1
|
Snopková K, Sedlář K, Nováková D, Staňková E, Sedláček I, Šedo O, Holá V. Pseudomonas rossensis sp. nov., a novel psychrotolerant species produces antimicrobial agents targeting resistant clinical isolates of Pseudomonas aeruginosa. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100353. [PMID: 39968173 PMCID: PMC11833414 DOI: 10.1016/j.crmicr.2025.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
The extreme conditions of the Antarctic environment have driven the evolution of highly specialized microbial communities with unique adaptations. In this study, we characterized five Pseudomonas isolates from James Ross Island, which displayed notable taxonomic and metabolite features. Phylogenomic analysis revealed that strain P2663T occupies a distinct phylogenetic position within the Pseudomonas genus, related to species Pseudomonas svalbardensis, Pseudomonas silesiensis, Pseudomonas mucoides, Pseudomonas prosekii, and Pseudomonas gregormendelii. The novelty of five Antarctic isolates was further confirmed through analyses of housekeeping genes, ribotyping, and REP-PCR profiling. MALDI-TOF MS analysis identified 11 unique mass spectrometry signals shared by the Antarctic isolates, which were not detected in other related species. Additionally, chemotaxonomic characterization, including fatty acid composition, demonstrated similarities with related Pseudomonas species. Phenotypic assessments revealed distinctive biochemical and physiological traits. In-depth genomic analysis of strain P2663T uncovered numerous genes which could be involved in survival in extreme Antarctic conditions, including those encoding cold-shock and heat-shock proteins, oxidative and osmotic stress response proteins, and carotenoid-like pigments. Genome mining further revealed several biosynthetic gene clusters, some of which are associated with antimicrobial activity. Functional assays supported the antimicrobial capabilities of this novel species, showing antagonistic effects against clinical isolates of Pseudomonas aeruginosa, possibly mediated by tailocins (phage tail-like particles). This comprehensive polyphasic study characterized a new cold-adapted species, for which we propose the name Pseudomonas rossensis sp. nov.
Collapse
Affiliation(s)
- Kateřina Snopková
- Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Karel Sedlář
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3082/12, 616 00, Brno, Czech Republic
| | - Dana Nováková
- Department of Experimental Biology, Faculty of Science, Czech Collection of Microorganisms, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eva Staňková
- Department of Experimental Biology, Faculty of Science, Czech Collection of Microorganisms, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Faculty of Science, Czech Collection of Microorganisms, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ondřej Šedo
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Veronika Holá
- Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| |
Collapse
|
2
|
Arrington HB, Lee SG, Lee JH, Covi JA. Assessment of the cyst wall and surface microbiota in dormant embryos of the Antarctic calanoid copepod, Boeckella poppei. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70035. [PMID: 39603712 PMCID: PMC11602222 DOI: 10.1111/1758-2229.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Embryos of zooplankton from inland waters and estuaries can remain viable for years in an extreme state of metabolic suppression. How these embryos resist microbial attack with limited metabolic capacity for immune defence or repair is unknown. As a first step in evaluating resistance to microbial attack in dormant zooplankton, surface colonization of the Antarctic freshwater copepod, Boeckella poppei, was evaluated. Scanning electron micrographs demonstrate the outer two layers of a five-layered cyst wall in B. poppei fragment and create a complex environment for microbial colonization. By contrast, the third layer remains undamaged during years of embryo storage in native sediment. The absence of damage to the third layer indicates that it is resistant to degradation by microbial enzymes. Scanning electron microscopy and microbiome analysis using the 16S ribosomal subunit gene and internal transcribed spacer (ITS) region demonstrate the presence of a diverse microbial community on the embryo surface. Coverage of the embryos with microbial life varies from a sparse population with individual microbes to complete coverage by a thick biofilm. Extracellular polymeric substance binds debris and provides a structural element for the microbial community. Frequent observation of bacterial fission indicates that the biofilm is viable in stored sediments.
Collapse
Affiliation(s)
- Hunter B. Arrington
- Department of Biology and Marine BiologyThe University of North Carolina at WilmingtonWilmingtonNorth CarolinaUSA
| | - Sung Gu Lee
- Division of Polar Life ScienceKorea Polar Research Institute (KOPRI)IncheonKorea
- Department of Polar SciencesUniversity of Science and TechnologyIncheonKorea
| | - Jun Hyuck Lee
- Division of Polar Life ScienceKorea Polar Research Institute (KOPRI)IncheonKorea
- Department of Polar SciencesUniversity of Science and TechnologyIncheonKorea
| | - Joseph A. Covi
- Department of Biology and Marine BiologyThe University of North Carolina at WilmingtonWilmingtonNorth CarolinaUSA
| |
Collapse
|
3
|
Kollár J, Kopalová K, Kavan J, Vrbická K, Nývlt D, Nedbalová L, Stibal M, Kohler TJ. Recently formed Antarctic lakes host less diverse benthic bacterial and diatom communities than their older counterparts. FEMS Microbiol Ecol 2023; 99:fiad087. [PMID: 37516444 PMCID: PMC10446143 DOI: 10.1093/femsec/fiad087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023] Open
Abstract
Glacier recession is creating new water bodies in proglacial forelands worldwide, including Antarctica. Yet, it is unknown how microbial communities of recently formed "young" waterbodies (originating decades to a few centuries ago) compare with established "old" counterparts (millennia ago). Here, we compared benthic microbial communities of different lake types on James Ross Island, Antarctic Peninsula, using 16S rDNA metabarcoding and light microscopy to explore bacterial and diatom communities, respectively. We found that the older lakes host significantly more diverse bacterial and diatom communities compared to the young ones. To identify potential mechanisms for these differences, linear models and dbRDA analyses suggested combinations of water temperature, pH, and conductivity to be the most important factors for diversity and community structuring, while differences in geomorphological and hydrological stability, though more difficult to quantify, are likely also influential. These results, along with an indicator species analysis, suggest that physical and chemical constraints associated with individual lakes histories are likely more influential to the assembly of the benthic microbial communities than lake age alone. Collectively, these results improve our understanding of microbial community drivers in Antarctic freshwaters, and help predict how the microbial landscape may shift with future habitat creation within a changing environment.
Collapse
Affiliation(s)
- Jan Kollár
- Faculty of Science, Department of Ecology, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| | - Kateřina Kopalová
- Faculty of Science, Department of Ecology, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| | - Jan Kavan
- Polar-Geo-Lab, Faculty of Science, Department of Geography, Masaryk University, Kotlářská 2, Brno, CZ-61137, Czech Republic
- Alfred Jahn Cold Regions Research Centre, University of Wroclaw, pl. Uniwersytecki 1, Wroclaw 50-137, Poland
| | - Kristýna Vrbická
- Faculty of Science, Department of Ecology, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| | - Daniel Nývlt
- Polar-Geo-Lab, Faculty of Science, Department of Geography, Masaryk University, Kotlářská 2, Brno, CZ-61137, Czech Republic
| | - Linda Nedbalová
- Faculty of Science, Department of Ecology, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| | - Marek Stibal
- Faculty of Science, Department of Ecology, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| | - Tyler J Kohler
- Faculty of Science, Department of Ecology, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| |
Collapse
|
4
|
Waters SM, Robles-Martínez JA, Nicholson WL. Growth at 5 kPa Causes Differential Expression of a Number of Signals in a Bacillus subtilis Strain Adapted to Enhanced Growth at Low Pressure. ASTROBIOLOGY 2021; 21:1076-1088. [PMID: 34357782 DOI: 10.1089/ast.2020.2389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To determine microbial evolutionary strategies to low-pressure (LP; 5 kPa) growth, an environmental condition not experienced on Earth until ∼20 km in altitude, a previously described evolutionary experiment was conducted. The resulting LP evolved strain WN1106, isolated from the terminus of the experiment, was shown to have several genomic mutations absent in the ancestral strain, WN624. Three of the mutations were in regulatory genes: resD, walK, and rnjB. Here we report on transcriptional microarray data from the LP-evolved WN1106 and compare those results with the previously reported ancestral WN624 transcriptional array data at either 5 or 101 kPa. At 5 kPa, WN1106 differentially expresses signals that are under the control of regulators ResD, WalK, and RnjB compared with (1) itself at ∼101 kPa and (2) WN624 at 5 kPa. These results were further confirmed by quantitative reverse transcriptase-polymerase chain reaction of a target transcript from each regulon. This work indicates that the three mutated coding regions had transcriptional control effects on each respective regulon.
Collapse
Affiliation(s)
- Samantha M Waters
- Universities Space Research Association, Washington, DC, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, USA
- Space Life Sciences Lab, Department of Microbiology and Cell Science, University of Florida, Kennedy Space Center, Florida, USA
| | - José A Robles-Martínez
- Space Life Sciences Lab, Department of Microbiology and Cell Science, University of Florida, Kennedy Space Center, Florida, USA
| | - Wayne L Nicholson
- Space Life Sciences Lab, Department of Microbiology and Cell Science, University of Florida, Kennedy Space Center, Florida, USA
| |
Collapse
|
5
|
Margesin R, Collins T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol 2019; 103:2537-2549. [PMID: 30719551 PMCID: PMC6443599 DOI: 10.1007/s00253-019-09631-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
Microorganisms in cold ecosystems play a key ecological role in their natural habitats. Since these ecosystems are especially sensitive to climate changes, as indicated by the worldwide retreat of glaciers and ice sheets as well as permafrost thawing, an understanding of the role and potential of microbial life in these habitats has become crucial. Emerging technologies have added significantly to our knowledge of abundance, functional activity, and lifestyles of microbial communities in cold environments. The current knowledge of microbial ecology in glacial habitats and permafrost, the most studied habitats of the cryosphere, is reported in this review.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria.
| | - Tony Collins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
6
|
Koo H, Hakim JA, Morrow CD, Eipers PG, Davila A, Andersen DT, Bej AK. Comparison of two bioinformatics tools used to characterize the microbial diversity and predictive functional attributes of microbial mats from Lake Obersee, Antarctica. J Microbiol Methods 2017; 140:15-22. [PMID: 28655556 PMCID: PMC6108183 DOI: 10.1016/j.mimet.2017.06.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023]
Abstract
In this study, using NextGen sequencing of the collective 16S rRNA genes obtained from two sets of samples collected from Lake Obersee, Antarctica, we compared and contrasted two bioinformatics tools, PICRUSt and Tax4Fun. We then developed an R script to assess the taxonomic and predictive functional profiles of the microbial communities within the samples. Taxa such as Pseudoxanthomonas, Planctomycetaceae, Cyanobacteria Subsection III, Nitrosomonadaceae, Leptothrix, and Rhodobacter were exclusively identified by Tax4Fun that uses SILVA database; whereas PICRUSt that uses Greengenes database uniquely identified Pirellulaceae, Gemmatimonadetes A1-B1, Pseudanabaena, Salinibacterium and Sinobacteraceae. Predictive functional profiling of the microbial communities using Tax4Fun and PICRUSt separately revealed common metabolic capabilities, while also showing specific functional IDs not shared between the two approaches. Combining these functional predictions using a customized R script revealed a more inclusive metabolic profile, such as hydrolases, oxidoreductases, transferases; enzymes involved in carbohydrate and amino acid metabolisms; and membrane transport proteins known for nutrient uptake from the surrounding environment. Our results present the first molecular-phylogenetic characterization and predictive functional profiles of the microbial mat communities in Lake Obersee, while demonstrating the efficacy of combining both the taxonomic assignment information and functional IDs using the R script created in this study for a more streamlined evaluation of predictive functional profiles of microbial communities.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Joseph A Hakim
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey D Morrow
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter G Eipers
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alfonso Davila
- NASA Ames Research Center, MS 245-3, Moffett Field, CA, USA
| | | | - Asim K Bej
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Molecular characterization of the pA3J1 plasmid from the psychrotolerant Antarctic bacterium Pseudomonas sp. ANT_J3. Plasmid 2017; 92:49-56. [DOI: 10.1016/j.plasmid.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/08/2023]
|