1
|
Choi H, Yi TG, Gho YS, Kim JH, Kim S, Choi YJ, Lim S, Eom SH, Jung KH, Ha SH. Augmenting carotenoid accumulation by multiplex genome editing of the redundant CCD family in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:110008. [PMID: 40403622 DOI: 10.1016/j.plaphy.2025.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025]
Abstract
The biodegradation of carotenoid is carried out and regulated by a family of carotenoid cleavage dioxygenases (CCDs). In rice, potential redundancy of OsCCD1, OsCCD4a, and OsCCD4b, among multiple CCDs, was predicted through in silico protein-ligand docking simulations, which were based on the interactions of diverse carotene and xanthophyll substrates in the active sites. To elucidate the roles of the three CCDs in planta, we generated single, double, and triple knockout (KO) rice lines using CRISPR-Cas9 technology and confirmed their genetic stabilities. Triple KO (osccd1/osccd4a/osccd4b) lines exhibited enhanced carotenoid contents notably in both leaves after the harvesting stage and under dark-induced senescence, verifying that was caused by a simultaneously successful blocking of OsCCD1/OsCCD4a/OsCCD4b activities in these conditions. Transcriptional profiling of this triple KO line revealed downregulation of key genes involved in carotenoid biosynthesis, suggesting a feedback mechanism to regulate carotenoid levels. In order to explore and increase practical agricultural use of this triple KO line, we performed agronomic assessments that showed no adverse effects on major traits such as photosynthetic rate and seed productivity and then developed a T-DNA-free version of this triple KO rice line with high carotenoid content. Our study highlights the capacity of OsCCD1/OsCCD4a/OsCCD4b as promising targets for genome editing in biofortification strategies aimed at improving the functionality of rice and suggests their applicability to other forage crops.
Collapse
Affiliation(s)
- Heebak Choi
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Tae Gyu Yi
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yun-Shil Gho
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ji Hye Kim
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sangyun Kim
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yong Jin Choi
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sooyeon Lim
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seok Hyun Eom
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sun-Hwa Ha
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
2
|
Hu H, Pradhan N, Xiao J, Xia R, Liao P. Chromatic symphony of fleshy fruits: functions, biosynthesis and metabolic engineering of bioactive compounds. MOLECULAR HORTICULTURE 2025; 5:19. [PMID: 40170175 PMCID: PMC11963455 DOI: 10.1186/s43897-024-00142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/29/2024] [Indexed: 04/03/2025]
Abstract
Fleshy fruits are popular among consumers due to their significant nutritional value, which includes essential bioactive compounds such as pigments, vitamins, and minerals. Notably, plant-derived pigments are generally considered safe and reliable, helping to protect humans against various inflammatory diseases. Although the phytochemical diversity and their biological activities have been extensively reviewed and summarized, the status of bioactive nutrients in fleshy fruits, particularly with a focusing on different colors, has received less attention. Therefore, this review introduces five common types of fleshy fruits based on coloration and summarizes their major bioactive compounds. It also provides the latest advancements on the function, biosynthesis, and metabolic engineering of plant-derived pigments. In this review, we emphasize that promoting the consumption of a diverse array of colorful fruits can contribute to a balanced diet; however, optimal intake levels still require further clinical validation. This review may serve as a useful guide for decisions that enhance the understanding of natural pigments and accelerate their application in agriculture and medicine.
Collapse
Affiliation(s)
- Huimin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Nirakar Pradhan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| | - Pan Liao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Ke C, Guan W, Jiang J, Huang L, Li H, Li W, Lin Y, Lin L, Xie X, Wu W, Gao W, Zheng Y. Map-based cloning of LPD, a major gene positively regulates leaf prickle development in eggplant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:216. [PMID: 39249556 DOI: 10.1007/s00122-024-04726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
KEY MESSAGE A critical gene for leaf prickle development (LPD) in eggplant was mapped on chromosome E06 and was confirmed to be SmARF10B through RNA interference using a new genetic transformation technique called SACI developed in this study Prickles on eggplant pose challenges for agriculture and are undesirable in cultivated varieties. This study aimed to uncover the genetic mechanisms behind prickle formation in eggplant. Using the F2 and F2:3 populations derived from a cross between the prickly wild eggplant, YQ, and the prickle-free cultivated variety, YZQ, we identified a key genetic locus (LPD, leaf prickle development) on chromosome E06 associated with leaf prickle development through BSA-seq and QTL mapping. An auxin response factor gene, SmARF10B, was predicted as the candidate gene as it exhibited high expression in YQ's mature leaves, while being significantly low in YZQ. Downregulating SmARF10B in YQ through RNAi using a simple and efficient Agrobacterium-mediated genetic transformation method named Seedling Apical Cut Infection (SACI) developed in this study substantially reduced the size and density of leaf prickles, confirming the role of this gene in prickle development. Besides, an effective SNP was identified in SmARF10B, resulting in an amino acid change between YQ and YZQ. However, this SNP did not consistently correlate with prickle formation in eight other eggplant materials examined. This study sheds light on the pivotal role of SmARF10B in eggplant prickle development and introduces a new genetic transformation method for eggplant, paving the way for future research in this field.
Collapse
Affiliation(s)
- Changjiao Ke
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiang Guan
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jialong Jiang
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Likun Huang
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Li
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjing Li
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanyu Lin
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lihui Lin
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofang Xie
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiren Wu
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Wenxia Gao
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Yan Zheng
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
4
|
Yamamoto R, Higuchi S, Iwata Y, Takeda S, Koizumi N, Mishiba KI. High β-carotene accumulation in transgenic eggplant fruits grown under artificial light. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:77-81. [PMID: 39464866 PMCID: PMC11500568 DOI: 10.5511/plantbiotechnology.23.1129b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/29/2023] [Indexed: 10/29/2024]
Abstract
Eggplant (Solanum melongena L.) fruits are known to contain few carotenoids such as β-carotene, which are abundant in congener tomato fruits. In a previous study, we introduced a fruit-specific EEF48 gene promoter-driven crtB gene encoding phytoene synthase (PSY) of Erwinia uredovora into eggplant 'Senryo No. 2'. The transgenic plants grown in a greenhouse set fruits that accumulated β-carotene (∼1.67 µg g-1FW) in the T0 and T1 generations. In the present study, we grew T1 and T2 generations of the transgenic eggplant plants in artificial climate chambers to investigate their fruit set and β-carotene accumulation. No clear difference in β-carotene accumulation was observed in the fruit of transgenic plants grown under either HID (high-intensity discharge) or LED (light-emitting diode) light, or between T1 and T2 generations. The β-carotene accumulation (8.83 µg g-1FW on average) was approximately 5 times higher than the previous results obtained from greenhouse-grown plants. However, the fruit weight and size of the T-DNA (+) plants were significantly smaller than that of their null-segregant T-DNA (-) plants derived from the same line, suggesting that β-carotene accumulation may inhibit fruit development. Considering that a part of plants grown under LED irradiation failed to set fruits or set smaller fruits than those grown under HID irradiation, the light condition in the LED chamber may not be sufficient to promote fruit development. The present results are expected to provide valuable information for the selection of transgenic eggplants with high β-carotene content in fruit under artificial lighting.
Collapse
Affiliation(s)
- Ryohei Yamamoto
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Seigo Higuchi
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Yuji Iwata
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Satomi Takeda
- Graduate School of Sciences, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Nozomu Koizumi
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Kei-ichiro Mishiba
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| |
Collapse
|
5
|
Cai P, Lan Y, Gong F, Li C, Xia F, Li Y, Fang C. Identification and Molecular Characterization of the CAMTA Gene Family in Solanaceae with a Focus on the Expression Analysis of Eggplant Genes under Cold Stress. Int J Mol Sci 2024; 25:2064. [PMID: 38396743 PMCID: PMC10888690 DOI: 10.3390/ijms25042064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Calmodulin-binding transcription activator (CAMTA) is an important calmodulin-binding protein with a conserved structure in eukaryotes which is widely involved in plant stress response, growth and development, hormone signal transduction, and other biological processes. Although CAMTA genes have been identified and characterized in many plant species, a systematic and comprehensive analysis of CAMTA genes in the Solanaceae genome is performed for the first time in this study. A total of 28 CAMTA genes were identified using bioinformatics tools, and the biochemical/physicochemical properties of these proteins were investigated. CAMTA genes were categorized into three major groups according to phylogenetic analysis. Tissue-expression profiles indicated divergent spatiotemporal expression patterns of SmCAMTAs. Furthermore, transcriptome analysis of SmCAMTA genes showed that exposure to cold induced differential expression of many eggplant CAMTA genes. Yeast two-hybrid and bimolecular fluorescent complementary assays suggested an interaction between SmCAMTA2 and SmERF1, promoting the transcription of the cold key factor SmCBF2, which may be an important mechanism for plant cold resistance. In summary, our results provide essential information for further functional research on Solanaceae family genes, and possibly other plant families, in the determination of the development of plants.
Collapse
Affiliation(s)
- Peng Cai
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Yanhong Lan
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Fangyi Gong
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chun Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Feng Xia
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Yifan Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chao Fang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| |
Collapse
|
6
|
Sodedji KAF, Assogbadjo AE, Lee B, Kim HY. An Integrated Approach for Biofortification of Carotenoids in Cowpea for Human Nutrition and Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:412. [PMID: 38337945 PMCID: PMC10856932 DOI: 10.3390/plants13030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Stress-resilient and highly nutritious legume crops can alleviate the burden of malnutrition and food security globally. Here, we focused on cowpea, a legume grain widely grown and consumed in regions at a high risk of micronutrient deficiencies, and we discussed the past and present research on carotenoid biosynthesis, highlighting different knowledge gaps and prospects for increasing this micronutrient in various edible parts of the crop. The literature survey revealed that, although carotenoids are important micronutrients for human health and nutrition, like in many other pulses, the potential of carotenoid biofortification in cowpea is still underexploited. We found that there is, to some extent, progress in the quantification of this micronutrient in cowpea; however, the diversity in content in the edible parts of the crop, namely, grains, pods, sprouts, and leaves, among the existing cowpea genetic resources was uncovered. Based on the description of the different factors that can influence carotenoid biosynthesis and accumulation in cowpea, we anticipated that an integrated use of omics in breeding coupled with mutagenesis and genetic engineering in a plant factory system would help to achieve a timely and efficient increase in carotenoid content in cowpea for use in the food systems in sub-Saharan Africa and South Asia.
Collapse
Affiliation(s)
- Kpedetin Ariel Frejus Sodedji
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Non-Timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), Cotonou 05 BP 1752, Benin;
| | - Achille Ephrem Assogbadjo
- Non-Timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), Cotonou 05 BP 1752, Benin;
| | - Bokyung Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
7
|
Higuera-Coelho RA, Basanta MF, Rossetti L, Pérez CD, Rojas AM, Fissore EN. Antioxidant pectins from eggplant (Solanum melongena) fruit exocarp, calyx and flesh isolated through high-power ultrasound and sodium carbonate. Food Chem 2023; 412:135547. [PMID: 36716626 DOI: 10.1016/j.foodchem.2023.135547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Dried and milled eggplant fruit peel and calyces (PC) and mesocarp, placenta and core (Mes) were utilized as natural sources of valuable chemicals. Pectins were extracted with 0.1 M Na2CO3 (1 h; 23 °C). A high-power ultrasound (US) pretreatment (10 min net time; 12.76 W/cm2 power intensity) in 10:200 (g/mL) powder:water ratio led to the lowest solvent and energy consumptions after the subsequent 0.1 M Na2CO3 stirring, permitting the highest recoveries of uronic acid (UA) from PC and Mes (80.25 and 93.8 %, respectively). Homogalacturonans (>65 % w/w UA) of low degree of methylesterification, of acetylation, and 90,214-138,184 Da molecular weights with low polydispersity (≈1.32-1.40) were obtained. They included released ferulate (≈3.5 mg/100 g) esterified pectins. Antioxidants (caffeoylquinic acid, putrescine and spermidine derivatives, β-carotene, lutein) gave additional technological value to their thickening effect as pectins protected tryptophan, tyrosine, alkyl side chains and sulfhydryl of skim milk proteins from UV-C photo-oxidation.
Collapse
Affiliation(s)
- Ricardo A Higuera-Coelho
- Departamento de Industrias-ITAPROQ, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428BGACiudad Autónoma de Buenos Aires, Argentina
| | - Maria F Basanta
- Departamento de Industrias-ITAPROQ, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428BGACiudad Autónoma de Buenos Aires, Argentina
| | - Luciana Rossetti
- Instituto de Tecnología de Alimentos (ITA), Instituto Nacional de Tecnología Agropecuaria (INTA), CC-77, B1708WAB-Morón, Province of Buenos Aires, Argentina
| | - Carolina D Pérez
- Instituto de Tecnología de Alimentos (ITA), Instituto Nacional de Tecnología Agropecuaria (INTA), CC-77, B1708WAB-Morón, Province of Buenos Aires, Argentina
| | - Ana M Rojas
- Departamento de Industrias-ITAPROQ, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428BGACiudad Autónoma de Buenos Aires, Argentina
| | - Eliana N Fissore
- Departamento de Industrias-ITAPROQ, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428BGACiudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
8
|
Abstract
In contrast to traditional breeding, which relies on the identification of mutants, metabolic engineering provides a new platform to modify the oil composition in oil crops for improved nutrition. By altering endogenous genes involved in the biosynthesis pathways, it is possible to modify edible plant oils to increase the content of desired components or reduce the content of undesirable components. However, introduction of novel nutritional components such as omega-3 long-chain polyunsaturated fatty acids needs transgenic expression of novel genes in crops. Despite formidable challenges, significant progress in engineering nutritionally improved edible plant oils has recently been achieved, with some commercial products now on the market.
Collapse
Affiliation(s)
| | - Qing Liu
- CSIRO Agriculture & Food, Canberra, Australia;
| | | |
Collapse
|
9
|
Genome–Wide Identification and Functional Characterization of Auxin Response Factor (ARF) Genes in Eggplant. Int J Mol Sci 2022; 23:ijms23116219. [PMID: 35682898 PMCID: PMC9181582 DOI: 10.3390/ijms23116219] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/04/2023] Open
Abstract
Auxin response factors (ARFs) are important plant transcription factors that are differentially expressed in response to auxin and various abiotic stresses. ARFs play important roles in mediating plant growth and stress responses; however, these factors have not been studied in eggplants. In this study, genome–wide identification and the functional analysis of the ARF gene family in eggplants (Solanum melongena L.) were performed. A total of 20 ARF (SmARF) genes were identified and phylogenetically classified into three groups. Our analysis revealed four functional domains and 10 motifs in these proteins. Subcellular localization showed that the SmARFs localized in the nucleus. To investigate the biological functions of the SmARFs under 2,4–D and salt stress treatments, quantitative real–time RT–PCR (qRT–PCR) was conducted. Most SmARF genes exhibited changes in expression in response to 2,4–D treatments in the flowers, especially SmARF4 and 7B. All SmARF genes quickly responded to salt stress, except SmARF17 and 19 in leaves, SmARF1A and 7B in roots, and SmARF2A, SmARF7B, and SmARF16B in stems. These results helped to elucidate the role of ARFs in auxin signaling under 2,4–D and salt stress in eggplants.
Collapse
|
10
|
Does Plant Breeding for Antioxidant-Rich Foods Have an Impact on Human Health? Antioxidants (Basel) 2022; 11:antiox11040794. [PMID: 35453479 PMCID: PMC9024522 DOI: 10.3390/antiox11040794] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Given the general beneficial effects of antioxidants-rich foods on human health and disease prevention, there is a continuous interest in plant secondary metabolites conferring attractive colors to fruits and grains and responsible, together with others, for nutraceutical properties. Cereals and Solanaceae are important components of the human diet, thus, they are the main targets for functional food development by exploitation of genetic resources and metabolic engineering. In this review, we focus on the impact of antioxidants-rich cereal and Solanaceae derived foods on human health by analyzing natural biodiversity and biotechnological strategies aiming at increasing the antioxidant level of grains and fruits, the impact of agronomic practices and food processing on antioxidant properties combined with a focus on the current state of pre-clinical and clinical studies. Despite the strong evidence in in vitro and animal studies supporting the beneficial effects of antioxidants-rich diets in preventing diseases, clinical studies are still not sufficient to prove the impact of antioxidant rich cereal and Solanaceae derived foods on human
Collapse
|
11
|
Zhou X, Rao S, Wrightstone E, Sun T, Lui ACW, Welsch R, Li L. Phytoene Synthase: The Key Rate-Limiting Enzyme of Carotenoid Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:884720. [PMID: 35498681 PMCID: PMC9039723 DOI: 10.3389/fpls.2022.884720] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 05/27/2023]
Abstract
Phytoene synthase (PSY) catalyzes the first committed step in the carotenoid biosynthesis pathway and is a major rate-limiting enzyme of carotenogenesis. PSY is highly regulated by various regulators and factors to modulate carotenoid biosynthesis in response to diverse developmental and environmental cues. Because of its critical role in controlling the total amount of synthesized carotenoids, PSY has been extensively investigated and engineered in plant species. However, much remains to be learned on its multifaceted regulatory control and its catalytic efficiency for carotenoid enrichment in crops. Here, we present current knowledge on the basic biology, the functional evolution, the dynamic regulation, and the metabolic engineering of PSY. We also discuss the open questions and gaps to stimulate additional research on this most studied gene/enzyme in the carotenogenic pathway.
Collapse
Affiliation(s)
- Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Emalee Wrightstone
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Andy Cheuk Woon Lui
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | | | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
He X, Chavan SG, Hamoui Z, Maier C, Ghannoum O, Chen ZH, Tissue DT, Cazzonelli CI. Smart Glass Film Reduced Ascorbic Acid in Red and Orange Capsicum Fruit Cultivars without Impacting Shelf Life. PLANTS (BASEL, SWITZERLAND) 2022; 11:985. [PMID: 35406965 PMCID: PMC9003265 DOI: 10.3390/plants11070985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022]
Abstract
Smart Glass Film (SGF) is a glasshouse covering material designed to permit 80% transmission of photosynthetically active light and block heat-generating solar energy. SGF can reduce crop water and nutrient consumption and improve glasshouse energy use efficiency yet can reduce crop yield. The effect of SGF on the postharvest shelf life of fruits remains unknown. Two capsicum varieties, Red (Gina) and Orange (O06614), were cultivated within a glasshouse covered in SGF to assess fruit quality and shelf life during the winter season. SGF reduced cuticle thickness in the Red cultivar (5%) and decreased ascorbic acid in both cultivars (9-14%) without altering the overall morphology of the mature fruits. The ratio of total soluble solids (TSSs) to titratable acidity (TA) was significantly higher in Red (29%) and Orange (89%) cultivars grown under SGF. The Red fruits had a thicker cuticle that reduced water loss and extended shelf life when compared to the Orange fruits, yet neither water loss nor firmness were impacted by SGF. Reducing the storage temperature to 2 °C and increasing relative humidity to 90% extended the shelf life in both cultivars without evidence of chilling injury. In summary, SGF had minimal impact on fruit development and postharvest traits and did not compromise the shelf life of mature fruits. SGF provides a promising technology to block heat-generating solar radiation energy without affecting fruit ripening and marketable quality of capsicum fruits grown during the winter season.
Collapse
Affiliation(s)
- Xin He
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Sachin G. Chavan
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Ziad Hamoui
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Chelsea Maier
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Oula Ghannoum
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Zhong-Hua Chen
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia;
| | - David T. Tissue
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
- Global Centre for Land Based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Christopher I. Cazzonelli
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| |
Collapse
|
13
|
Nayak SN, Aravind B, Malavalli SS, Sukanth BS, Poornima R, Bharati P, Hefferon K, Kole C, Puppala N. Omics Technologies to Enhance Plant Based Functional Foods: An Overview. Front Genet 2021; 12:742095. [PMID: 34858472 PMCID: PMC8631721 DOI: 10.3389/fgene.2021.742095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Functional foods are natural products of plants that have health benefits beyond necessary nutrition. Functional foods are abundant in fruits, vegetables, spices, beverages and some are found in cereals, millets, pulses and oilseeds. Efforts to identify functional foods in our diet and their beneficial aspects are limited to few crops. Advances in sequencing and availability of different omics technologies have given opportunity to utilize these tools to enhance the functional components of the foods, thus ensuring the nutritional security. Integrated omics approaches including genomics, transcriptomics, proteomics, metabolomics coupled with artificial intelligence and machine learning approaches can be used to improve the crops. This review provides insights into omics studies that are carried out to find the active components and crop improvement by enhancing the functional compounds in different plants including cereals, millets, pulses, oilseeds, fruits, vegetables, spices, beverages and medicinal plants. There is a need to characterize functional foods that are being used in traditional medicines, as well as utilization of this knowledge to improve the staple foods in order to tackle malnutrition and hunger more effectively.
Collapse
Affiliation(s)
- Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B. Aravind
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Sachin S. Malavalli
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B. S. Sukanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - R. Poornima
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Pushpa Bharati
- Department of Food Science and Nutrition, University of Agricultural Sciences, Dharwad, India
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - Chittaranjan Kole
- President, International Phytomedomics and Nutriomics Consortium (ipnc.info), Daejeon, South Korea
| | - Naveen Puppala
- New Mexico State University-Agricultural Science Center at Clovis, New Mexico, NM, United States
| |
Collapse
|
14
|
Swapnil P, Meena M, Singh SK, Dhuldhaj UP, Harish, Marwal A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. CURRENT PLANT BIOLOGY 2021; 26:100203. [DOI: 10.1016/j.cpb.2021.100203] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|