1
|
Ji S, Li D, Yao J, Liu B, Han J, Wang Y, Liu Z. The assembly of a Malus sieversii regulatory network reveals gene resistance against Alternaria alternata f. sp. mali when colonized by Trichoderma biofertilizer. JOURNAL OF PLANT RESEARCH 2025:10.1007/s10265-025-01622-y. [PMID: 40089645 DOI: 10.1007/s10265-025-01622-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/12/2025] [Indexed: 03/17/2025]
Abstract
Trichoderma spp., as excellent biocontrol agents, can induce systemic resistance to protect plants from phytopathogen attacks. In a previous study, Trichoderma biofertilizer activated the MsERF105 transcription factor (TF), which further enhanced the resistance of Malus sieversii against Alternaria alternata f. sp. mali, but how resistance signals are transmitted is still unknown. In this study, it was found that the MsERF105-centered disease-resistant regulatory network was induced by Trichoderma in M. sieversii. The TF-centered yeast one-hybrid indicated that WRKY33 and WRKY40 bound to WBOXATNPR1 elements and GT1 bound to GT1CONSENSUS elements in the promoter of MsERF105 to activate its expression. In addition, the proteins that interacted with MsERF105 were identified by yeast two-hybrid, including FUBP2 and HSP17.8. Furthermore, the candidate target genes of MsERF105 were screened using RNA-Seq, and yeast one-hybrid and tobacco transient transformation further showed MsERF105 bound to GCCBOX elements to regulate the expression of bHLH162, ERF017, NAC83 and NAC104; bound to CCAATBOX elements to regulate the expression of HSFs, HSP70s and HSP20; and bound to ERS elements to regulate the expression of DRPs. Finally, the Trichoderma-induced MsERF105-centered regulatory network of M. sieversii against A. alternata f. sp. mali was built, which provided reliable theoretical guidance for the application of Trichoderma and the disease-resistance breeding of M. sieversii.
Collapse
Affiliation(s)
- Shida Ji
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, 161000, China
| | - Dechen Li
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jin Yao
- Qiqihar City Landscape and Greening Center, Qiqihar, 161000, China
| | - Bin Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Han
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Zhihua Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
2
|
Zhang Z, Li ZY, Zhang FJ, Zheng PF, Ma N, Li L, Li H, Sun P, Zhang S, Wang XF, Lu XY, You CX. A viroid-derived small interfering RNA targets bHLH transcription factor MdPIF1 to regulate anthocyanin biosynthesis in Malus domestica. PLANT, CELL & ENVIRONMENT 2024; 47:4664-4682. [PMID: 39049759 DOI: 10.1111/pce.15051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Fruit colour is a critical determinant for the appearance quality and commercial value of apple fruits. Viroid-induced dapple symptom severely affects the fruit coloration, however, the underlying mechanism remains unknown. In this study, we identified an apple dimple fruit viroid (ADFVd)-derived small interfering RNA, named vsiR693, which targeted the mRNA coding for a bHLH transcription factor MdPIF1 (PHYTOCHROME-INTERACTING FACTOR 1) to regulate anthocyanin biosynthesis in apple. 5' RLM-RACE and artificial microRNA transient expression system proved that vsiR693 directly targeted the mRNA of MdPIF1 for cleavage. MdPIF1 positively regulated anthocyanin biosynthesis in both apple calli and fruits, and it directly bound to G-box element in the promoter of MdPAL and MdF3H, two anthocyanin biosynthetic genes, to promote their transcription. Expression of vsiR693 negatively regulated anthocyanin biosynthesis in both apple calli and fruits. Furthermore, co-expression of vsiR693 and MdPIF1 suppressed MdPIF1-promoted anthocyanin biosynthesis in apple fruits. Infiltration of ADFVd infectious clone suppressed coloration surrounding the injection sites in apple fruits, while a mutated version of ADFVd, in which the vsiR693 producing region was mutated, failed to repress fruit coloration around the injection sites. These data provide evidence that a viroid-derived small interfering RNA targets host transcription factor to regulate anthocyanin biosynthesis in apple.
Collapse
Affiliation(s)
- Zhenlu Zhang
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhao-Yang Li
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Fu-Jun Zhang
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
| | - Peng-Fei Zheng
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ning Ma
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Lianzhen Li
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Haojian Li
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ping Sun
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Shuai Zhang
- National Key Laboratory of Wheat Improvement, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, China
| | - Xiao-Fei Wang
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiao-Yan Lu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
| | - Chun-Xiang You
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
3
|
Gao Y, Cui Y, Li M, Kang J, Yang Q, Ma Q, Long R. Comparative proteomic discovery of salt stress response in alfalfa roots and overexpression of MsANN2 confers salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109033. [PMID: 39137681 DOI: 10.1016/j.plaphy.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Soil salinity constrains growth, development and yield of alfalfa (Medicago sativa L.). To illustrate the molecular mechanisms responsible for salt tolerance, a comparative proteome analysis was explored to characterize protein profiles of alfalfa seedling roots exposed to 100 and 200 mM NaCl for three weeks. There were 52 differentially expressed proteins identified, among which the mRNA expressions of 12 were verified by Real-Time-PCR analysis. The results showed increase in abundance of ascorbate peroxidase, POD, CBS protein and PR-10 in salt-stressed alfalfa, suggesting an effectively antioxidant and defense systems. Alfalfa enhanced protein quality control system to refold or degrade abnormal proteins induced by salt stress through upregulation of unfolded protein response (UPR) marker PDIs and molecular chaperones (eg. HSP70, TCP-1, and GroES) as well as the ubiquitin-proteasome system (UPS) including ubiquitin ligase enzyme (E3) and proteasome subunits. Upregulation of proteins responsible for calcium signal transduction including calmodulin and annexin helped alfalfa adapt to salt stress. Specifically, annexin (MsANN2), a key Ca2+-binding protein, was selected for further characterization. The heterologous of the MsANN2 in Arabidopsis conferred salt tolerance. These results provide detailed information for salt-responsive root proteins and highlight the importance of MsANN2 in adapting to salt stress in alfalfa.
Collapse
Affiliation(s)
- Yanli Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang, 311300, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yanjun Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang, 311300, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qiaoli Ma
- College of Forestry and Prataculture, Ningxia University, No. 489 West Helanshan Road, Yinchuan, Ningxia, 750021, China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
4
|
Li L, Yang J, Zhang Q, Xue Q, Li M, Xue Q, Liu W, Niu Z, Ding X. Genome-wide identification of Ankyrin (ANK) repeat gene families in three Dendrobium species and the expression of ANK genes in D. officinale under gibberellin and abscisic acid treatments. BMC PLANT BIOLOGY 2024; 24:762. [PMID: 39123107 PMCID: PMC11316315 DOI: 10.1186/s12870-024-05461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Dendrobium Sw. represents one of the most expansive genera within the Orchidaceae family, renowned for its species' high medicinal and ornamental value. In higher plants, the ankyrin (ANK) repeat protein family is characterized by a unique ANK repeat domain, integral to a plethora of biological functions and biochemical activities. The ANK gene family plays a pivotal role in various plant physiological processes, including stress responses, hormone signaling, and growth. Hence, investigating the ANK gene family and identifying disease-resistance genes in Dendrobium is of paramount importance. RESULTS This research identified 78 ANK genes in Dendrobium officinale Kimura et Migo, 77 in Dendrobium nobile Lindl., and 58 in Dendrobium chrysotoxum Lindl. Subsequently, we conducted comprehensive bioinformatics analyses on these ANK gene families, encompassing gene classification, chromosomal localization, phylogenetic relationships, gene structure and motif characterization, cis-acting regulatory element identification, collinearity assessment, protein-protein interaction network construction, and gene expression profiling. Concurrently, three DoANK genes (DoANK14, DoANK19, and DoANK47) in D. officinale were discerned to indirectly activate the NPR1 transcription factor in the ETI system via SA, thereby modulating the expression of the antibacterial PR gene. Hormonal treatments with GA3 and ABA revealed that 17 and 8 genes were significantly up-regulated, while 4 and 8 genes were significantly down-regulated, respectively. DoANK32 was found to localize to the ArfGAP gene in the endocytosis pathway, impacting vesicle transport and the polar movement of auxin. CONCLUSION Our findings provide a robust framework for the taxonomic classification, evolutionary analysis, and functional prediction of Dendrobium ANK genes. The three highlighted ANK genes (DoANK14, DoANK19, and DoANK47) from D. officinale may prove valuable in disease resistance and stress response research. DoANK32 is implicated in the morphogenesis and development of D. officinale through its role in vesicular transport and auxin polarity, with subcellular localization studies confirming its presence in the nucleus and cell membrane. ANK genes displaying significant expression changes in response to hormonal treatments could play a crucial role in the hormonal response of D. officinale, potentially inhibiting its growth and development through the modulation of plant hormones such as GA3 and ABA.
Collapse
Affiliation(s)
- Lingli Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Qian Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Qiqian Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Meiqian Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization of Dendrobiums, Nanjing, China.
| |
Collapse
|
5
|
Cao Y, Zhang Q, Liu Y, Yan T, Ding L, Yang Y, Meng Y, Shan W. The RXLR effector PpE18 of Phytophthora parasitica is a virulence factor and suppresses peroxisome membrane-associated ascorbate peroxidase NbAPX3-1-mediated plant immunity. THE NEW PHYTOLOGIST 2024; 243:1472-1489. [PMID: 38877698 DOI: 10.1111/nph.19902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Phytophthora parasitica causes diseases on a broad range of host plants. It secretes numerous effectors to suppress plant immunity. However, only a few virulence effectors in P. parasitica have been characterized. Here, we highlight that PpE18, a conserved RXLR effector in P. parasitica, was a virulence factor and suppresses Nicotiana benthamiana immunity. Utilizing luciferase complementation, co-immunoprecipitation, and GST pull-down assays, we determined that PpE18 targeted NbAPX3-1, a peroxisome membrane-associated ascorbate peroxidase with reactive oxygen species (ROS)-scavenging activity and positively regulates plant immunity in N. benthamiana. We show that the ROS-scavenging activity of NbAPX3-1 was critical for its immune function and was hindered by the binding of PpE18. The interaction between PpE18 and NbAPX3-1 resulted in an elevation of ROS levels in the peroxisome. Moreover, we discovered that the ankyrin repeat-containing protein NbANKr2 acted as a positive immune regulator, interacting with both NbAPX3-1 and PpE18. NbANKr2 was required for NbAPX3-1-mediated disease resistance. PpE18 competitively interfered with the interaction between NbAPX3-1 and NbANKr2, thereby weakening plant resistance. Our results reveal an effective counter-defense mechanism by which P. parasitica employed effector PpE18 to suppress host cellular defense, by suppressing biochemical activity and disturbing immune function of NbAPX3-1 during infection.
Collapse
Affiliation(s)
- Yimeng Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tiantian Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liwen Ding
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuling Meng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weixing Shan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Guo H, Zhao Q, Wang H, Zhu S, Dong H, Xie X, Wang L, Chen L, Han H. Molecular characterization and functional analysis of Eimeria tenella ankyrin repeat-containing protein. Eur J Protistol 2024; 94:126089. [PMID: 38749182 DOI: 10.1016/j.ejop.2024.126089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Chicken coccidiosis causes disastrous losses to the poultry industry all over the world. Eimeria tenella is the most prevalent of these disease-causing species. Our former RNA-seq indicated that E. tenella ankyrin repeat-containing protein (EtANK) was expressed differently between drug-sensitive (DS) and drug-resistant strains. In this study, we cloned EtANK and analyzed its translational and transcriptional levels using quantitative real-time PCR (qPCR) and western blotting. The data showed that EtANK was significantly upregulated in diclazuril-resistant (DZR) strain and maduramicin-resistant (MRR) strain compared with the drug-sensitive (DS) strain. In addition, the transcription levels in the DZR strains isolated from the field were higher than in the DS strain. The translation levels of EtANK were higher in unsporulated oocysts (UO) than in sporozoites (SZ), sporulated oocysts (SO), or second-generation merozoites (SM), and the protein levels in SM were significantly higher than in UO, SO, and SZ. The results of the indirect immunofluorescence localization showed that the protein was distributed mainly at the anterior region of SZ and on the surface and in the cytoplasm of SM. The fluorescence intensity increased further with its development in vitro. An anti-rEtANK polyclonal antibody inhibited the invasive ability of E. tenella in DF-1 cells. These results showed that EtANK may be related to host cell invasion, required for the parasite's growth in the host, and may be involved in the development of E. tenella resistance to some drugs.
Collapse
Affiliation(s)
- Huilin Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Haixia Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Xinrui Xie
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Lihui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Lang Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China.
| |
Collapse
|
7
|
Jin C, Lu X, Yang M, Hou S. Integrative analysis indicates the potential values of ANKRD53 in stomach adenocarcinoma. Discov Oncol 2024; 15:188. [PMID: 38801557 PMCID: PMC11130106 DOI: 10.1007/s12672-024-01054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Ankyrin repeat domain 53 (ANKRD53) plays an important role in maintaining chromosome integrity and stability, and chromosome instability is associated with cancer. Through integrative analysis, this study investigates the potential value of ANKRD53 in stomach adenocarcinoma (STAD). METHODS RNA-seq and scRNA-seq data were used for integrative analysis based on online databases. Expression of ANKRD53 was confirmed by RT-PCR after bioinformatic analysis. Kaplan-Meier and Cox regression analyses were performed to evaluate the prognostic value of ANKRD53 in STAD. Gene set enrichment analysis (GSEA) was performed to evaluate ANKRD53-related signaling pathways. In addition, the interaction of ANKRD53 with immunity was also investigated. RESULTS RT-PCR in STAD cell lines confirmed that ANKRD53 was downregulated in STAD samples compared to normal samples in the online databases. As an independent predictive biomarker, ANKRD53 was combined with other clinicopathological parameters to create a prognostic nomogram. Using GSEA, ANKRD53 was found to be involved in five pathways, including the TGF-β signaling pathway. Further investigation revealed that ANKRD53 was associated with immune checkpoint molecules, immunological pathways, and immunotherapy, in addition to MSI, TMB and neoantigens. In addition, scRNA-seq data revealed that ANKRD53 is mainly expressed in CD8+ T and dendritic cells. CONCLUSIONS ANKRD53 is an important biomarker for STAD that deserves further attention.
Collapse
Affiliation(s)
- Chunjing Jin
- Laboratory Medicine Center, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Xu Lu
- Department of General Surgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Minfeng Yang
- School of Public Health, Nantong University, Nantong, China.
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Shiqiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China.
| |
Collapse
|
8
|
Wang C, Lei J, Jin X, Chai S, Jiao C, Yang X, Wang L. A Sweet Potato MYB Transcription Factor IbMYB330 Enhances Tolerance to Drought and Salt Stress in Transgenic Tobacco. Genes (Basel) 2024; 15:693. [PMID: 38927629 PMCID: PMC11202548 DOI: 10.3390/genes15060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
MYB transcription factors (TFs) play vital roles in plant growth, development, and response to adversity. Although the MYB gene family has been studied in many plant species, there is still little known about the function of R2R3 MYB TFs in sweet potato in response to abiotic stresses. In this study, an R2R3 MYB gene, IbMYB330 was isolated from sweet potato (Ipomoea batatas). IbMYB330 was ectopically expressed in tobacco and the functional characterization was performed by overexpression in transgenic plants. The IbMYB330 protein has a 268 amino acid sequence and contains two highly conserved MYB domains. The molecular weight and isoelectric point of IbMYB330 are 29.24 kD and 9.12, respectively. The expression of IbMYB330 in sweet potato is tissue-specific, and levels in the root were significantly higher than that in the leaf and stem. It showed that the expression of IbMYB330 was strongly induced by PEG-6000, NaCl, and H2O2. Ectopic expression of IbMYB330 led to increased transcript levels of stress-related genes such as SOD, POD, APX, and P5CS. Moreover, compared to the wild-type (WT), transgenic tobacco overexpression of IbMYB330 enhanced the tolerance to drought and salt stress treatment as CAT activity, POD activity, proline content, and protein content in transgenic tobacco had increased, while MDA content had decreased. Taken together, our study demonstrated that IbMYB330 plays a role in enhancing the resistance of sweet potato to stresses. These findings lay the groundwork for future research on the R2R3-MYB genes of sweet potato and indicates that IbMYB330 may be a candidate gene for improving abiotic stress tolerance in crops.
Collapse
Affiliation(s)
- Chong Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
- Crop Institute of Jiangxi Academy Agricultural Sciences, Nanchang 330200, China
| | - Jian Lei
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| | - Xiaojie Jin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| | - Shasha Chai
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| | - Chunhai Jiao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| | - Xinsun Yang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Lianjun Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| |
Collapse
|
9
|
Yan B, Zhang L, Jiao K, Wang Z, Yong K, Lu M. Vesicle formation-related protein CaSec16 and its ankyrin protein partner CaANK2B jointly enhance salt tolerance in pepper. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154240. [PMID: 38603993 DOI: 10.1016/j.jplph.2024.154240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Vesicle transport plays important roles in plant tolerance against abiotic stresses. However, the contribution of a vesicle formation related protein CaSec16 (COPII coat assembly protein Sec16-like) in pepper tolerance to salt stress remains unclear. In this study, we report that the expression of CaSec16 was upregulated by salt stress. Compared to the control, the salt tolerance of pepper with CaSec16-silenced was compromised, which was shown by the corresponding phenotypes and physiological indexes, such as the death of growing point, the aggravated leaf wilting, the higher increment of relative electric leakage (REL), the lower content of total chlorophyll, the higher accumulation of dead cells, H2O2, malonaldehyde (MDA), and proline (Pro), and the inhibited induction of marker genes for salt-tolerance and vesicle transport. In contrast, the salt tolerance of pepper was enhanced by the transient overexpression of CaSec16. In addition, heterogeneously induced CaSec16 protein did not enhance the salt tolerance of Escherichia coli, an organism lacking the vesicle transport system. By yeast two-hybrid method, an ankyrin protein, CaANK2B, was identified as the interacting protein of CaSec16. The expression of CaANK2B showed a downward trend during the process of salt stress. Compared with the control, pepper plants with transient-overexpression of CaANK2B displayed increased salt tolerance, whereas those with CaANK2B-silenced exhibited reduced salt tolerance. Taken together, both the vesicle formation related protein CaSec16 and its interaction partner CaANK2B can improve the pepper tolerance to salt stress.
Collapse
Affiliation(s)
- Bentao Yan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linyang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kexin Jiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenze Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kang Yong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Minghui Lu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Zhang FJ, Li ZY, Zhang DE, Ma N, Wang YX, Zhang TT, Zhao Q, Zhang Z, You CX, Lu XY. Identification of Hsp20 gene family in Malus domestica and functional characterization of Hsp20 class I gene MdHsp18.2b. PHYSIOLOGIA PLANTARUM 2024; 176:e14288. [PMID: 38644531 DOI: 10.1111/ppl.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/23/2024]
Abstract
Heat shock protein 20 (Hsp20) is a small molecule heat shock protein that plays an important role in plant growth, development, and stress resistance. Little is known about the function of Hsp20 family genes in apple (Malus domestica). Here, we performed a genome-wide analysis of the apple Hsp20 gene family, and a total of 49 Hsp20s genes were identified from the apple genome. Phylogenetic analysis revealed that the 49 genes were divided into 11 subfamilies, and MdHsp18.2b, a member located in the CI branch, was selected as a representative member for functional characterization. Treatment with NaCl and Botryosphaeria dothidea (B. dothidea), the causal agent of apple ring rot disease, significantly induced MdHsp18.2b transcription level. Further analysis revealed that overexpressing MdHsp18.2b reduced the resistance to salt stress but enhanced the resistance to B. dothidea infection in apple calli. Moreover, MdHsp18.2b positively regulated anthocyanin accumulation in apple calli. Physiology assays revealed that MdHsp18.2b promoted H2O2 production, even in the absence of stress factors, which might contribute to its functions in response to NaCl and B. dothidea infection. Hsps usually function as homo- or heterooligomers, and we found that MdHsp18.2b could form a heterodimer with MdHsp17.9a and MdHsp17.5, two members from the same branch with MdHsp18.2b in the phylogenetic tree. Therefore, we identified 49 Hsp20s genes from the apple genome and found that MdHsp18.2b was involved in regulating plant resistance to salt stress and B. dothidea infection, as well as in regulating anthocyanin accumulation in apple calli.
Collapse
Affiliation(s)
- Fu-Jun Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhao-Yang Li
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - De-En Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| | - Ning Ma
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yong-Xu Wang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ting-Ting Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qiang Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhenlu Zhang
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chun-Xiang You
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao-Yan Lu
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
11
|
Zeng J, Wang Y, Wu G, Sun Q, He X, Zhang X, Sun X, Zhao Y, Liu W, Xu D, Dai X, Ma W. Comparative Transcriptome Analysis Reveals the Genes and Pathways Related to Wheat Root Hair Length. Int J Mol Sci 2024; 25:2069. [PMID: 38396749 PMCID: PMC10889798 DOI: 10.3390/ijms25042069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Tube-like outgrowths from root epidermal cells, known as root hairs, enhance water and nutrient absorption, facilitate microbial interactions, and contribute to plant anchorage by expanding the root surface area. Genetically regulated and strongly influenced by environmental conditions, longer root hairs generally enhance water and nutrient absorption, correlating with increased stress resistance. Wheat, a globally predominant crop pivotal for human nutrition, necessitates the identification of long root hair genotypes and their regulatory genes to enhance nutrient capture and yield potential. This study focused on 261 wheat samples of diverse genotypes during germination, revealing noticeable disparities in the length of the root hair among the genotypes. Notably, two long root hair genotypes (W106 and W136) and two short root hair genotypes (W90 and W100) were identified. Transcriptome sequencing resulted in the development of 12 root cDNA libraries, unveiling 1180 shared differentially expressed genes (DEGs). Further analyses, including GO function annotation, KEGG enrichment, MapMan metabolic pathway analysis, and protein-protein interaction (PPI) network prediction, underscored the upregulation of root hair length regulatory genes in the long root hair genotypes. These included genes are associated with GA and BA hormone signaling pathways, FRS/FRF and bHLH transcription factors, phenylpropanoid, lignin, lignan secondary metabolic pathways, the peroxidase gene for maintaining ROS steady state, and the ankyrin gene with diverse biological functions. This study contributes valuable insights into modulating the length of wheat root hair and identifies candidate genes for the genetic improvement of wheat root traits.
Collapse
Affiliation(s)
- Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Yongmei Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Gang Wu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Qingyi Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Xiaoyan He
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Xinyi Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Xuelian Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Yan Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Wenxing Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Xuehuan Dai
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257347, China
| |
Collapse
|
12
|
Chen GL, Wang DR, Liu X, Wang X, Liu HF, Zhang CL, Zhang ZL, Li LG, You CX. The apple lipoxygenase MdLOX3 positively regulates zinc tolerance. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132553. [PMID: 37722326 DOI: 10.1016/j.jhazmat.2023.132553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Various abiotic stresses, especially heavy metals near factories around the world, limit plant growth and productivity worldwide. Zinc is a light gray transition metal, and excessive zinc will inactivate enzymes in the soil, weaken the biological function of microorganisms, and enter the food chain through enrichment, thus affecting human health. Lipoxygenase (LOX) can catalyze the production of fatty acid derivatives from phenolic triglycerides in plants and is an important pathway of fatty acid oxidation in plants, which usually begins under unfavorable conditions, especially under biotic and abiotic stresses. Lipoxygenase can be divided into 9-LOX and 13-LOX. MdLOX3 is a homolog of AtLOX3 and has been identified in apples (housefly apples). MdLOX3 has a typical conserved lipoxygenase domain, and promoter analysis shows that it contains multiple stress response elements. In addition, different abiotic stresses and hormonal treatments induced the MdLOX3 response. In order to explore the inherent anti-heavy metal mechanism of MdLOX3, this study verified the properties of MdLOX3 based on genetic analysis and overexpression experiments, including plant taproots length, plant fresh weight, chlorophyll, anthocyanins, MDA, relative electrical conductivity, hydrogen peroxide and superoxide anion, NBT\DAB staining, etc. In the experiment, overexpression of MdLOX3 in apple callus and Arabidopsis effectively enhanced the tolerance to zinc stress by improving the ability to clear ROS. Meanwhile, tomato materials with overexpression of ectopia grew better under excessive zinc ion stress. These results indicated that MdLOX3 had a good tolerance to heavy metal zinc. Homologous mutants are more sensitive to zinc, which proves that MdLOX3 plays an important positive role in zinc stressed apples, which broadens the range of action of LOX3 in different plants.
Collapse
Affiliation(s)
- Guo-Lin Chen
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Da-Ru Wang
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Xin Liu
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Xun Wang
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Hao-Feng Liu
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | | | - Zhen-Lu Zhang
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Lin-Guang Li
- Shandong Institute of Pomology, Taian, Shandong 271000, China.
| | - Chun-Xiang You
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
13
|
Wang XN, Zhang JC, Zhang HY, Wang XF, You CX. Ectopic expression of MmSERT, a mouse serotonin transporter gene, regulates salt tolerance and ABA sensitivity in apple and Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107627. [PMID: 36940523 DOI: 10.1016/j.plaphy.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
5-hydroxytryptamine (5-HT) is ubiquitously present in animals and plants, playing a vital regulatory role. SERT, a conserved serotonin reuptake transporter in animals, regulates intracellular and extracellular concentrations of 5-HT. Few studies have reported 5-HT transporters in plants. Hence, we cloned MmSERT, a serotonin reuptake transporter, from Mus musculus. Ectopic expression of MmSERT into apple calli, apple roots and Arabidopsis. Because 5-HT plays a momentous role in plant stress tolerance, we used MmSERT transgenic materials for stress treatment. We found that MmSERT transgenic materials, including apple calli, apple roots and Arabidopsis, exhibited a stronger salt tolerance phenotype. The reactive oxygen species (ROS) produced were significantly lower in MmSERT transgenic materials compared with controls under salt stress. Meanwhile, MmSERT induced the expression of SOS1, SOS3, NHX1, LEA5 and LTP1 in response to salt stress. 5-HT is the precursor of melatonin, which regulates plant growth under adversity and effectively scavenges ROS. Detection of MmSERT transgenic apple calli and Arabidopsis revealed higher melatonin levels than controls. Besides, MmSERT decreased the sensitivity of apple calli and Arabidopsis to abscisic acid (ABA). In summary, these results demonstrated that MmSERT plays a vital role in plant stress resistances, which perhaps serves as a reference for the application of transgenic technology to improve crops in the future.
Collapse
Affiliation(s)
- Xiao-Na Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jiu-Cheng Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hai-Yuan Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
14
|
Wang XN, Yang F, Zhang JC, Ren YR, An JP, Chang DY, Wang XF, You CX. Ectopic expression of MmCYP1A1, a mouse cytochrome P450 gene, positively regulates stress tolerance in apple calli and Arabidopsis. PLANT CELL REPORTS 2023; 42:433-448. [PMID: 36693991 DOI: 10.1007/s00299-022-02969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Ectopic expression of MmCYP1A1 gene from Mus musculus in apple calli and Arabidopsis increased the levels of melatonin and 6-hydroxymelatonin, and improved their stress resistance. Melatonin occurs widely in organisms, playing a key regulatory role. CYP1A1 is a cytochrome P450 monooxygenase, involved in the melatonin metabolism, and is responsible for the synthesis of 6-hydroxymelatonin from melatonin. Melatonin and 6-hydroxymelatonin have strong antioxidant activities in animals. Here, we cloned MmCYP1A1 from Mus musculus and found that ectopic expression of MmCYP1A1 improved the levels of melatonin and 6-hydroxymelatonin in transgenic apple calli and Arabidopsis. Subsequently, we observed that MmCYP1A1 increased the tolerance of transgenic apple calli and Arabidopsis to osmotic stress simulated by polyethylene glycol 6000 (PEG 6000), as well as resistance of transgenic Arabidopsis to drought stress. Further, the number of lateral roots of MmCYP1A1 transgenic Arabidopsis were enhanced significantly after PEG 6000 treatment. The expression of MmCYP1A1 remarkably reduced malondialdehyde (MDA) content, electrolyte leakage, accumulation of H2O2 and O2- during stress treatment. Moreover, MmCYP1A1 enhanced stress tolerance in apple calli and Arabidopsis by increasing the expression levels of resistance genes. MmCYP1A1 also promoted stomatal closure in transgenic Arabidopsis to reduce leaf water loss during drought. Our results indicate that MmCYP1A1 plays a key role in plant stress tolerance, which may provide a reference for future plant stress tolerance studies.
Collapse
Affiliation(s)
- Xiao-Na Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Fei Yang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Jiu-Cheng Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Yi-Ran Ren
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Jian-Ping An
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Da-Yong Chang
- Yantai Goodly Biological Technology Co., Ltd, Yan-Tai, 241003, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China.
| |
Collapse
|
15
|
Lian XY, Gao HN, Jiang H, Liu C, Li YY. MdKCS2 increased plant drought resistance by regulating wax biosynthesis. PLANT CELL REPORTS 2021; 40:2357-2368. [PMID: 34468851 DOI: 10.1007/s00299-021-02776-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
We found that the apple wax related gene played a role in changing plant epidermal permeability and enhancing plant resistance to drought stress by increasing wax accumulation. The content and composition of epidermal wax in plants are affected by genetic and environmental factors. The KCS gene encodes the β-ketoalionyl-CoA synthetase, which is a rate-limiting enzyme in the synthesis of very-long-chain fatty acids (VLCFAs). In this study, we identified the MdKCS2 gene from apple as a homolog of Arabidopsis AtKCS2. The KCS protein is localized on the endoplasmic reticulum membrane. MdKCS2 exhibited the highest expression in apple pericarp, and was induced by abiotic stresses, such as drought and salt. Transgenic analysis indicated that the MdKCS2 improved the resistance to abiotic stress in apple calli. Ectopic expression of MdKCS2 in Arabidopsis increased the content of wax in leaves and stems, changed the permeability of cuticle of leaves, and enhanced plant drought resistance.
Collapse
Affiliation(s)
- Xin-Yu Lian
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Chang Liu
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr, Gainesville, FL, 32601, USA
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
16
|
Nidhi S, Preciado J, Tie L. Knox homologs shoot meristemless (STM) and KNAT6 are epistatic to CLAVATA3 (CLV3) during shoot meristem development in Arabidopsis thaliana. Mol Biol Rep 2021; 48:6291-6302. [PMID: 34417947 DOI: 10.1007/s11033-021-06622-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND In Arabidopsis, the genes SHOOT MERISTEMLESS (STM) and CLAVATA3 (CLV3) antagonistically regulate shoot meristem development. STM is essential for both development and maintenance of the meristem, as stm mutants fail to develop a shoot meristem. CLV3, on the other hand, negatively regulates meristem proliferation, and clv3 mutants possess an enlarged shoot meristem. Genetic interaction studies revealed that stm and clv3 dominantly suppress each other's phenotypes. STM works in conjunction with its closely related homologue KNOTTED1-LIKE HOMEOBOX GENE 6 (KNAT6) to promote meristem development and organ separation, as stm knat6 double mutants fail to form shoot meristem and produce a fused cotyledon. RESULTS In this study, we show that clv3 fails to promote shoot meristem formation in stm-1 background if we also remove KNAT6. stm-1 knat6 clv3 triple mutants result in shoot meristem termination and produce fused cotyledons similar to stm knat6 double mutant. Notably, the stm-1 knat6 and stm-1 knat6 clv3 alleles lack tissue in the presumed region of SAM that is a novel phenotype reported in Arabidopsis mutants. stm-1 knat6 clv3 also showed reduced inflorescence size as compared to clv3 single or stm clv3 double mutants. CONCLUSION In contrast to previously published data, these data suggest that STM and KNAT6 are redundantly required for the vegetative SAM, but insufficient for the inflorescence meristem.
Collapse
Affiliation(s)
- Sharma Nidhi
- Howard Hughes Medical Institute, Stanford, CA, USA. .,Carnegie Institute of Science, Stanford, CA, USA.
| | - Jesus Preciado
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Liu Tie
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA. .,Carnegie Institute of Science, Stanford, CA, USA.
| |
Collapse
|