome, and 5,757 differentially expressed genes (DEG) were observed at 0, 3, 6, 9 and 12 h under 10 mmol L-1 MeJA treatment, of which 4,673 were down-regulated and 1084 were up-regulated. The key genes regulating GRA synthesis, CYP79F1, CYP83A1, UGT74B1, FMOGS-OX5 and GSL-OH, were up-regulated at 0 and 3 h, and down-regulated the rest of the time; BCAT2 was up-regulated at 6, 9, 12 h, and at 0, 3 h expression was down-regulated, transcription factors MYB28 and MYB29 were down-regulated by exogenous MeJA treatment. A pathway of GRA biosynthesis and transformation pathways in MeJA-treated broccoli hairy roots was simulated and the molecular mechanism of GRA biosynthesis and SF accumulation in broccoli hairy roots under MeJA treatment was revealed.
Collapse
Affiliation(s)
- Jinyu Bao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Lei Ma
- Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xiumin Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Peng Tian
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xiaoling Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Sheng Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
- Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Shaoying Ma
- Basical Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Jie Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yaqi Lu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yunchun Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Congcong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xiaotong Shi
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
4
|
Sun X, Li X, Wang Y, Xu J, Jiang S, Zhang Y. MdMKK9-Mediated the Regulation of Anthocyanin Synthesis in Red-Fleshed Apple in Response to Different Nitrogen Signals. Int J Mol Sci 2022; 23:ijms23147755. [PMID: 35887103 PMCID: PMC9324793 DOI: 10.3390/ijms23147755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling cascade is a widely existing signal transduction system in eukaryotes, and plays an important role in the signal transduction processes of plant cells in response to environmental stress. In this study, we screened MdMKK9, a gene in the MAPK family. This gene is directly related to changes in anthocyanin synthesis in the ‘Daihong’ variety of red-fleshed apple (Malus sieversii f neidzwetzkyana (Dieck) Langenf). MdMKK9 expression was up-regulated in ‘Daihong’ tissue culture seedlings cultured at low levels of nitrogen. This change in gene expression up-regulated the expression of genes related to anthocyanin synthesis and nitrogen transport, thus promoting anthocyanin synthesis and causing the tissue culture seedlings to appear red in color. To elucidate the function of MdMKK9, we used the CRISPR/Cas9 system to construct a gene editing vector for MdMKK9 and successfully introduced it into the calli of the ‘Orin’ apple. The MdMKK9 deletion mutants (MUT) calli could not respond to the low level of nitrogen signal, the expression level of anthocyanin synthesis-related genes was down-regulated, and the anthocyanin content was lower than that of the wild type (WT). In contrast, the MdMKK9-overexpressed calli up-regulated the expression level of anthocyanin synthesis-related genes and increased anthocyanin content, and appeared red in conditions of low level of nitrogen or nitrogen deficiency. These results show that MdMKK9 plays a role in the adaptation of red-fleshed apple to low levels of nitrogen by regulating the nitrogen status and anthocyanin accumulation.
Collapse
Affiliation(s)
- Xiaohong Sun
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinxin Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
| | - Jihua Xu
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Shenghui Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
- Correspondence: (S.J.); (Y.Z.)
| | - Yugang Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
- Correspondence: (S.J.); (Y.Z.)
| |
Collapse
|
5
|
Versluys M, Toksoy Öner E, Van den Ende W. Fructan oligosaccharide priming alters apoplastic sugar dynamics and improves resistance against Botrytis cinerea in chicory. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4214-4235. [PMID: 35383363 DOI: 10.1093/jxb/erac140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Carbohydrates such as fructans can be involved in priming or defence stimulation, and hence potentially provide new strategies for crop protection against biotic stress. Chicory (Cichorium intybus) is a model plant for fructan research and is a crop with many known health benefits. Using the chicory-Botrytis cinerea pathosystem, we tested the effectiveness of fructan-induced immunity, focussing on different plant and microbial fructans. Sugar dynamics were followed after priming and subsequent pathogen infection. Our results indicated that many higher plants might detect extracellular levan oligosaccharides (LOS) of microbial origin, while chicory also detects extracellular small inulin-type fructooligosaccharides (FOS) of endogenous origin, thus differing from the findings of previous fructan priming studies. No clear positive effects were observed for inulin or mixed-type fructans. An elicitor-specific burst of reactive oxygen species was observed for sulfated LOS, while FOS and LOS both behaved as genuine priming agents. In addition, a direct antifungal effect was observed for sulfated LOS. Intriguingly, LOS priming led to a temporary increase in apoplastic sugar concentrations, mainly glucose, which could trigger downstream responses. Total sugar and starch contents in total extracts of LOS-primed leaves were higher after leaf detachment, indicating they could maintain their metabolic activity. Our results indicate the importance of balancing intra- and extracellular sugar levels (osmotic balance) in the context of 'sweet immunity' pathways.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Versluys M, Van den Ende W. Sweet Immunity Aspects during Levan Oligosaccharide-Mediated Priming in Rocket against Botrytis cinerea. Biomolecules 2022; 12:370. [PMID: 35327562 PMCID: PMC8945012 DOI: 10.3390/biom12030370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
New strategies are required for crop protection against biotic stress. Naturally derived molecules, including carbohydrates such as fructans, can be used in priming or defense stimulation. Rocket (Eruca sativa) is an important leafy vegetable and a good source of antioxidants. Here, we tested the efficacy of fructan-induced immunity in the Botrytis cinerea pathosystem. Different fructan types of plant and microbial origin were considered and changes in sugar dynamics were analyzed. Immune resistance increased significantly after priming with natural and sulfated levan oligosaccharides (LOS). No clear positive effects were observed for fructo-oligosaccharides (FOS), inulin or branched-type fructans. Only sulfated LOS induced a direct ROS burst, typical for elicitors, while LOS behaved as a genuine priming compound. Total leaf sugar levels increased significantly both after LOS priming and subsequent infection. Intriguingly, apoplastic sugar levels temporarily increased after LOS priming but not after infection. We followed LOS and small soluble sugar dynamics in the apoplast as a function of time and found a temporal peak in small soluble sugar levels. Although similar dynamics were also found with inulin-type FOS, increased Glc and FOS levels may benefit B. cinerea. During LOS priming, LOS- and/or Glc-dependent signaling may induce downstream sweet immunity responses.
Collapse
Affiliation(s)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|
7
|
Tian P, Lu X, Bao J, Zhang X, Lu Y, Zhang X, Wei Y, Yang J, Li S, Ma S. Transcriptomics analysis of genes induced by melatonin related to glucosinolates synthesis in broccoli hairy roots. PLANT SIGNALING & BEHAVIOR 2021; 16:1952742. [PMID: 34545770 PMCID: PMC8526036 DOI: 10.1080/15592324.2021.1952742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 05/21/2023]
Abstract
Glucoraphanin (GRA) is found in the seeds and vegetative organs of broccoli (Brassica oleracea L. var. italica Planch) as the precursor of anti-carcinogen sulforaphane (SF). The yield of GRA obtained from these materials is weak and the cost is high. In recent years, the production of plant secondary metabolites by large-scale hairy roots culture in vitro has succeeded in some species. Melatonin (MT) is a natural hormone which existed in numerous organisms. Studies have demonstrated that MT can improve the synthesis of secondary metabolites in plants. At present, it has not been reported that MT regulates the biosynthesis of glucoraphanin in broccoli hairy roots. In this study, the broccoli hairy roots that grew for 20 d were respectively treated by 500 µM MT for 0, 6, 12, 20 and 32. To explore the reason of changes in secondary metabolites and reveal the biosynthetic pathway of glucoraphanin at transcriptional level. Compared with 0 h, the yield of GRA under other treatments was increased, and the overall trend was firstly increased and then decreased. The total yield of GRA reached the highest at 12 h, which was 1.22-fold of 0 h. Then, the genome of broccoli as the reference, a total of 13234 differentially expressed genes (DEGs) were identified in broccoli hairy roots under treatment with 500 µM MT for 0, 6, 12, 20 and 32 h, respectively. Among these DEGs, 6266 (47.35%) were upregulated and 6968 (52.65%) were downregulated. It was found that the pathway of 'Glucosinolates biosynthesis (ko00966)' was enriched in the 16th place by Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the upregulated DEGs. The expression of key genes in the GRA biosynthesis pathway was upregulated at all time points, and a deduced GRA biosynthesis pathway map was constructed for reference.
Collapse
Affiliation(s)
- Peng Tian
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jinyu Bao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiumin Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yaqi Lu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoling Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yunchun Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jie Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Sheng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Shaoying Ma
- Basical Experimental Teaching Center, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
He L, Li L, Zhu Y, Pan Y, Zhang X, Han X, Li M, Chen C, Li H, Wang C. BolTLP1, a Thaumatin-like Protein Gene, Confers Tolerance to Salt and Drought Stresses in Broccoli ( Brassica oleracea L. var. Italica). Int J Mol Sci 2021. [PMID: 34681789 DOI: 10.3390/ijms222011132/s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Plant thaumatin-like proteins (TLPs) play pleiotropic roles in defending against biotic and abiotic stresses. However, the functions of TLPs in broccoli, which is one of the major vegetables among the B. oleracea varieties, remain largely unknown. In the present study, bolTLP1 was identified in broccoli, and displayed remarkably inducible expression patterns by abiotic stress. The ectopic overexpression of bolTLP1 conferred increased tolerance to high salt and drought conditions in Arabidopsis. Similarly, bolTLP1-overexpressing broccoli transgenic lines significantly improved tolerance to salt and drought stresses. These results demonstrated that bolTLP1 positively regulates drought and salt tolerance. Transcriptome data displayed that bolTLP1 may function by regulating phytohormone (ABA, ethylene and auxin)-mediated signaling pathways, hydrolase and oxidoreductase activity, sulfur compound synthesis, and the differential expression of histone variants. Further studies confirmed that RESPONSE TO DESICCATION 2 (RD2), RESPONSIVE TO DEHYDRATION 22 (RD22), VASCULAR PLANT ONE-ZINC FINGER 2 (VOZ2), SM-LIKE 1B (LSM1B) and MALATE DEHYDROGENASE (MDH) physically interacted with bolTLP1, which implied that bolTLP1 could directly interact with these proteins to confer abiotic stress tolerance in broccoli. These findings provide new insights into the function and regulation of bolTLP1, and suggest potential applications for bolTLP1 in breeding broccoli and other crops with increased tolerance to salt and drought stresses.
Collapse
Affiliation(s)
- Lixia He
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lihong Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yinxia Zhu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Pan
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiuwen Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue Han
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Muzi Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Chengbin Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hui Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Chunguo Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
9
|
He L, Li L, Zhu Y, Pan Y, Zhang X, Han X, Li M, Chen C, Li H, Wang C. BolTLP1, a Thaumatin-like Protein Gene, Confers Tolerance to Salt and Drought Stresses in Broccoli ( Brassica oleracea L. var. Italica). Int J Mol Sci 2021; 22:ijms222011132. [PMID: 34681789 PMCID: PMC8537552 DOI: 10.3390/ijms222011132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Plant thaumatin-like proteins (TLPs) play pleiotropic roles in defending against biotic and abiotic stresses. However, the functions of TLPs in broccoli, which is one of the major vegetables among the B. oleracea varieties, remain largely unknown. In the present study, bolTLP1 was identified in broccoli, and displayed remarkably inducible expression patterns by abiotic stress. The ectopic overexpression of bolTLP1 conferred increased tolerance to high salt and drought conditions in Arabidopsis. Similarly, bolTLP1-overexpressing broccoli transgenic lines significantly improved tolerance to salt and drought stresses. These results demonstrated that bolTLP1 positively regulates drought and salt tolerance. Transcriptome data displayed that bolTLP1 may function by regulating phytohormone (ABA, ethylene and auxin)-mediated signaling pathways, hydrolase and oxidoreductase activity, sulfur compound synthesis, and the differential expression of histone variants. Further studies confirmed that RESPONSE TO DESICCATION 2 (RD2), RESPONSIVE TO DEHYDRATION 22 (RD22), VASCULAR PLANT ONE-ZINC FINGER 2 (VOZ2), SM-LIKE 1B (LSM1B) and MALATE DEHYDROGENASE (MDH) physically interacted with bolTLP1, which implied that bolTLP1 could directly interact with these proteins to confer abiotic stress tolerance in broccoli. These findings provide new insights into the function and regulation of bolTLP1, and suggest potential applications for bolTLP1 in breeding broccoli and other crops with increased tolerance to salt and drought stresses.
Collapse
Affiliation(s)
- Lixia He
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Lihong Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Yinxia Zhu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Yu Pan
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Xiuwen Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Xue Han
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Muzi Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China;
| | - Chengbin Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Hui Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China;
- Correspondence: (H.L.); (C.W.)
| | - Chunguo Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
- Correspondence: (H.L.); (C.W.)
| |
Collapse
|
10
|
Catalá R, López-Cobollo R, Berbís MÁ, Jiménez-Barbero J, Salinas J. Trimethylamine N-oxide is a new plant molecule that promotes abiotic stress tolerance. SCIENCE ADVANCES 2021; 7:7/21/eabd9296. [PMID: 34138745 PMCID: PMC8133759 DOI: 10.1126/sciadv.abd9296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/29/2021] [Indexed: 05/20/2023]
Abstract
Trimethylamine N-oxide (TMAO) is a well-known naturally occurring osmolyte in animals that counteracts the effect of different denaturants related to environmental stress and has recently been associated with severe human chronic diseases. In plants, however, the presence of TMAO has not yet been reported. In this study, we demonstrate that plants contain endogenous levels of TMAO, that it is synthesized by flavin-containing monooxygenases, and that its levels increase in response to abiotic stress conditions. In addition, our results reveal that TMAO operates as a protective osmolyte in plants, promoting appropriate protein folding and as an activator of abiotic stress-induced gene expression. Consistent with these functions, we show that TMAO enhances plant adaptation to low temperatures, drought, and high salt. We have thus uncovered a previously unidentified plant molecule that positively regulates abiotic stress tolerance.
Collapse
Affiliation(s)
- Rafael Catalá
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain.
| | - Rosa López-Cobollo
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain
| | - M Álvaro Berbís
- Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain
| | - Jesús Jiménez-Barbero
- Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain.
| |
Collapse
|
11
|
Yang Q, Wang L, Zhou L, Yang Z, Zhou Q, Huang X. The glucosinolate regulation in plant: A new view on lanthanum stimulating the growth of plant. J RARE EARTH 2019. [DOI: 10.1016/j.jre.2018.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Liu Z, Wang X, Chen X, Shi G, Bai Q, Xiao K. TaMIR1139: a wheat miRNA responsive to Pi-starvation, acts a critical mediator in modulating plant tolerance to Pi deprivation. PLANT CELL REPORTS 2018; 37:1293-1309. [PMID: 29947952 DOI: 10.1007/s00299-018-2313-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/06/2018] [Indexed: 05/18/2023]
Abstract
Wheat miRNA member TaMIR1139 targets genes functional in various families and plays crucial roles in regulating plant Pi starvation tolerance. Through regulating target genes at posttranscriptional or translational level, plant miRNAs are involved in mediating diverse biological processes associated with growth, development, and responses to adverse stresses. In this study, we characterized the expression pattern and function of TaMIR1139, a miRNA member of wheat (T. aestivum) under Pi deprivation. TaMIR1139 precursor is also present in N. tabucum, suggesting the conserved nature of miR1139 across monocots and eudicots. TaMIR1139 targets seven genes within different families. The transcripts abundance of TaMIR1139 was induced upon Pi deprivation and the upregulated expression under Pi starvation was downregulated by the Pi recovery treatment, In contrast, the genes targeted by TaMIR1139 exhibited reduced transcripts upon Pi starvation and their downregulated expression was recovered by Pi-recovery condition, suggesting the regulation of them under TaMIR1139 through a cleavage mechanism. TaMIR1139 overexpression conferred the Pi-deprived plants improved phenotype, biomass, photosynthesis, and Pi acquisition. Transcriptome analysis identified numerous genes involving biological process, cellular components, and molecular function were differentially expressed in the TaMIR1139 overexpression lines, which suggests the TaMIR1139-mediated plant Pi starvation tolerance to be associated with the role of miRNA in extensively modulating the transcript profiling. A phosphate transporter (PT) gene NtPT showed significantly upregulated expression in TaMIR1139 overexpression lines; overexpression of it conferred plants improved Pi acquisition upon Pi starvation, suggesting its contribution to the TaMIR1139-mediated plant low-Pi stress resistance. Our investigation indicates that TaMIR1139 is critical in plant Pi starvation tolerance through transcriptionally regulating the target genes and modulating the Pi stress-defensiveness processes.
Collapse
Affiliation(s)
- Zhipeng Liu
- College of Agronomy, Agricultural University of Hebei, Baoding, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, 071001, People's Republic of China
| | - Xiaoying Wang
- College of Agronomy, Agricultural University of Hebei, Baoding, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, 071001, People's Republic of China
| | - Xi Chen
- College of Agronomy, Agricultural University of Hebei, Baoding, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, 071001, People's Republic of China
| | - Guiqing Shi
- College of Agronomy, Agricultural University of Hebei, Baoding, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, 071001, People's Republic of China
| | - Qianqian Bai
- College of Agronomy, Agricultural University of Hebei, Baoding, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, 071001, People's Republic of China
| | - Kai Xiao
- College of Agronomy, Agricultural University of Hebei, Baoding, 071001, People's Republic of China.
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, 071001, People's Republic of China.
| |
Collapse
|
13
|
Lee JH, Lee J, Kim H, Chae WB, Kim SJ, Lim YP, Oh MH. Brassinosteroids regulate glucosinolate biosynthesis in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2018; 163:450-458. [PMID: 29315590 DOI: 10.1111/ppl.12691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Plants must constantly adjust their growth and defense responses to deal with the wide variety of stresses they encounter in their environment. Among phytohormones, brassinosteroids (BRs) are an important group of plant steroid hormones involved in numerous aspects of the plant lifecycle including growth, development and responses to various stresses including insect attacks. Here, we show that BRs regulate glucosinolate (GS) biosynthesis and function in insect herbivory. Preference tests and larval feeding experiments using the generalist herbivore, diamondback moth (Plutella xylostella), revealed that the larvae prefer to feed on Arabidopsis thaliana brassinosteroid insensitive 1 (bri1-5) plants over wild-type Ws-2 or BRI1-Flag (bri1-5 background) transgenic plants, which results in an increase in larval weight. Analysis of GS contents showed that 3-(methylsulfinyl) propyl GS (C3) levels were higher in bri1-5 than in Ws2 and BRI1-Flag transgenic plants, whereas sinigrin (2-propenylglucosinolate), glucoerucin (4-methylthiobutylglucosinolate) and glucobrassicin (indol-3-ylmethylglucosinolate) levels were lower in this mutant. We investigated the effect of brassinolide (BL) on GS biosynthesis in Arabidopsis and radish (Raphanus sativus L.) by monitoring the expression levels of GS biosynthetic genes, including MAM1, MAM3, BCAT4 and AOP2, which increased in a BL-dependent manner. These results suggest that BRs regulate GS profiles in higher plants, which function in defense responses against insects.
Collapse
Affiliation(s)
- Ji H Lee
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongyeo Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - HyeRan Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Won B Chae
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA, Wanju, Republic of Korea
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Yong P Lim
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|