1
|
Moya F, Hernández J, Suazo MJ, Saucède T, Brickle P, Poulin E, Benítez HA. Deciphering the Hearts: Geometric Morphometrics Reveals Shape Variation in Abatus Sea Urchins across Subantarctic and Antarctic Seas. Animals (Basel) 2024; 14:2376. [PMID: 39199909 PMCID: PMC11350873 DOI: 10.3390/ani14162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Abatus is a genus of irregular brooding sea urchins to the Southern Ocean. Among the 11 described species, three shared morphological traits and present an infaunal lifestyle in the infralittoral from the Subantarctic province; A. cavernosus in Patagonia, A. cordatus in Kerguelen, and A. agassizii in Tierra del Fuego and South Shetlands. The systematic of Abatus, based on morphological characters and incomplete phylogenies, is complex and largely unresolved. This study evaluates the shape variation among these species using geometric morphometrics analysis (GM). For this, 72 individuals from four locations; South Shetlands, Kerguelen, Patagonia, and Falklands/Malvinas were photographed, and 37 landmarks were digitized. To evaluate the shape differences among species, a principal component analysis and a Procrustes ANOVA were performed. Our results showed a marked difference between the Falklands/Malvinas and the other localities, characterized by a narrower and more elongated shape and a significant influence of location in shape but not sex. Additionally, the effect of allometry was evaluated using a permutation test and a regression between shape and size, showing significant shape changes during growth in all groups. The possibility that the Falklands/Malvinas group shows phenotypic plasticity or represents a distinct evolutionary unit is discussed. Finally, GM proved to be a powerful tool to differentiate these species, highlighting its utility in systematic studies.
Collapse
Affiliation(s)
- Fernando Moya
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile (E.P.)
- Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Jordan Hernández
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile (E.P.)
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile
- Programa de Doctorado en Salud Ecosistémica, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile
- Cape Horn International Center (CHIC), Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Williams 6350000, Chile
| | - Manuel J. Suazo
- Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1010069, Chile
| | - Thomas Saucède
- Biogeosciences UMR 6282 CNRS, Université de Bourgogne, EPHE, 21078 Dijon, France
| | - Paul Brickle
- South Atlantic Environmental Research Institute, Falkland Islands, Port Stanley FIQQ 1ZZ, UK
| | - Elie Poulin
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile (E.P.)
- Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Hugo A. Benítez
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile (E.P.)
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile
- Cape Horn International Center (CHIC), Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Williams 6350000, Chile
| |
Collapse
|
2
|
Feeding in spatangoids: the case of Abatus Cordatus in the Kerguelen Islands (Southern Ocean). Polar Biol 2021. [DOI: 10.1007/s00300-021-02841-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2020.109352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Ziegler AF, Hahn-Woernle L, Powell B, Smith CR. Larval Dispersal Modeling Suggests Limited Ecological Connectivity Between Fjords on the West Antarctic Peninsula. Integr Comp Biol 2020; 60:1369-1385. [PMID: 32617573 DOI: 10.1093/icb/icaa094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Larval dispersal is a key process for community assembly and population maintenance in the marine environment, yet it is extremely difficult to measure at ecologically relevant spatio-temporal scales. We used a high-resolution hydrodynamic model and particle-tracking model to explore the dispersal of simulated larvae in a hydrographically complex region of fjords on the West Antarctic Peninsula. Modeled larvae represented two end members of dispersal potential observed in Antarctic benthos resulting from differing developmental periods and swimming behavior. For simulations of low dispersing larvae (pre-competency period = 8 days, settlement period = 15 days, swimming downward) self-recruitment within fjords was important, with no larval settlement occurring in adjacent fjords <50 km apart. For simulations of highly dispersing organisms (pre-competency period = 35-120 days, settlement period = 30-115 days, no swimming behavior), dispersal between fjords occurred when larvae were in the water column for at least 35 days, but settlement was rarely successful even for larvae spending up to 150 days in the plankton. The lack of ecological connectivity between fjords within a single spawning event suggests that these fjords harbor ecologically distinct populations in which self-recruitment may maintain populations, and genetic connectivity between fjords is likely achieved through stepping-stone dispersal. Export of larvae from natal fjord populations to the broader shelf region (>100 km distance) occurred within surface layers (<100 m depth) and was enhanced by episodic katabatic wind events that may be common in glaciomarine fjords worldwide.
Collapse
Affiliation(s)
- Amanda F Ziegler
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Lisa Hahn-Woernle
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Brian Powell
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Craig R Smith
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
5
|
Schwob G, Cabrol L, Poulin E, Orlando J. Characterization of the Gut Microbiota of the Antarctic Heart Urchin (Spatangoida) Abatus agassizii. Front Microbiol 2020; 11:308. [PMID: 32184772 PMCID: PMC7058685 DOI: 10.3389/fmicb.2020.00308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
Abatus agassizii is an irregular sea urchin species that inhabits shallow waters of South Georgia and South Shetlands Islands. As a deposit-feeder, A. agassizii nutrition relies on the ingestion of the surrounding sediment in which it lives barely burrowed. Despite the low complexity of its feeding habit, it harbors a long and twice-looped digestive tract suggesting that it may host a complex bacterial community. Here, we characterized the gut microbiota of specimens from two A. agassizii populations at the south of the King George Island in the West Antarctic Peninsula. Using a metabarcoding approach targeting the 16S rRNA gene, we characterized the Abatus microbiota composition and putative functional capacity, evaluating its differentiation among the gut content and the gut tissue in comparison with the external sediment. Additionally, we aimed to define a core gut microbiota between A. agassizii populations to identify potential keystone bacterial taxa. Our results show that the diversity and the composition of the microbiota, at both genetic and predicted functional levels, were mostly driven by the sample type, and to a lesser extent by the population location. Specific bacterial taxa, belonging mostly to Planctomycetacia and Spirochaetia, were differently enriched in the gut content and the gut tissue, respectively. Predictive functional profiles revealed higher abundance of specific pathways, as the sulfur cycle in the gut content and the amino acid metabolism, in the gut tissue. Further, the definition of a core microbiota allowed to obtain evidence of specific localization of bacterial taxa and the identification of potential keystone taxa assigned to the Desulfobacula and Spirochaeta genera as potentially host selected. The ecological relevance of these keystone taxa in the host metabolism is discussed.
Collapse
Affiliation(s)
- Guillaume Schwob
- Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Léa Cabrol
- Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | - Elie Poulin
- Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Julieta Orlando
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Morales‐González S, Giles EC, Quesada‐Calderón S, Saenz‐Agudelo P. Fine-scale hierarchical genetic structure and kinship analysis of the ascidian Pyura chilensis in the southeastern Pacific. Ecol Evol 2019; 9:9855-9868. [PMID: 31534699 PMCID: PMC6745665 DOI: 10.1002/ece3.5526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Studying population structure and genetic diversity at fine spatial scales is key for a better understanding of demographic processes that influence population connectivity. This is particularly important in marine benthic organisms that rely on larval dispersal to maintain connectivity among populations. Here, we report the results of a genetic survey of the ascidian Pyura chilensis from three localities along the southeastern Pacific. This study follows up on a previous report that described a genetic break in this region among localities only 20 km apart. By implementing a hierarchical sampling design at four spatial levels and using ten polymorphic microsatellite markers, we test whether differences in fine-scale population structure explain the previously reported genetic break. We compared genetic spatial autocorrelations, as well as kinship and relatedness distributions within and among localities adjacent to the genetic break. We found no evidence of significant autocorrelation at the scale up to 50 m despite the low dispersal potential of P. chilensis that has been reported in the literature. We also found that the proportion of related individuals in close proximity (<1 km) was higher than the proportion of related individuals further apart. These results were consistent in the three localities. Our results suggest that the spatial distribution of related individuals can be nonrandom at small spatial scales and suggests that dispersal might be occasionally limited in this species or that larval cohorts can disperse in the plankton as clustered groups. Overall, this study sheds light on new aspects of the life of this ascidian as well as confirms the presence of a genetic break at 39°S latitude. Also, our data indicate there is not enough evidence to confirm that this genetic break can be explained by differences in fine-scale genetic patterns among localities.
Collapse
Affiliation(s)
- Sarai Morales‐González
- Instituto de Ciencias Ambientales y EvolutivasFacultad de CienciasUniversidad Austral de ChileValdiviaChile
- Magister en Ciencias Mención GenéticaEscuela de GraduadosFacultad de CienciasUniversidad Austral de ChileValdiviaChile
| | - Emily C. Giles
- Instituto de Ciencias Ambientales y EvolutivasFacultad de CienciasUniversidad Austral de ChileValdiviaChile
- Doctorado en Ciencias Mención Ecología y EvoluciónEscuela de GraduadosFacultad de CienciasUniversidad Austral de ChileValdiviaChile
| | - Suany Quesada‐Calderón
- Instituto de Ciencias Ambientales y EvolutivasFacultad de CienciasUniversidad Austral de ChileValdiviaChile
- Doctorado en Ciencias Mención Ecología y EvoluciónEscuela de GraduadosFacultad de CienciasUniversidad Austral de ChileValdiviaChile
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y EvolutivasFacultad de CienciasUniversidad Austral de ChileValdiviaChile
| |
Collapse
|
7
|
Watson LA, Stark JS, Johnstone GJ, Wapstra E, Miller K. Patterns in the distribution and abundance of sea anemones off Dumont d’Urville Station, Antarctica. Polar Biol 2018. [DOI: 10.1007/s00300-018-2332-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Chenuil A, Saucède T, Hemery LG, Eléaume M, Féral JP, Améziane N, David B, Lecointre G, Havermans C. Understanding processes at the origin of species flocks with a focus on the marine Antarctic fauna. Biol Rev Camb Philos Soc 2017; 93:481-504. [DOI: 10.1111/brv.12354] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Anne Chenuil
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE-UMR7263); Aix-Marseille Univ, Univ Avignon, CNRS, IRD, Station Marine d'Endoume, Chemin de la Batterie des Lions; F-13007 Marseille France
| | - Thomas Saucède
- UMR6282 Biogéosciences; CNRS - Université de Bourgogne Franche-Comté, 6 boulevard Gabriel; F-21000 Dijon France
| | - Lenaïg G. Hemery
- DMPA, UMR 7208 BOREA/MNHN/CNRS/Paris VI/ Univ Caen, 57 rue Cuvier; 75231 Paris Cedex 05 France
| | - Marc Eléaume
- UMR7205 Institut de Systématique; Evolution et Biodiversité, CNRS-MNHN-UPMC-EPHE, CP 24, Muséum national d'Histoire naturelle, 57 rue Cuvier; 75005 Paris France
| | - Jean-Pierre Féral
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE-UMR7263); Aix-Marseille Univ, Univ Avignon, CNRS, IRD, Station Marine d'Endoume, Chemin de la Batterie des Lions; F-13007 Marseille France
| | - Nadia Améziane
- UMR7205 Institut de Systématique; Evolution et Biodiversité, CNRS-MNHN-UPMC-EPHE, CP 24, Muséum national d'Histoire naturelle, 57 rue Cuvier; 75005 Paris France
| | - Bruno David
- UMR6282 Biogéosciences; CNRS - Université de Bourgogne Franche-Comté, 6 boulevard Gabriel; F-21000 Dijon France
- Muséum national d'Histoire naturelle, 57 rue Cuvier; 75005 Paris France
| | - Guillaume Lecointre
- UMR7205 Institut de Systématique; Evolution et Biodiversité, CNRS-MNHN-UPMC-EPHE, CP 24, Muséum national d'Histoire naturelle, 57 rue Cuvier; 75005 Paris France
| | - Charlotte Havermans
- Marine Zoology, Bremen Marine Ecology (BreMarE); University of Bremen, PO Box 330440; 28334 Bremen Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12; D-27570 Bremerhaven Germany
- OD Natural Environment; Royal Belgian Institute of Natural Sciences, Rue Vautier 29; B-1000 Brussels Belgium
| |
Collapse
|
9
|
Mating system and evidence of multiple paternity in the Antarctic brooding sea urchin Abatus agassizii. Polar Biol 2017. [DOI: 10.1007/s00300-016-2001-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Moon KL, Chown SL, Fraser CI. Reconsidering connectivity in the sub-Antarctic. Biol Rev Camb Philos Soc 2017; 92:2164-2181. [DOI: 10.1111/brv.12327] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Katherine L. Moon
- School of Biological Sciences; Monash University; Clayton 3800 Australia
- Fenner School of Environment and Society; Australian National University; Acton 2601 Australia
| | - Steven L. Chown
- School of Biological Sciences; Monash University; Clayton 3800 Australia
| | - Ceridwen I. Fraser
- Fenner School of Environment and Society; Australian National University; Acton 2601 Australia
| |
Collapse
|
11
|
Weber AAT, Mérigot B, Valière S, Chenuil A. Influence of the larval phase on connectivity: strong differences in the genetic structure of brooders and broadcasters in the Ophioderma longicauda species complex. Mol Ecol 2015; 24:6080-94. [PMID: 26547515 DOI: 10.1111/mec.13456] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 02/03/2023]
Abstract
Closely related species with divergent life history traits are excellent models to infer the role of such traits in genetic diversity and connectivity. Ophioderma longicauda is a brittle star species complex composed of different genetic clusters, including brooders and broadcasters. These species diverged very recently and some of them are sympatric and ecologically syntopic, making them particularly suitable to study the consequences of their trait differences. At the scale of the geographic distribution of the broadcasters (Mediterranean Sea and northeastern Atlantic), we sequenced the mitochondrial marker COI and genotyped an intron (i51) for 788 individuals. In addition, we sequenced 10 nuclear loci newly developed from transcriptome sequences, for six sympatric populations of brooders and broadcasters from Greece. At the large scale, we found a high genetic structure within the brooders (COI: 0.07 < F(ST) < 0.65) and no polymorphism at the nuclear locus i51. In contrast, the broadcasters displayed lower genetic structure (0 < F(ST) < 0.14) and were polymorphic at locus i51. At the regional scale, the multilocus analysis confirmed the contrasting genetic structure between species, with no structure in the broadcasters (global F(ST) < 0.001) and strong structure in the brooders (global F(ST) = 0.49), and revealed a higher genetic diversity in broadcasters. Our study showed that the lecithotrophic larval stage allows on average a 50-fold increase in migration rates, a 280-fold increase in effective size and a threefold to fourfold increase in genetic diversity. Our work, investigating complementary genetic markers on sympatric and syntopic taxa, highlights the strong impact of the larval phase on connectivity and genetic diversity.
Collapse
Affiliation(s)
- A A-T Weber
- Aix-Marseille Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - CNRS - IRD - UAPV, Station Marine d'Endoume, Chemin de la Batterie des Lions, F-13007, Marseille, France.,Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - B Mérigot
- Université de Montpellier, UMR MARine Biodiversity, Exploitation and Conservation MARBEC (IRD, IFREMER, UM, CNRS), Centre de Recherche Halieutique Méditerranéenne et Tropicale, Avenue Jean Monnet - BP 171, 34203, Sète Cedex, France
| | - S Valière
- INRA, UAR1209 (Département de Génétique Animale), Get-PlaGe, Genotoul, F-31326, Castanet-Tolosan, France
| | - A Chenuil
- Aix-Marseille Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - CNRS - IRD - UAPV, Station Marine d'Endoume, Chemin de la Batterie des Lions, F-13007, Marseille, France
| |
Collapse
|
12
|
David B, Saucède T, Chenuil A, Steimetz E, De Ridder C. The taxonomic challenge posed by the Antarctic echinoids Abatus bidens and Abatus cavernosus (Schizasteridae, Echinoidea). Polar Biol 2015. [DOI: 10.1007/s00300-015-1842-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Riesgo A, Taboada S, Avila C. Evolutionary patterns in Antarctic marine invertebrates: an update on molecular studies. Mar Genomics 2015; 23:1-13. [PMID: 26228311 DOI: 10.1016/j.margen.2015.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Ana Riesgo
- Department of Animal Biology and Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Sergi Taboada
- Department of Animal Biology and Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Conxita Avila
- Department of Animal Biology and Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
Gérard K, Guilloton E, Arnaud-Haond S, Aurelle D, Bastrop R, Chevaldonné P, Derycke S, Hanel R, Lapègue S, Lejeusne C, Mousset S, Ramšak A, Remerie T, Viard F, Féral JP, Chenuil A. PCR survey of 50 introns in animals: cross-amplification of homologous EPIC loci in eight non-bilaterian, protostome and deuterostome phyla. Mar Genomics 2013; 12:1-8. [PMID: 24184205 DOI: 10.1016/j.margen.2013.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 11/28/2022]
Abstract
Exon Primed Intron Crossing (EPIC) markers provide molecular tools that are susceptible to be variable within species while remaining amplifiable by PCR using potentially universal primers. In this study we tested the possibility of obtaining PCR products from 50 EPIC markers on 23 species belonging to seven different phyla (Porifera, Cnidaria, Arthropoda, Nematoda, Mollusca, Annelida, Echinodermata) using 70 new primer pairs. A previous study had identified and tested those loci in a dozen species, including another phylum, Urochordata (Chenuil et al., 2010). Results were contrasted among species. The best results were achieved with the oyster (Mollusca) where 28 loci provided amplicons susceptible to contain an intron according to their size. This was however not the case with the other mollusk Crepidula fornicata, which seems to have undergone a reduction in intron number or intron size. In the Porifera, 13 loci appeared susceptible to contain an intron, a surprisingly high number for this phylum considering its phylogenetic distance with genomic data used to design the primers. For two cnidarian species, numerous loci (24) were obtained. Ecdysozoan phyla (arthropods and nematodes) proved less successful than others as expected considering reports of their rapid rate of genome evolution and the worst results were obtained for several arthropods. Some general patterns among phyla arose, and we discuss how the results of this EPIC survey may give new insights into genome evolution of the study species. This work confirms that this set of EPIC loci provides an easy-to-use toolbox to identify genetic markers potentially useful for population genetics, phylogeography or phylogenetic studies for a large panel of metazoan species. We then argue that obtaining diploid sequence genotypes for these loci became simple and affordable owing to Next-Generation Sequencing development. Species surveyed in this study belong to several genera (Acanthaster, Alvinocaris, Aplysina, Aurelia, Crepidula, Eunicella, Hediste, Hemimysis, Litoditis, Lophelia, Mesopodopsis, Mya, Ophiocten, Ophioderma, Ostrea, Pelagia, Platynereis, Rhizostoma, Rimicaris), two of them, belonging to the family Vesicomydae and Eunicidae, could not be determined at the genus level.
Collapse
Affiliation(s)
- K Gérard
- Laboratorio Ecología Molecular, las Palmeras 3425, Ñuñoa, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lecointre G, Améziane N, Boisselier MC, Bonillo C, Busson F, Causse R, Chenuil A, Couloux A, Coutanceau JP, Cruaud C, d'Acoz CD, De Ridder C, Denys G, Dettaï A, Duhamel G, Eléaume M, Féral JP, Gallut C, Havermans C, Held C, Hemery L, Lautrédou AC, Martin P, Ozouf-Costaz C, Pierrat B, Pruvost P, Puillandre N, Samadi S, Saucède T, Schubart C, David B. Is the species flock concept operational? The Antarctic shelf case. PLoS One 2013; 8:e68787. [PMID: 23936311 PMCID: PMC3732269 DOI: 10.1371/journal.pone.0068787] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/02/2013] [Indexed: 11/23/2022] Open
Abstract
There has been a significant body of literature on species flock definition but not so much about practical means to appraise them. We here apply the five criteria of Eastman and McCune for detecting species flocks in four taxonomic components of the benthic fauna of the Antarctic shelf: teleost fishes, crinoids (feather stars), echinoids (sea urchins) and crustacean arthropods. Practical limitations led us to prioritize the three historical criteria (endemicity, monophyly, species richness) over the two ecological ones (ecological diversity and habitat dominance). We propose a new protocol which includes an iterative fine-tuning of the monophyly and endemicity criteria in order to discover unsuspected flocks. As a result nine « full » species flocks (fulfilling the five criteria) are briefly described. Eight other flocks fit the three historical criteria but need to be further investigated from the ecological point of view (here called "core flocks"). The approach also shows that some candidate taxonomic components are no species flocks at all. The present study contradicts the paradigm that marine species flocks are rare. The hypothesis according to which the Antarctic shelf acts as a species flocks generator is supported, and the approach indicates paths for further ecological studies and may serve as a starting point to investigate the processes leading to flock-like patterning of biodiversity.
Collapse
Affiliation(s)
- Guillaume Lecointre
- UMR 7138 UPMC-MNHN-CNRS-IRD Systématique, Adaptation, Évolution, Département Systématique et Évolution, Muséum national d'Histoire naturelle, CP 39, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hoffman JI, Clarke A, Clark MS, Peck LS. Hierarchical population genetic structure in a direct developing antarctic marine invertebrate. PLoS One 2013; 8:e63954. [PMID: 23691125 PMCID: PMC3653801 DOI: 10.1371/journal.pone.0063954] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/10/2013] [Indexed: 12/02/2022] Open
Abstract
Understanding the relationship between life-history variation and population structure in marine invertebrates is not straightforward. This is particularly true of polar species due to the difficulty of obtaining samples and a paucity of genomic resources from which to develop nuclear genetic markers. Such knowledge, however, is essential for understanding how different taxa may respond to climate change in the most rapidly warming regions of the planet. We therefore used over two hundred polymorphic Amplified Fragment Length Polymorphisms (AFLPs) to explore population connectivity at three hierachical spatial scales in the direct developing Antarctic topshell Margarella antarctica. To previously published data from five populations spanning a 1500 km transect along the length of the Western Antarctic Peninsula, we added new AFLP data for four populations separated by up to 6 km within Ryder Bay, Adelaide Island. Overall, we found a nonlinear isolation-by-distance pattern, suggestive of weaker population structure within Ryder Bay than is present over larger spatial scales. Nevertheless, significantly positive Fst values were obtained in all but two of ten pairwise population comparisons within the bay following Bonferroni correction for multiple tests. This is in contrast to a previous study of the broadcast spawner Nacella concinna that found no significant genetic differences among several of the same sites. By implication, the topshell's direct-developing lifestyle may constrain its ability to disperse even over relatively small geographic scales.
Collapse
Affiliation(s)
- Joseph I. Hoffman
- Department of Animal Behaviour, University of Bielefeld, Bielefeld, Germany
- * E-mail:
| | - Andrew Clarke
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, United Kingdom
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, United Kingdom
| | - Lloyd S. Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, United Kingdom
| |
Collapse
|
17
|
Thatje S. Effects of Capability for Dispersal on the Evolution of Diversity in Antarctic Benthos. Integr Comp Biol 2012; 52:470-82. [DOI: 10.1093/icb/ics105] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|