1
|
Peer LA, Wani AA, Lone AA, Dar ZA, Mir BA. Drought stress memory in maize: understanding and harnessing the past for future resilience. PLANT CELL REPORTS 2025; 44:101. [PMID: 40278890 DOI: 10.1007/s00299-025-03494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Maize (Zea mays L.), a cornerstone of global food security, faces significant challenges due to drought stress, which disrupts its growth, development, and productivity. This review synthesizes advances in our understanding of drought stress memory, a mechanism that enables maize to "remember" prior drought exposure through transcriptional, epigenetic, and physiological pathways. Key regulators, including transcription factors (ZmEREB24 and ZmNF-YC12) and epigenetic modifications (DNA methylation and histone acetylation), orchestrate stress-responsive pathways that ensure rapid adaptation to recurrent drought events. Complementing these molecular mechanisms, physiological adaptations, such as optimized root and leaf architecture, enhanced water-use efficiency, and antioxidant defenses, further strengthen drought tolerance. Practical applications, including molecular priming techniques (e.g., osmopriming, hydropriming, nanoparticles) and advanced genetic tools (CRISPR/Cas9, GWAS), promise scalable solutions for breeding drought-resilient maize varieties. Despite this progress, challenges remain, including genotype-specific variability, scalability, and trade-offs between resilience and yield. This review provides a roadmap for integrating laboratory discoveries with field-level practices, bridging molecular and agronomic innovations to address climate variability and ensure sustainable maize production and global food security.
Collapse
Affiliation(s)
- Latif A Peer
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Aijaz A Wani
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Ajaz A Lone
- Dryland Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Zahoor A Dar
- Dryland Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Bilal A Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Jammu and Kashmir, 193201, India
| |
Collapse
|
2
|
Jiang J, Zhang Y, Liu J, Zhang H, Wang T. The regulatory roles of plant miRNAs in biotic stress responses. Biochem Biophys Res Commun 2025; 755:151568. [PMID: 40043612 DOI: 10.1016/j.bbrc.2025.151568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Throughout their life cycle, plants are inevitably confronted with various challenges imposed by adverse environmental conditions, including both biotic and abiotic stresses. To adapt to these environmental fluctuations, plants have evolved a highly efficient regulatory mechanism, in which microRNAs (miRNAs) play pivotal roles. miRNAs are a class of 20-24 nucleotide non-coding RNAs generated from MIR genes, which regulate gene expression at the post-transcriptional level through mRNA degradation or translational repression. Over the past decades, accumulating evidence has demonstrated that miRNAs serve as master regulators in plant responses to biotic stresses, such as those caused by bacteria, fungi, oomycetes, viruses, nematodes, and insects. In this review, we summarize recent advances in miRNA biogenesis and highlight the regulatory roles of plant miRNAs in biotic stress tolerance. Additionally, we discuss future directions of miRNA research.
Collapse
Affiliation(s)
- Jia Jiang
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Yu Zhang
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Jing Liu
- Shandong Guoshun Construction Group Co., Ltd., Jinan, 250300, China
| | - Hongyan Zhang
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China.
| | - Tian Wang
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
3
|
Azevedo LM, de Oliveira RR, Chalfun-Junior A. The Role of FT/ TFL1 Clades and Their Hormonal Interactions to Modulate Plant Architecture and Flowering Time in Perennial Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:923. [PMID: 40265831 PMCID: PMC11944798 DOI: 10.3390/plants14060923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Human nutrition is inherently associated with the cultivation of vegetables, grains, and fruits, underscoring the critical need to understand and manipulate the balance between vegetative and reproductive development in plants. Despite the vast diversity within the plant kingdom, these developmental processes share conserved and interconnected pathways among angiosperms, predominantly involving age, vernalization, gibberellin, temperature, photoperiod, and autonomous pathways. These pathways interact with environmental cues and orchestrate the transition from vegetative growth to reproductive stages. Related to this, there are two key genes belonging to the same Phosphatidylethanolamine-binding proteins family (PEBP), the FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1), which activate and repress the floral initiation, respectively, in different plant species. They compete for transcription factors such as FLOWERING LOCUS D (FD) and 14-3-3 to form floral activation complexes (FAC) and floral repression complexes (FRC). The FT/TFL1 mechanism plays a pivotal role in meristem differentiation, determining developmental outcomes as determinate or indeterminate. This review aims to explore the roles of FT and TFL1 in plant architecture and floral induction of annual and perennial species, together with their interactions with plant hormones. In this context, we propose that plant development can be modulated by the response of FT and/or TFL1 to plant growth regulators (PGRs), which emerge as potential tools for mitigating the adverse effects of environmental changes on plant reproductive processes. Thus, understanding these mechanisms is crucial to address the challenges of agricultural practices, especially in the face of climate change.
Collapse
Affiliation(s)
- Lillian Magalhães Azevedo
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.M.A.); (R.R.d.O.)
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.M.A.); (R.R.d.O.)
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.M.A.); (R.R.d.O.)
| |
Collapse
|
4
|
Chakrabarty D. Editorial: Molecular mechanisms of metal toxicity and transcriptional/post-transcriptional regulation in plant model systems. FRONTIERS IN PLANT SCIENCE 2024; 15:1502021. [PMID: 39665110 PMCID: PMC11632460 DOI: 10.3389/fpls.2024.1502021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Affiliation(s)
- Debasis Chakrabarty
- Molecular Biology and Biotechnology, National Botanical Research Institute (CSIR), Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Nawaz M, Sun J, Shabbir S, Bo Y, He F, Nazir MM, Azeem F, Rizwan M, Pan L, Ren G, Du D. Exposure to toxic cadmium concentration induce physiological and molecular mechanisms alleviating herbivory infestation in Wedelia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109072. [PMID: 39186851 DOI: 10.1016/j.plaphy.2024.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Cadmium (Cd) toxicity induces significant disruptions in growth and development, plants have developed strategies to alleviate metal toxicity promoting establishment even during herbivores infestation. The study demonstrates that W. trilobata maintains growth and development under the combined stress of Cd exposure and herbivore invasion by Spodoptera litura, in contrast to W. chinensis. Cd toxicity markedly reduce shoot elongation and total fresh biomass, and a significant decrease in the dry weight of the shoot biomass and leaf count by 19%, 18%, 16%, and 19% in W. trilobata compared to controls. An even more pronounced decrease of 35%, 43%, 45% and 43% was found in W. chinensis. Compared to W. chinensis, W. trilobata showed a higher increase in phytohormone production including abscisic acid (ABA), gibberellic acid (GA3), indole-3-acetic acid (IAA) and methyl jasmonic acid (JA-me) under both Cd and herbivory stress as compared with respective controls. In addition, leaf ultra-structure also showed the highest damage to cell membranous structures by Cd-toxicity in W. chinensis. Furthermore, RNA-seq analysis revealed numerous genes viz., EMSY, MCCA, TIRI, BED-type, ABA, JAZ, CAB-6, CPSI, LHCII, CAX, HNM, ABC-Cd-trans and GBLP being differentially expressed between Cd-stress and herbivory groups in both W. trilobata and W. chinensis, with a particular emphasis on genes associated with metal transport and carbohydrate metabolism. Analyses employing the Gene Ontology (GO) system, the Clusters of Orthologous Groups (COG) categorization, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, highlight the functional and evolutionary relationships among the genes of the Phenylpropanoid and Flavonoid biosynthesis pathways and brassinosterod metabolism, associated with plant growth and development under Cd-toxicity and herbivory. W. trilobata opposite of W. chinensis, significantly improve plant growth and mitigates Cd toxicity through modulation of metabolic processes, and regulation of responsible genes, to sustain its growth under Cd and herbivory stress, which can be used in stress improvement in plants for sustainable ecosystem biodiversity and food security.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Samina Shabbir
- Department of Chemistry, The Women University, Multan, Pakistan
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Feng He
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Mudassir Nazir
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Linxuan Pan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guangqian Ren
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
6
|
Kumar D, Venkadesan S, Prabha R, Begam S, Dutta B, Mishra DC, Chaturvedi KK, Jha GK, Solanke AU, Sevanthi AM. RiceMetaSys: Drought-miR, a one-stop solution for drought responsive miRNAs-mRNA module in rice. Database (Oxford) 2024; 2024:baae076. [PMID: 39167719 PMCID: PMC11338179 DOI: 10.1093/database/baae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
MicroRNAs are key players involved in stress responses in plants and reports are available on the role of miRNAs in drought stress response in rice. This work reports the development of a database, RiceMetaSys: Drought-miR, based on the meta-analysis of publicly available sRNA datasets. From 28 drought stress-specific sRNA datasets, we identified 216 drought-responsive miRNAs (DRMs). The major features of the database include genotype-, tissue- and miRNA ID-specific search options and comparison of genotypes to identify common miRNAs. Co-localization of the DRMs with the known quantitative trait loci (QTLs), i.e., meta-QTL regions governing drought tolerance in rice pertaining to different drought adaptive traits, narrowed down this to 37 promising DRMs. To identify the high confidence target genes of DRMs under drought stress, degradome datasets and web resource on drought-responsive genes (RiceMetaSys: DRG) were used. Out of the 216 unique DRMs, only 193 had targets with high stringent parameters. Out of the 1081 target genes identified by Degradome datasets, 730 showed differential expression under drought stress in at least one accession. To retrieve complete information on the target genes, the database has been linked with RiceMetaSys: DRG. Further, we updated the RiceMetaSys: DRGv1 developed earlier with the addition of DRGs identified from RNA-seq datasets from five rice genotypes. We also identified 759 putative novel miRNAs and their target genes employing stringent criteria. Novel miRNA search has all the search options of known miRNAs and additionally, it gives information on their in silico validation features. Simple sequence repeat markers for both the miRNAs and their target genes have also been designed and made available in the database. Network analysis of the target genes identified 60 hub genes which primarily act through abscisic acid pathway and jasmonic acid pathway. Co-localization of the hub genes with the meta-QTL regions governing drought tolerance narrowed down this to 16 most promising DRGs. Database URL: http://14.139.229.201/RiceMetaSys_miRNA Updated database of RiceMetaSys URL: http://14.139.229.201/RiceMetaSysA/Drought/.
Collapse
Affiliation(s)
- Deepesh Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | | | - Ratna Prabha
- AKMU, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Shbana Begam
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Bipratip Dutta
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Dwijesh C Mishra
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi 110012, India
| | - K K Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi 110012, India
| | - Girish Kumar Jha
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi 110012, India
| | - Amolkumar U Solanke
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | | |
Collapse
|
7
|
Jobby R, Sarkar M, Bose R, Srivastava S, Suprasanna P. Chromiomics: Chromium detoxification and approaches for engineering tolerance in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123991. [PMID: 38631449 DOI: 10.1016/j.envpol.2024.123991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Chromium (Cr) is a heavy metal that poses a grave threat to the ecosystem including plants. Chromium is very harmful to plants due to its effects on many physiological and metabolic pathways culminating in a negative impact on plant's growth, development, and ability to take up nutrients. Plants have developed physiological, biochemical, and molecular ways of defense against Cr, such as by augmenting antioxidant potential to reduce reactive oxygen species (ROS). A number of genes have been discovered to play a significant role in the defense mechanisms of plants against Cr, for example, genes associated with the activation of phytochelatins, metallothioneins, and those of enzymes like glutathione-S-transferases. Along with this, a few miRNAs have been found to be associated in alleviating Cr stress and, to augment plant tolerance by controlling transcription factors, HSPs, and the expression of a few proteins and hormones. Defense pathway genes and miRNAs have been used for the generation of transgenic phytoremediator plants. Not only do the transgenic plants have a higher tolerance to Cr, but they also act as hyperaccumulators for Cr and have the potential to remediate other heavy metals. This article describes about environmental Cr contamination, Cr effects on plants, different genes and miRNAs involved in Cr stress mitigation and use of candidate genes, microRNAs for creating transgenic plant systems for phytoremediation, and the applications of CRISPR technology. It is expected that the integration of omics approach and advanced genomics will offer scope for more effective phytoremediation of Chromium in the coming years.
Collapse
Affiliation(s)
- Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Mrittika Sarkar
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India
| | - Roshnee Bose
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India
| | - Sudhakar Srivastava
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi-221005, India
| | - Penna Suprasanna
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India; Amity Centre for Nuclear Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India.
| |
Collapse
|
8
|
Fu S, Iqbal B, Li G, Alabbosh KF, Khan KA, Zhao X, Raheem A, Du D. The role of microbial partners in heavy metal metabolism in plants: a review. PLANT CELL REPORTS 2024; 43:111. [PMID: 38568247 DOI: 10.1007/s00299-024-03194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.
Collapse
Affiliation(s)
- Shilin Fu
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, Suzhou, People's Republic of China.
| | | | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, 61413, Abha, Saudi Arabia
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Abdulkareem Raheem
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| |
Collapse
|
9
|
Chaloupsky P, Kolackova M, Dobesova M, Pencik O, Tarbajova V, Capal P, Svec P, Ridoskova A, Bytesnikova Z, Pelcova P, Adam V, Huska D. Mechanistic transcriptome comprehension of Chlamydomonas reinhardtii subjected to black phosphorus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115823. [PMID: 38176180 DOI: 10.1016/j.ecoenv.2023.115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Two-dimensional materials have recently gained significant awareness. A representative of such materials, black phosphorous (BP), earned attention based on its comprehensive application potential. The presented study focuses on the mode of cellular response underlying the BP interaction with Chlamydomonas reinhardtii as an algal model organism. We observed noticeable ROS formation and changes in outer cellular topology after 72 h of incubation at 5 mg/L BP. Transcriptome profiling was employed to examine C. reinhardtii response after exposure to 25 mg/L BP for a deeper understanding of the associated processes. The RNA sequencing has revealed a comprehensive response with abundant transcript downregulation. The mode of action was attributed to cell wall disruption, ROS elevation, and chloroplast disturbance. Besides many other dysregulated genes, the cell response involved the downregulation of GH9 and gametolysin within a cell wall, pointing to a shift to discrete manipulation with resources. The response also included altered expression of the PRDA1 gene associated with redox governance in chloroplasts implying ROS disharmony. Altered expression of the Cre-miR906-3p, Cre-miR910, and Cre-miR914 pointed to those as potential markers in stress response studies.
Collapse
Affiliation(s)
- Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Ondrej Pencik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vladimira Tarbajova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavlina Pelcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
10
|
Amini Z, Salehi H, Chehrazi M, Etemadi M, Xiang M. miRNAs and Their Target Genes Play a Critical Role in Response to Heat Stress in Cynodon dactylon (L.) Pers. Mol Biotechnol 2023; 65:2004-2017. [PMID: 36913082 DOI: 10.1007/s12033-023-00713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
Annual global temperature is increasing rapidly. Therefore, in the near future, plants will be exposed to severe heat stress. However, the potential of microRNAs-mediated molecular mechanism for modulating the expression of their target genes is unclear. To investigate the changes of miRNAs in thermo-tolerant plants, in this study, we first investigated the impact of four high temperature regimes including 35/30 °C, 40/35 °C, 45/40 °C, and 50/45 °C in a day/night cycle for 21 days on the physiological traits (total chlorophyll, relative water content and electrolyte leakage and total soluble protein), antioxidant enzymes activities (superoxide dismutase, ascorbic peroxidase, catalase and peroxidase), and osmolytes (total soluble carbohydrates and starch) in two bermudagrass accessions named Malayer and Gorgan. The results showed that more chlorophyll and the relative water content, lower ion leakage, more efficient protein and carbon metabolism and activation of defense proteins (such as antioxidant enzymes) in Gorgan accession, led to better maintained plant growth and activity during heat stress. In the next stage, to investigate the role of miRNAs and their target genes in response to heat stress in a thermo-tolerant plant, the impact of severe heat stress (45/40 °C) was evaluated on the expression of three miRNAs (miRNA159a, miRNA160a and miRNA164f) and their target genes (GAMYB, ARF17 and NAC1, respectively). All measurements were performed in leaves and roots simultaneously. Heat stress significantly induced the expression of three miRNAs in leaves of two accession, while having different effects on the expression of these miRNAs in roots. The results showed that a decrease in the expression of the transcription factor ARF17, no change in the expression of the transcription factor NAC1, and an increase in the expression of the transcription factor GAMYB in leaf and root tissues of Gorgan accession led to improved heat tolerance in it. These results also showed that the effect of miRNAs on the modulating expression of target mRNAs in leaves and roots is different under heat stress, and miRNAs and mRNAs show spatiotemporal expression. Therefore, the simultaneous analysis of miRNAs and mRNAs expressions in shoot and roots is needed to comprehensively understand miRNAs regulatory function under heat stress.
Collapse
Affiliation(s)
- Zohreh Amini
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hassan Salehi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mehrangiz Chehrazi
- Department of Horticultural Science, School of Agriculture, Shahid Chamran University, Ahvaz, Iran
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mingying Xiang
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
11
|
El-Remaly E. Morphological, physio-biochemical, and molecular indications of heat stress tolerance in cucumber. Sci Rep 2023; 13:18729. [PMID: 37907590 PMCID: PMC10618462 DOI: 10.1038/s41598-023-45163-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Global warming is a critical challenge limiting crop productivity. Heat stress during cucumber growing stages caused deterioration impacts on the flowering, fruit, and yield stages. In this study, "inbred line 1 and hybrid P1 × P2" (heat-tolerant) and "Barracuda" (heat-sensitive) were utilized to determine the heat tolerance in summer season. The heat injury index was used to exhibit the heat tolerance performance. The heat injury index for heat tolerant (HT) genotypes, on leaves (HIIL%) and female flowers (HIIF%), was less than 25 and 15 % in HT, compared to heat sensitive (HS) was more than 75 and 85%, respectively. Moreover, the content of leaf chlorophyll, proline, brassinosteroid (BRs), abscisic acid content (ABA), the activity of catalase (CAT, EC 1.11. 1.6), peroxidase (POD, EC 1.11.1.7) and superoxide dismutase (SOD, EC 1.15.1.1) increased with the heat stress responses in HT plants. Expression pattern analyses of eight genes, related to POD (CSGY4G005180 and CSGY6G015230), SOD (CSGY4G010750 and CSGY1G026400), CAT (CsGy4G025230 and CsGy4G025240), and BR (CsGy6G029150 and CsGy6G004930) showed a significant increase in HT higher than in HS plants. This study furnishes valuable markers for heat tolerance genotypes breeding in cucumber and provides a basis for understanding heat-tolerance mechanisms.
Collapse
Affiliation(s)
- Eman El-Remaly
- Cross-Pollinated Vegetables Research Department, Horticultural Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
| |
Collapse
|
12
|
Leisner CP, Potnis N, Sanz-Saez A. Crosstalk and trade-offs: Plant responses to climate change-associated abiotic and biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:2946-2963. [PMID: 36585762 DOI: 10.1111/pce.14532] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
As sessile organisms, plants are constantly challenged by a dynamic growing environment. This includes fluctuations in temperature, water availability, light levels, and changes in atmospheric constituents such as carbon dioxide (CO2 ) and ozone (O3 ). In concert with changes in abiotic conditions, plants experience changes in biotic stress pressures, including plant pathogens and herbivores. Human-induced increases in atmospheric CO2 levels have led to alterations in plant growth environments that impact their productivity and nutritional quality. Additionally, it is predicted that climate change will alter the prevalence and virulence of plant pathogens, further challenging plant growth. A knowledge gap exists in the complex interplay between plant responses to biotic and abiotic stress conditions. Closing this gap is crucial for developing climate resilient crops in the future. Here, we briefly review the physiological responses of plants to elevated CO2 , temperature, tropospheric O3 , and drought conditions, as well as the interaction of these abiotic stress factors with plant pathogen pressure. Additionally, we describe the crosstalk and trade-offs involved in plant responses to both abiotic and biotic stress, and outline targets for future work to develop a more sustainable future food supply considering future climate change.
Collapse
Affiliation(s)
- Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
13
|
Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S, Nandy S, Dey A. Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107940. [PMID: 37738864 DOI: 10.1016/j.plaphy.2023.107940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
Abiotic stresses are responsible for the major losses in crop yield all over the world. Stresses generate harmful ROS which can impair cellular processes in plants. Therefore, plants have evolved antioxidant systems in defence against the stress-induced damages. The frequency of occurrence of abiotic stressors has increased several-fold due to the climate change experienced in recent times and projected for the future. This had particularly aggravated the risk of yield losses and threatened global food security. Non-coding RNAs are the part of eukaryotic genome that does not code for any proteins. However, they have been recently found to have a crucial role in the responses of plants to both abiotic and biotic stresses. There are different types of ncRNAs, for example, miRNAs and lncRNAs, which have the potential to regulate the expression of stress-related genes at the levels of transcription, post-transcription, and translation of proteins. The lncRNAs are also able to impart their epigenetic effects on the target genes through the alteration of the status of histone modification and organization of the chromatins. The current review attempts to deliver a comprehensive account of the role of ncRNAs in the regulation of plants' abiotic stress responses through ROS homeostasis. The potential applications ncRNAs in amelioration of abiotic stresses in field crops also have been evaluated.
Collapse
Affiliation(s)
- Swati Hazra
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | | | - Synudeen Sahib
- S. S. Cottage, Njarackal, P.O.: Perinad, Kollam, 691601, Kerala, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh 792103, India.
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, West Bengal 741235, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Sayanti Mandal
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College (affiliated to Savitribai Phule Pune University), Sant Tukaram Nagar, Pimpri, Pune, Maharashtra-411018, India.
| | - Samapika Nandy
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India; Department of Botany, Vedanta College, 33A Shiv Krishna Daw Lane, Kolkata-700054, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India.
| |
Collapse
|
14
|
Kumar D, Ramkumar MK, Dutta B, Kumar A, Pandey R, Jain PK, Gaikwad K, Mishra DC, Chaturvedi KK, Rai A, Solanke AU, Sevanthi AM. Integration of miRNA dynamics and drought tolerant QTLs in rice reveals the role of miR2919 in drought stress response. BMC Genomics 2023; 24:526. [PMID: 37674140 PMCID: PMC10481553 DOI: 10.1186/s12864-023-09609-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/20/2023] [Indexed: 09/08/2023] Open
Abstract
To combat drought stress in rice, a major threat to global food security, three major quantitative trait loci for 'yield under drought stress' (qDTYs) were successfully exploited in the last decade. However, their molecular basis still remains unknown. To understand the role of secondary regulation by miRNA in drought stress response and their relation, if any, with the three qDTYs, the miRNA dynamics under drought stress was studied at booting stage in two drought tolerant (Sahbaghi Dhan and Vandana) and one drought sensitive (IR 20) cultivars. In total, 53 known and 40 novel differentially expressed (DE) miRNAs were identified. The primary drought responsive miRNAs were Osa-MIR2919, Osa-MIR3979, Osa-MIR159f, Osa-MIR156k, Osa-MIR528, Osa-MIR530, Osa-MIR2091, Osa-MIR531a, Osa-MIR531b as well as three novel ones. Sixty-one target genes that corresponded to 11 known and 4 novel DE miRNAs were found to be co-localized with the three qDTYs, out of the 1746 target genes identified. We could validate miRNA-mRNA expression under drought for nine known and three novel miRNAs in eight different rice genotypes showing varying degree of tolerance. From our study, Osa-MIR2919, Osa-MIR3979, Osa-MIR528, Osa-MIR2091-5p and Chr01_11911S14Astr and their target genes LOC_Os01g72000, LOC_Os01g66890, LOC_Os01g57990, LOC_Os01g56780, LOC_Os01g72834, LOC_Os01g61880 and LOC_Os01g72780 were identified as the most promising candidates for drought tolerance at booting stage. Of these, Osa-MIR2919 with 19 target genes in the qDTYs is being reported for the first time. It acts as a negative regulator of drought stress tolerance by modulating the cytokinin and brassinosteroid signalling pathway.
Collapse
Affiliation(s)
- Deepesh Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, Indian Agricultural Research Institute, Pusa Campus New Delhi, New Delhi, 110012, India
| | - M K Ramkumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Bipratip Dutta
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, Indian Agricultural Research Institute, Pusa Campus New Delhi, New Delhi, 110012, India
| | - Ajay Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Rakesh Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pradeep Kumar Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Dwijesh C Mishra
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - K K Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | | | | |
Collapse
|
15
|
Yang X, Fu T, Yu R, Zhang L, Yang Y, Xiao D, Wang Y, Wang Y, Wang Y. miR159a modulates poplar resistance against different fungi and bacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107899. [PMID: 37494825 DOI: 10.1016/j.plaphy.2023.107899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Trees are inevitably attacked by different kinds of pathogens in their life. However, little is known about the regulatory factors in poplar response to different pathogen infections. MicroRNA159 (miR159) is a highly conserved microRNA (miRNA) in plants and regulates plant development and stress responses. Here, transgenic poplar overexpressing pto-miR159a (OX-159) showed antagonistic regulation mode to poplar stem disease caused by fungi Cytospora chrysosperma and bacteria Lonsdalea populi. OX-159 lines exhibited a higher susceptibility after inoculation with bacterium L. populi, whereas enhanced disease resistance to necrotrophic fungi C. chrysosperma compared with wild-type (WT) poplars. Intriguingly, further disease assay found that OX159 line rendered the poplar susceptible to hemi-biotrophic fungi Colletotrichum gloeosporioide, exhibiting larger necrosis and lower ROS accumulation than WT lines. Transcriptome analyses revealed that more down-regulated differentially expressed genes with disease-resistant domains in OX-159 line compared with WT line. Moreover, the central mediator NPR1 of salicylic acid (SA) pathway showed a decrease in expression level, while jasmonic acid/ethylene (JA/ET) signal pathway marker genes ERF, as well as PR3, MPK3, and MPK6 genes showed an increase level in OX159-2 and OX159-5 compared with WT lines. Further spatio-temporal expression analysis revealed JA/ET signaling was involved in the dynamic response process to C. gloeosporioides in WT and OX159 lines. These results demonstrate that overexpression of pto-miR159a resulted in the crosstalk changes of the downstream hub genes, thereby controlling the disease resistance of poplars, which provides clues for understanding pto-miR159a role in coordinating poplar-pathogen interactions.
Collapse
Affiliation(s)
- Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tiantian Fu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ruen Yu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lichun Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Forestry Investigation and Planning Institute of Liaoning Province, Liaoning, 110122, China
| | - Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Dandan Xiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - YuanYuan Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yonglin Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
16
|
Wang N, Qi F, Wang F, Lin Y, Xiaoyang C, Peng Z, Zhang B, Qi X, Deyholos MK, Zhang J. Evaluation of Differentially Expressed Genes in Leaves vs. Roots Subjected to Drought Stress in Flax ( Linum usitatissimum L.). Int J Mol Sci 2023; 24:12019. [PMID: 37569394 PMCID: PMC10419004 DOI: 10.3390/ijms241512019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Drought stress is a common environmental challenge that plants face, severely constraining plant growth and reducing crop yield and quality. Several studies have highlighted distinct responses between monocotyledonous and dicotyledonous plants. However, the mechanisms underlying flax tolerance to abiotic stress, such as drought, remain unclear. In this study, we investigated the morphological, physiological, and biochemical characteristics and the genome-wide gene expression of oil flax and fiber flax in response to drought stress. The results revealed that drought stress caused significant wilting of flax leaves. Within the first 24 h of stress, various physiological and biochemical characteristics exhibited rapid responses. These included fresh weight, relative water content (RWC), proline, soluble protein, soluble sugar, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in the leaves or roots of flax. Additionally, drought stress led to a significant rise in lignin content in fiber flax. In addition, the transcriptome analysis demonstrated genome-wide variations in gene expression induced by drought stress. Specifically, genes associated with photosynthesis, proline biosynthesis, and phytohormone metabolism exhibited significant differences in expression levels under stress conditions in flax. These findings highlight the rapid response of flax to drought stress within a short-term period. Our experiment also revealed that, although there were variations in the levels of small compound content or gene expression between Longya10 and Fany under drought stress, most stress-resistance responses were similar. Furthermore, the results provide additional evidence supporting the existence of mechanisms underlying the response to drought stress in plants.
Collapse
Affiliation(s)
- Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Fan Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Fu Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Yujie Lin
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Chunxiao Xiaoyang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun 130000, China;
| | - Bi Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Xin Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
| | - Michael K. Deyholos
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada;
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (F.Q.); (F.W.); (Y.L.); (C.X.); (B.Z.)
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada;
| |
Collapse
|
17
|
Kaur S, Seem K, Kumar S, Kaundal R, Mohapatra T. Comparative Genome-Wide Analysis of MicroRNAs and Their Target Genes in Roots of Contrasting Indica Rice Cultivars under Reproductive-Stage Drought. Genes (Basel) 2023; 14:1390. [PMID: 37510295 PMCID: PMC10379292 DOI: 10.3390/genes14071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Recurrent occurrence of drought stress in varying intensity has become a common phenomenon in the present era of global climate change, which not only causes severe yield losses but also challenges the cultivation of rice. This raises serious concerns for sustainable food production and global food security. The root of a plant is primarily responsible to perceive drought stress and acquire sufficient water for the survival/optimal growth of the plant under extreme climatic conditions. Earlier studies reported the involvement/important roles of microRNAs (miRNAs) in plants' responses to environmental/abiotic stresses. A number (738) of miRNAs is known to be expressed in different tissues under varying environmental conditions in rice, but our understanding of the role, mode of action, and target genes of the miRNAs are still elusive. Using contrasting rice [IR-64 (reproductive-stage drought sensitive) and N-22 (drought-tolerant)] cultivars, imposed with terminal (reproductive-stage) drought stress, we demonstrate differential expression of 270 known and 91 novel miRNAs in roots of the contrasting rice cultivars in response to the stress. Among the known miRNAs, osamiR812, osamiR166, osamiR156, osamiR167, and osamiR396 were the most differentially expressed miRNAs between the rice cultivars. In the root of N-22, 18 known and 12 novel miRNAs were observed to be exclusively expressed, while only two known (zero novels) miRNAs were exclusively expressed in the roots of IR-64. The majority of the target gene(s) of the miRNAs were drought-responsive transcription factors playing important roles in flower, grain development, auxin signaling, root development, and phytohormone-crosstalk. The novel miRNAs identified in this study may serve as good candidates for the genetic improvement of rice for terminal drought stress towards developing climate-smart rice for sustainable food production.
Collapse
Affiliation(s)
- Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | | |
Collapse
|
18
|
Rawal HC, Ali S, Mondal TK. Role of non-coding RNAs against salinity stress in Oryza species: Strategies and challenges in analyzing miRNAs, tRFs and circRNAs. Int J Biol Macromol 2023; 242:125172. [PMID: 37268077 DOI: 10.1016/j.ijbiomac.2023.125172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Salinity is an imbalanced concentration of mineral salts in the soil or water that causes yield loss in salt-sensitive crops. Rice plant is vulnerable to soil salinity stress at seedling and reproductive stages. Different non-coding RNAs (ncRNAs) post-transcriptionally regulate different sets of genes during different developmental stages under varying salinity tolerance levels. While microRNAs (miRNAs) are well known small endogenous ncRNAs, tRNA-derived RNA fragments (tRFs) are an emerging class of small ncRNAs derived from tRNA genes with a demonstrated regulatory role, like miRNAs, in humans but unexplored in plants. Circular RNA (circRNA), another ncRNA produced by back-splicing events, acts as target mimics by preventing miRNAs from binding with their target mRNAs, thereby reducing the miRNA's action upon its target. Same may hold true between circRNAs and tRFs. Hence, the work done on these ncRNAs was reviewed and no reports were found for circRNAs and tRFs under salinity stress in rice, either at seedling or reproductive stages. Even the reports on miRNAs are restricted to seedling stage only, in spite of severe effects on rice crop production due to salt stress during reproductive stage. Moreover, this review sheds light on strategies to predict and analyze these ncRNAs in an effective manner.
Collapse
Affiliation(s)
- Hukam Chand Rawal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India; School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Shakir Ali
- School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India; Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India.
| |
Collapse
|
19
|
Fang S, Yang H, Duan L, Shi J, Guo L. Potassium fertilizer improves drought stress alleviation potential in sesame by enhancing photosynthesis and hormonal regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107744. [PMID: 37201413 DOI: 10.1016/j.plaphy.2023.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Soil-potassium (K) low availability and drought stress are limiting factors to crop productivity in arid and semiarid regions. A pot experiment with four K soil supplies (0, 60, 120 and 180 K2O kg ha-1) and exposed to drought stress with 50 ± 5% field capacity was performed to investigate the function of K in protecting sesame plants from the adverse effects of drought based on the related physio-biochemical traits. The water stress was applied during flowering by withholding water for 6 days, and then rewatering to a well-watered level (75 ± 5% field capacity). Results showed that drought stress substantially reduced leaf relative water content (RWC), stomatal conductance (Gs), transpiration rate (Tr), photosynthetic rate (Pn), maximum PSII yield (Fv/Fm), and actual quantum yield of PSII (ФPSII), leading to greater non-photochemical quenching (qN) and stomatal limitation (Ls), thereby resulting in a decreased yield in contrast with well-watered sesame plants. Incidentally, K was more effective in promoting yield production under drought stress relative to well-watered conditions, and the optimal K application was 120 kg ha-1, which primarily attributed to the enhanced photosynthetic and plant water retaining ability. Specifically, plants receiving K supply showed greater leaf gas exchange traits, higher Fv/Fm and ФPSII values, and superior water use efficiency as compared to K-deficiency plants in both water regimes. Moreover, K can ameliorate the adverse effects of drought by improving salicylic acid (SA) while conversely decreasing abscisic acid (ABA) and jasmonic acid (JA) concentrations that are involved in controlling stomatal closure. It is noted that significant correlations between the seed yield, gas exchange parameters, and aforementioned endogenous hormones were observed. In conclusion, the K application can improve the sesame plant's potential to maintain functionality regarding photosynthetic response and phytohormone regulation under drought stress, and ultimately, enhancing the sesame's productivity.
Collapse
Affiliation(s)
- Sheng Fang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Huiyi Yang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Licheng Duan
- Agricultural Meteorology Center of Jiangxi Province/Meteorological Bureau of Nanchang County, Nanchang, 330096, China.
| | - Jin Shi
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lin Guo
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
20
|
Wang Q, Guo M, Chen J, Duan R. A gene regulatory network inference model based on pseudo-siamese network. BMC Bioinformatics 2023; 24:163. [PMID: 37085776 PMCID: PMC10122305 DOI: 10.1186/s12859-023-05253-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/24/2023] [Indexed: 04/23/2023] Open
Abstract
MOTIVATION Gene regulatory networks (GRNs) arise from the intricate interactions between transcription factors (TFs) and their target genes during the growth and development of organisms. The inference of GRNs can unveil the underlying gene interactions in living systems and facilitate the investigation of the relationship between gene expression patterns and phenotypic traits. Although several machine-learning models have been proposed for inferring GRNs from single-cell RNA sequencing (scRNA-seq) data, some of these models, such as Boolean and tree-based networks, suffer from sensitivity to noise and may encounter difficulties in handling the high noise and dimensionality of actual scRNA-seq data, as well as the sparse nature of gene regulation relationships. Thus, inferring large-scale information from GRNs remains a formidable challenge. RESULTS This study proposes a multilevel, multi-structure framework called a pseudo-Siamese GRN (PSGRN) for inferring large-scale GRNs from time-series expression datasets. Based on the pseudo-Siamese network, we applied a gated recurrent unit to capture the time features of each TF and target matrix and learn the spatial features of the matrices after merging by applying the DenseNet framework. Finally, we applied a sigmoid function to evaluate interactions. We constructed two maize sub-datasets, including gene expression levels and GRNs, using existing open-source maize multi-omics data and compared them to other GRN inference methods, including GENIE3, GRNBoost2, nonlinear ordinary differential equations, CNNC, and DGRNS. Our results show that PSGRN outperforms state-of-the-art methods. This study proposed a new framework: a PSGRN that allows GRNs to be inferred from scRNA-seq data, elucidating the temporal and spatial features of TFs and their target genes. The results show the model's robustness and generalization, laying a theoretical foundation for maize genotype-phenotype associations with implications for breeding work.
Collapse
Affiliation(s)
- Qian Wang
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China.
| | - Jian Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Ran Duan
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| |
Collapse
|
21
|
Bravo-Vázquez LA, Angulo-Bejarano PI, Bandyopadhyay A, Sharma A, Paul S. Regulatory roles of noncoding RNAs in callus induction and plant cell dedifferentiation. PLANT CELL REPORTS 2023; 42:689-705. [PMID: 36753041 DOI: 10.1007/s00299-023-02992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Plant regulatory noncoding RNAs (ncRNAs) have emerged as key modulators of gene expression during callus induction. Their further study may promote the design of innovative plant tissue culture protocols. The use of plants by humans has recently taken on a new and expanding insight due to the advent of genetic engineering technologies. In this context, callus cultures have shown remarkable potential for synthesizing valuable biomolecules, crop improvement, plant micropropagation, and biodiversity preservation. A crucial stage in callus production is the conversion of somatic cells into totipotent cells; compelling evidence indicates that stress factors, transcriptional regulators, and plant hormones can trigger this biological event. Besides, posttranscriptional regulators of gene expression might be essential participants in callus induction. However, research related to the analysis of noncoding RNAs (ncRNAs) that modulate callogenesis and plant cell dedifferentiation in vitro is still at an early stage. During the last decade, some relevant studies have enlightened the fact that different classes of ncRNAs, such as microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs) are implicated in plant cell dedifferentiation through regulating the expression levels of diverse gene targets. Hence, understanding the molecular relevance of these ncRNAs in the aforesaid biological processes might represent a promising source of new biotechnological approaches for callus culture and plant improvement. In this current work, we review the experimental evidence regarding the prospective roles of ncRNAs in callus induction and plant cell dedifferentiation to promote this field of study.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Paola Isabel Angulo-Bejarano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines
- Reliance Industries Ltd., Navi Mumbai, 400701, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| |
Collapse
|
22
|
Salih H, Bai W, Zhao M, Liang Y, Yang R, Zhang D, Li X. Genome-Wide Characterization and Expression Analysis of Transcription Factor Families in Desert Moss Syntrichia caninervis under Abiotic Stresses. Int J Mol Sci 2023; 24:ijms24076137. [PMID: 37047111 PMCID: PMC10094499 DOI: 10.3390/ijms24076137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Transcription factor (TF) families play important roles in plant stress responses. S. caninervis is a new model moss for plant desiccation tolerance studies. Here, we report a high-confidence identification and characterization of 591 TFs representing 52 families that covered all chromosomes in S. caninervis. GO term and KEGG pathway analysis showed that TFs were involved in the regulation of transcription, DNA-templated, gene expression, binding activities, plant hormone signal transduction, and circadian rhythm. A number of TF promoter regions have a mixture of various hormones-related cis-regulatory elements. AP2/ERF, bHLH, MYB, and C2H2-zinc finger TFs were the overrepresented TF families in S. caninervis, and the detailed classification of each family is performed based on structural features. Transcriptome analysis revealed the transcript abundances of some ScAP2/ERF, bHLH, MYB, and C2H2 genes were accumulated in the treated S. caninervis under cold, dehydration, and rehydration stresses. The RT-qPCR results strongly agreed with RNA-seq analysis, indicating these TFs might play a key role in S. caninervis response to abiotic stress. Our comparative TF characterization and classification provide the foundations for functional investigations of the dominant TF genes involved in S. caninervis stress response, as well as excellent stress tolerance gene resources for plant stress resistance breeding.
Collapse
|
23
|
Zhang Y, Zhou Y, Zhu W, Liu J, Cheng F. Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:965745. [PMID: 36311129 PMCID: PMC9597485 DOI: 10.3389/fpls.2022.965745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/26/2022] [Indexed: 05/24/2023]
Abstract
To survive in adverse environmental conditions, plants have evolved sophisticated genetic and epigenetic regulatory mechanisms to balance their growth and abiotic stress tolerance. An increasing number of non-coding RNAs (ncRNAs), including small RNAs (sRNAs) and long non-coding RNAs (lncRNAs) have been identified as essential regulators which enable plants to coordinate multiple aspects of growth and responses to environmental stresses through modulating the expression of target genes at both the transcriptional and posttranscriptional levels. In this review, we summarize recent advances in understanding ncRNAs-mediated prioritization towards plant growth or tolerance to abiotic stresses, especially to cold, heat, drought and salt stresses. We highlight the diverse roles of evolutionally conserved microRNAs (miRNAs) and small interfering RNAs (siRNAs), and the underlying phytohormone-based signaling crosstalk in regulating the balance between plant growth and abiotic stress tolerance. We also review current discoveries regarding the potential roles of ncRNAs in stress memory in plants, which offer their descendants the potential for better fitness. Future ncRNAs-based breeding strategies are proposed to optimize the balance between growth and stress tolerance to maximize crop yield under the changing climate.
Collapse
Affiliation(s)
- Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ye Zhou
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fang Cheng
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
24
|
Jiao P, Ma R, Wang C, Chen N, Liu S, Qu J, Guan S, Ma Y. Integration of mRNA and microRNA analysis reveals the molecular mechanisms underlying drought stress tolerance in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:932667. [PMID: 36247625 PMCID: PMC9557922 DOI: 10.3389/fpls.2022.932667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/02/2022] [Indexed: 05/24/2023]
Abstract
Drought is among the most serious environmental issue globally, and seriously affects the development, growth, and yield of crops. Maize (Zea mays L.), an important crop and industrial raw material, is planted on a large scale worldwide and drought can lead to large-scale reductions in maize corn production; however, few studies have focused on the maize root system mechanisms underlying drought resistance. In this study, miRNA-mRNA analysis was performed to deeply analyze the molecular mechanisms involved in drought response in the maize root system under drought stress. Furthermore, preliminary investigation of the biological function of miR408a in the maize root system was also conducted. The morphological, physiological, and transcriptomic changes in the maize variety "M8186" at the seedling stage under 12% PEG 6000 drought treatment (0, 7, and 24 h) were analyzed. With prolonged drought stress, seedlings gradually withered, the root system grew significantly, and abscisic acid, brassinolide, lignin, glutathione, and trehalose content in the root system gradually increased. Furthermore, peroxidase activity increased, while gibberellic acid and jasmonic acid gradually decreased. Moreover, 32 differentially expressed miRNAs (DEMIRs), namely, 25 known miRNAs and 7 new miRNAs, and 3,765 differentially expressed mRNAs (DEMRs), were identified in maize root under drought stress by miRNA-seq and mRNA-seq analysis, respectively. Through combined miRNA-mRNA analysis, 16 miRNA-target gene pairs, comprising 9 DEMIRs and 15 DEMRs, were obtained. In addition, four metabolic pathways, namely, "plant hormone signal transduction", "phenylpropane biosynthesis", "glutathione metabolism", and "starch and sucrose metabolism", were predicted to have important roles in the response of the maize root system to drought. MiRNA and mRNA expression results were verified by real-time quantitative PCR. Finally, miR408a was selected for functional analysis and demonstrated to be a negative regulator of drought response, mainly through regulation of reactive oxygen species accumulation in the maize root system. This study helps to elaborate the regulatory response mechanisms of the maize root system under drought stress and predicts the biological functions of candidate miRNAs and mRNAs, providing strategies for subsequent mining for, and biological breeding to select for, drought-responsive genes in the maize root system.
Collapse
Affiliation(s)
- Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ruiqi Ma
- College of Plant Science, Jilin University, Changchun, China
| | - Chunlai Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nannan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jing Qu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
25
|
Santos CA, Moro CF, Salgado I, Braga MR, Gaspar M. Noncoding RNAs responsive to nitric oxide and their protein-coding gene targets shed light on root hair formation in Arabidopsis thaliana. Front Genet 2022; 13:958641. [PMID: 36238154 PMCID: PMC9551039 DOI: 10.3389/fgene.2022.958641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
An overview of the total Arabidopsis thaliana transcriptome, described previously by our research group, pointed some noncoding RNA (ncRNA) as participants in the restoration of hair-root phenotype in A. thaliana rhd6 mutants, leading us to a deeper investigation. A transcriptional gene expression profiling of seedling roots was performed aiming to identify ncRNA responsive to nitric oxide (GSNO) and auxin (IAA), and their involvement in root hair formation in the rhd6 null mutant. We identified 3,631 ncRNAs, including new ones, in A. thaliana and differential expression (DE) analysis between the following: 1) GSNO-treated rhd6 vs. untreated rhd6, 2) IAA-treated rhd6 vs. untreated rhd6, 3) GSNO-treated rhd6 vs. IAA-treated rhd6, and 4) WS-2 vs. untreated rhd6 detected the greatest number of DE genes in GSNO-treated rhd6. We detected hundreds of in silico interactions among ncRNA and protein-coding genes (PCGs), highlighting MIR5658 and MIR171 precursors highly upregulated in GSNO-treated rhd6 and wild type, respectively. Those ncRNA interact with many DE PCGs involved in hormone signaling, cell wall development, transcription factors, and root hair formation, becoming candidate genes in cell wall modulation and restoration of root hair phenotype by GSNO treatment. Our data shed light on how GSNO modulates ncRNA and their PCG targets in A. thaliana root hair formation.
Collapse
Affiliation(s)
- Camilla Alves Santos
- Laboratório de Ecofisiologia e Bioquímica de Plantas, Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, São Paulo, SP, Brasil
- *Correspondence: Camilla Alves Santos, ; Marília Gaspar,
| | - Camila Fernandes Moro
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Ione Salgado
- Laboratório de Ecofisiologia e Bioquímica de Plantas, Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, São Paulo, SP, Brasil
| | - Márcia Regina Braga
- Laboratório de Ecofisiologia e Bioquímica de Plantas, Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, São Paulo, SP, Brasil
| | - Marília Gaspar
- Laboratório de Ecofisiologia e Bioquímica de Plantas, Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, São Paulo, SP, Brasil
- *Correspondence: Camilla Alves Santos, ; Marília Gaspar,
| |
Collapse
|
26
|
Shamloo-Dashtpagerdi R, Lindlöf A, Tahmasebi S. Evidence that miR168a contributes to salinity tolerance of Brassica rapa L. via mediating melatonin biosynthesis. PHYSIOLOGIA PLANTARUM 2022; 174:e13790. [PMID: 36169653 DOI: 10.1111/ppl.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Melatonin is a master regulator of diverse biological processes, including plant's abiotic stress responses and tolerance. Despite the extensive information on the role of melatonin in response to abiotic stress, how plants regulate endogenous melatonin content under stressful conditions remains largely unknown. In this study, we computationally mined Expressed Sequence Tag (EST) libraries of salinity-exposed Chinese cabbage (Brassica rapa) to identify the most reliable differentially expressed miRNA and its target gene(s). In light of these analyses, we found that miR168a potentially targets a key melatonin biosynthesis gene, namely O-METHYLTRANSFERASE 1 (OMT1). Accordingly, molecular and physiochemical evaluations were performed in a separate salinity experiment using contrasting B. rapa genotypes. Then, the association between B. rapa salinity tolerance and changes in measured molecular and physiochemical characteristics was determined. Results indicated that the expression profiles of miR168a and OMT1 significantly differed between B. rapa genotypes. Moreover, the expression profiles of miR168a and OMT1 significantly correlated with more melatonin content, robust antioxidant activities, and better ion homeostasis during salinity stress. Our results suggest that miR168a plausibly mediates melatonin biosynthesis, mainly through the OMT1 gene, under salinity conditions and thereby contributes to the salinity tolerance of B. rapa. To our knowledge, this is the first report on the role of miR168a and OMT1 in B. rapa salinity response.
Collapse
Affiliation(s)
| | | | - Sirous Tahmasebi
- Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| |
Collapse
|
27
|
Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA. Plants' Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:1620. [PMID: 35807572 PMCID: PMC9269229 DOI: 10.3390/plants11131620] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 05/19/2023]
Abstract
Water, a necessary component of cell protoplasm, plays an essential role in supporting life on Earth; nevertheless, extreme changes in climatic conditions limit water availability, causing numerous issues, such as the current water-scarce regimes in many regions of the biome. This review aims to collect data from various published studies in the literature to understand and critically analyze plants' morphological, growth, yield, and physio-biochemical responses to drought stress and their potential to modulate and nullify the damaging effects of drought stress via activating natural physiological and biochemical mechanisms. In addition, the review described current breakthroughs in understanding how plant hormones influence drought stress responses and phytohormonal interaction through signaling under water stress regimes. The information for this review was systematically gathered from different global search engines and the scientific literature databases Science Direct, including Google Scholar, Web of Science, related studies, published books, and articles. Drought stress is a significant obstacle to meeting food demand for the world's constantly growing population. Plants cope with stress regimes through changes to cellular osmotic potential, water potential, and activation of natural defense systems in the form of antioxidant enzymes and accumulation of osmolytes including proteins, proline, glycine betaine, phenolic compounds, and soluble sugars. Phytohormones modulate developmental processes and signaling networks, which aid in acclimating plants to biotic and abiotic challenges and, consequently, their survival. Significant progress has been made for jasmonates, salicylic acid, and ethylene in identifying important components and understanding their roles in plant responses to abiotic stress. Other plant hormones, such as abscisic acid, auxin, gibberellic acid, brassinosteroids, and peptide hormones, have been linked to plant defense signaling pathways in various ways.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran;
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saqib Ullah
- Department of Botany, Islamia College, Peshawar 25120, Pakistan;
| | - Wadood Shah
- Department of Botany, University of Peshawar, Peshawar 25120, Pakistan;
| | - Sahar Mumtaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan;
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Crina Carmen Muresan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
28
|
Singh A, Jain D, Pandey J, Yadav M, Bansal KC, Singh IK. Deciphering the role of miRNA in reprogramming plant responses to drought stress. Crit Rev Biotechnol 2022; 43:613-627. [PMID: 35469523 DOI: 10.1080/07388551.2022.2047880] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drought is the most prevalent environmental stress that affects plants' growth, development, and crop productivity. However, plants have evolved adaptive mechanisms to respond to the harmful effects of drought. They reprogram their: transcriptome, proteome, and metabolome that alter their cellular and physiological processes and establish cellular homeostasis. One of the crucial regulatory processes that govern this reprogramming is post-transcriptional regulation by microRNAs (miRNAs). miRNAs are small non-coding RNAs, involved in the downregulation of the target mRNA via translation inhibition/mRNA degradation/miRNA-mediated mRNA decay/ribosome drop off/DNA methylation. Many drought-inducible miRNAs have been identified and characterized in plants. Their main targets are regulatory genes that influence growth, development, osmotic stress tolerance, antioxidant defense, phytohormone-mediated signaling, and delayed senescence during drought stress. Overexpression of drought-responsive miRNAs (Osa-miR535, miR160, miR408, Osa-miR393, Osa-miR319, and Gma-miR394) in certain plants has led to tolerance against drought stress indicating their vital role in stress mitigation. Similarly, knock down (miR166/miR398c) or deletion (miR169 and miR827) of miRNAs has also resulted in tolerance to drought stress. Likewise, engineered Arabidopsis plants with miR165, miR166 using short tandem target mimic strategy, exhibited drought tolerance. Since miRNAs regulate the expression of an array of drought-responsive genes, they can act as prospective targets for genetic manipulations to enhance drought tolerance in crops and achieve sustainable agriculture. Further investigations toward functional characterization of diverse miRNAs, and understanding stress-responses regulated by these miRNAs and their utilization in biotechnological applications is highly recommended.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Deepti Jain
- Department of Plant Molecular Biology, Interdisciplinary Centre for Plant Genomics, Delhi University South Campus, New Delhi, India
| | - Jyotsna Pandey
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Manisha Yadav
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Kailash C Bansal
- The Alliance of Bioversity International and CIAT (CGIAR), New Delhi, India
| | - Indrakant K Singh
- Department of Zoology, Molecular Biology Research Lab, Deshbandhu College, University of Delhi, New Delhi, India.,DBC i4 Center, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
29
|
Ma X, Zhao F, Zhou B. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23084124. [PMID: 35456943 PMCID: PMC9032736 DOI: 10.3390/ijms23084124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Plant growth and development are greatly affected by the environment. Many genes have been identified to be involved in regulating plant development and adaption of abiotic stress. Apart from protein-coding genes, more and more evidence indicates that non-coding RNAs (ncRNAs), including small RNAs and long ncRNAs (lncRNAs), can target plant developmental and stress-responsive mRNAs, regulatory genes, DNA regulatory regions, and proteins to regulate the transcription of various genes at the transcriptional, posttranscriptional, and epigenetic level. Currently, the molecular regulatory mechanisms of sRNAs and lncRNAs controlling plant development and abiotic response are being deeply explored. In this review, we summarize the recent research progress of small RNAs and lncRNAs in plants, focusing on the signal factors, expression characters, targets functions, and interplay network of ncRNAs and their targets in plant development and abiotic stress responses. The complex molecular regulatory pathways among small RNAs, lncRNAs, and targets in plants are also discussed. Understanding molecular mechanisms and functional implications of ncRNAs in various abiotic stress responses and development will benefit us in regard to the use of ncRNAs as potential character-determining factors in molecular plant breeding.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fei Zhao
- Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|
30
|
Jiang Y, Wu X, Shi M, Yu J, Guo C. The miR159-MYB33-ABI5 module regulates seed germination in Arabidopsis. PHYSIOLOGIA PLANTARUM 2022; 174:e13659. [PMID: 35244224 DOI: 10.1111/ppl.13659] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Drought stress restricts crop productivity and exacerbates food shortages. The plant hormone, abscisic acid (ABA), has been shown to be a pivotal player in the regulation of drought tolerance and seed germination in plants. ABA accumulates under abiotic stresses to promote miR159 expression. miR159 is an ancient and conserved plant miRNA that plays diverse roles in plant development, seed germination, and drought response in Arabidopsis. Our previous studies demonstrated that miR159 regulates the vegetative phase change by repressing the ABI5 activation and thereafter preventing hyperactivation of miR156. However, whether the miR159-MYB33-ABI5 module plays a role in seed germination and drought response, and if so, how they interact genetically, remain largely unexplored. Here, we show that loss-of-function of miR159 (mir159ab) confers enhanced drought tolerance and hypersensitivity of seed germination to ABA. Genetic analyses demonstrated that loss-of-function mutation in the ABI5 gene suppresses the hypersensitivity of mir159ab to ABA, and the insensitivity of myb33 seeds to ABA treatment is ABI5 dependent. ABI5 functions downstream of MYB33 and miR159 in response to ABA. Therefore, our results uncover a new role for the miR159-MYB33-ABI5 module in the regulation of drought response and seed germination in plants.
Collapse
Affiliation(s)
- Youqi Jiang
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xi Wu
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Min Shi
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Jing Yu
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Changkui Guo
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
31
|
Yu B, Ming F, Liang Y, Wang Y, Gan Y, Qiu Z, Yan S, Cao B. Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions. Int J Mol Sci 2022; 23:ijms23031817. [PMID: 35163740 PMCID: PMC8837171 DOI: 10.3390/ijms23031817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
High temperatures affect the yield and quality of vegetable crops. Unlike thermosensitive plants, thermotolerant plants have excellent systems for withstanding heat stress. This study evaluated various heat resistance indexes of the thermotolerant cucumber (TT) and thermosensitive cucumber (TS) plants at the seedling stage. The similarities and differences between the regulatory genes were assessed through transcriptome analysis to understand the mechanisms for heat stress resistance in cucumber. The TT plants exhibited enhanced leaf status, photosystem, root viability, and ROS scavenging under high temperature compared to the TS plants. Additionally, transcriptome analysis showed that the genes involved in photosynthesis, the chlorophyll metabolism, and defense responses were upregulated in TT plants but downregulated in TS plants. Zeatin riboside (ZR), brassinosteroid (BR), and jasmonic acid (JA) levels were higher in TT plants than in TS. The heat stress increased gibberellic acid (GA) and indoleacetic acid (IAA) levels in both plant lines; however, the level of GA was higher in TT. Correlation and interaction analyses revealed that heat cucumber heat resistance is regulated by a few transcription factor family genes and metabolic pathways. Our study revealed different phenotypic and physiological mechanisms of the heat response by the thermotolerant and thermosensitive cucumber plants. The plants were also shown to exhibit different expression profiles and metabolic pathways. The heat resistant pathways and genes of two cucumber varieties were also identified. These results enhance our understanding of the molecular mechanisms of cucumber response to high-temperature stress.
Collapse
Affiliation(s)
- Bingwei Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Fangyan Ming
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yonggui Liang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yixi Wang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yuwei Gan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhengkun Qiu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Shuangshuang Yan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.Y.); (B.C.)
| | - Bihao Cao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.Y.); (B.C.)
| |
Collapse
|
32
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
33
|
Kumar G, Arya M, Padma R, Puthusseri B, Giridhar P. Distinct GmASMTs are involved in regulating transcription factors and signalling cross-talk across embryo development, biotic, and abiotic stress in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:948901. [PMID: 36035712 PMCID: PMC9403468 DOI: 10.3389/fpls.2022.948901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/15/2022] [Indexed: 05/08/2023]
Abstract
N-Acetylserotonin O-methyltransferase (ASMT) is the final enzyme involved in melatonin biosynthesis. Identifying the expression of ASMT will reveal the regulatory role in the development and stress conditions in soybean. To identify and characterize ASMT in soybean (GmASMT), we employed genome-wide analysis, gene structure, cis-acting elements, gene expression, co-expression network analysis, and enzyme assay. We found seven pairs of segmental and tandem duplication pairs among the 44 identified GmASMTs by genome-wide analysis. Notably, co-expression network analysis reported that distinct GmASMTs are involved in various stress response. For example, GmASMT3, GmASMT44, GmASMT17, and GmASMT7 are involved in embryo development, heat, drought, aphid, and soybean cyst nematode infections, respectively. These distinct networks of GmASMTs were associated with transcription factors (NAC, MYB, WRKY, and ERF), stress signalling, isoflavone and secondary metabolites, calcium, and calmodulin proteins involved in stress regulation. Further, GmASMTs demonstrated auxin-like activities by regulating the genes involved in auxin transporter (WAT1 and NRT1/PTR) and auxin-responsive protein during developmental and biotic stress. The current study identified the key regulatory role of GmASMTs during development and stress. Hence GmASMT could be the primary target in genetic engineering for crop improvement under changing environmental conditions.
Collapse
Affiliation(s)
- Gyanendra Kumar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Monisha Arya
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Radhika Padma
- Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Bijesh Puthusseri
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Parvatam Giridhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- *Correspondence: Parvatam Giridhar,
| |
Collapse
|
34
|
Lei P, Qi N, Zhou Y, Wang Y, Zhu X, Xuan Y, Liu X, Fan H, Chen L, Duan Y. Soybean miR159 -GmMYB33 Regulatory Network Involved in Gibberellin-Modulated Resistance to Heterodera glycines. Int J Mol Sci 2021; 22:13172. [PMID: 34884977 PMCID: PMC8658632 DOI: 10.3390/ijms222313172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Soybean cyst nematode (SCN, Heterodera glycines) is an obligate sedentary biotroph that poses major threats to soybean production globally. Recently, multiple miRNAome studies revealed that miRNAs participate in complicated soybean-SCN interactions by regulating their target genes. However, the functional roles of miRNA and target genes regulatory network are still poorly understood. In present study, we firstly investigated the expression patterns of miR159 and targeted GmMYB33 genes. The results showed miR159-3p downregulation during SCN infection; conversely, GmMYB33 genes upregulated. Furthermore, miR159 overexpressing and silencing soybean hairy roots exhibited strong resistance and susceptibility to H. glycines, respectively. In particular, miR159-GAMYB genes are reported to be involve in GA signaling and metabolism. Therefore, we then investigated the effects of GA application on the expression of miR159-GAMYB module and the development of H. glycines. We found that GA directly controls the miR159-GAMYB module, and exogenous GA application enhanced endogenous biologically active GA1 and GA3, the abundance of miR159, lowered the expression of GmMYB33 genes and delayed the development of H. glycines. Moreover, SCN infection also results in endogenous GA content decreased in soybean roots. In summary, the soybean miR159-GmMYB33 module was directly involved in the GA-modulated soybean resistance to H. glycines.
Collapse
Affiliation(s)
- Piao Lei
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (N.Q.); (Y.Z.); (Y.W.); (X.Z.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Nawei Qi
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (N.Q.); (Y.Z.); (Y.W.); (X.Z.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Zhou
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (N.Q.); (Y.Z.); (Y.W.); (X.Z.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (N.Q.); (Y.Z.); (Y.W.); (X.Z.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (N.Q.); (Y.Z.); (Y.W.); (X.Z.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (N.Q.); (Y.Z.); (Y.W.); (X.Z.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (N.Q.); (Y.Z.); (Y.W.); (X.Z.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Sciences, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (N.Q.); (Y.Z.); (Y.W.); (X.Z.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (N.Q.); (Y.Z.); (Y.W.); (X.Z.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (N.Q.); (Y.Z.); (Y.W.); (X.Z.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
35
|
Yadav A, Kumar S, Verma R, Lata C, Sanyal I, Rai SP. microRNA 166: an evolutionarily conserved stress biomarker in land plants targeting HD-ZIP family. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2471-2485. [PMID: 34924705 PMCID: PMC8639965 DOI: 10.1007/s12298-021-01096-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are significant class of noncoding RNAs having analytical investigating and modulatory roles in various signaling mechanisms in plants related to growth, development and environmental stress. Conserved miRNAs are an affirmation of land plants evolution and adaptation. They are a proof of indispensable roles of endogenous gene modulators that mediate plant survival on land. Out of such conserved miRNA families, is one core miRNA known as miR166 that is highly conserved among land plants. This particular miRNA is known to primarily target HD ZIP-III transcription factors. miR166 has roles in various developmental processes, as well as regulatory roles against biotic and abiotic stresses in major crop plants. Major developmental roles indirectly modulated by miR166 include shoot apical meristem and vascular differentiation, leaf and root development. In terms of abiotic stress, it has decisive regulatory roles under drought, salinity, and temperature along with biotic stress management. miR166 and its target genes are also known for their beneficial synergy with microorganisms in leguminous crops in relation to lateral roots and nodule development. Hence it is important to study the roles of miR166 in different crop plants to understand its defensive roles against environmental stresses and improve plant productivity by reprogramming several gene functions at molecular levels. This review is hence a summary of different regulatory roles of miR166 with its target HD-ZIP III and its modulatory and fine tuning against different environmental stresses in various plants.
Collapse
Affiliation(s)
- Ankita Yadav
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Sanoj Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 India
| | - Rita Verma
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Charu Lata
- CSIR-National Institute of Science Communication and Information Resources, 14 Satsang Vihar Marg, New Delhi, 110067 India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Shashi Pandey Rai
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|