1
|
Mensah DD, Morales-Lange B, Rocha SDC, Øverland M, Kathiresan P, Hooft JM, McLean Press C, Sørum H, Mydland LT. Paecilomyces variotii improves growth performance and modulates immunological biomarkers and gut microbiota in vaccinated Atlantic salmon pre-smolts. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110223. [PMID: 39988217 DOI: 10.1016/j.fsi.2025.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/24/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Functional feeds, as a prophylactic strategy, are a promising alternative to address stressful production-related activities (e.g., seawater transfer, delousing) and infectious diseases in salmon farming. To understand the effect of Paecilomyces variotii on short-term growth performance and health responses of vaccinated Atlantic salmon pre-smolts, a control diet (D1) and three experimental diets, where P. variotii replaced 5 % (D2), 10 % (D3) or 20 % (D4) of crude protein, were fed to fish for 28 days in freshwater. Fish fed diets containing P. variotii had a significant dose-dependent linear improvement in feed conversion ratio. Also, D4 group showed a gene expression related to signal truncation and gut homeostasis, while in head kidney (HK), P. variotii activated and controlled immune responses through c-type lectin receptor, downstream signalling molecules (myd88, tollip), cytokines (tnfα, il1β, ifnγ), and effector molecules (cath-2, c3, prx). Moreover, an upregulation of antigen presenting cell markers (mhcii, cd83) and T cell transcriptional factors (gata3, rorc, foxp3) was detected in HK, suggesting that P. variotii could coordinate the innate and adaptive mechanisms. Interestingly, D2 increased specific IgM against Vibrio anguillarum in vaccinated salmon. KEGG analysis revealed that D4 induced decreased abundance of proteins related to inflammatory pathways, e.g., like salmonella infection, apoptosis and necroptosis as well as innate and adaptive signalling pathways in the HK. On the contrary, D4 induced high abundance of proteins related to these inflammatory pathways in the skin mucus (Skm). In addition, complement proteins (i.e., C1q, C4, C7) and arginine metabolism were also in high abundance in the SKm. In relation to the gut microbiota, fish fed D2 and D3 showed low abundance of key lactic acid bacteria (e.g., Weisella, Leuconostoc, Lactobacillus) but high abundance Photobacterium and Ligilactobacillus compared with D1 in the gut. Overall, feed inclusion of P. variotii improved fish growth performance and modulated health response in Atlantic salmon pre-smolts.
Collapse
Affiliation(s)
- Dominic Duncan Mensah
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Byron Morales-Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Sérgio Domingos Cardoso Rocha
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Purushothaman Kathiresan
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Jamie Marie Hooft
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Charles McLean Press
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Liv Torunn Mydland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway.
| |
Collapse
|
2
|
Murano C, Gallo A, Nocerino A, Macina A, Cecchini Gualandi S, Boni R. Short-Term Thermal Stress Affects Immune Cell Features in the Sea Urchin Paracentrotus lividus. Animals (Basel) 2023; 13:1954. [PMID: 37370464 DOI: 10.3390/ani13121954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Due to global warming, animals are experiencing heat stress (HS), affecting many organic functions and species' survival. In this line, some characteristics of immune cells in sea urchins subjected to short-term HS were evaluated. Paracentrotus lividus adult females were randomly divided into three groups and housed in tanks at 17 °C. In two of these tanks, the temperatures were gradually increased up to 23 and 28 °C. Celomatic fluid was collected after 3 and 7 days. The coelomocytes were morphologically typed and evaluated for their mitochondrial membrane potential (MMP), lipoperoxidation extent (LPO), and hydrogen peroxide content (H2O2). Respiratory burst was induced by treatment with phorbol 12-myristate 13-acetate (PMA). HS caused a significant change in the coelomocytes' type distribution. MMP increased in the 23 °C-group and decreased in the 28 °C-group at both 3 and 7 days. LPO only increased in the 28 °C-group at 7 days. H2O2 progressively decreased together with the temperature increase. Respiratory burst was detected in all groups, but it was higher in the 17 °C group. In conclusion, the increase in temperature above the comfort zone for this animal species affects their immune cells with possible impairment of their functions.
Collapse
Affiliation(s)
- Carola Murano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Aurora Nocerino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Alberto Macina
- Unit Marine Resources for Research, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | - Raffaele Boni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| |
Collapse
|
3
|
Wanvimonsuk S, Jaree P, Kawai T, Somboonwiwat K. Prx4 acts as DAMP in shrimp, enhancing bacterial resistance via the toll pathway and prophenoloxidase activation. iScience 2022; 26:105793. [PMID: 36619979 PMCID: PMC9813724 DOI: 10.1016/j.isci.2022.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Peroxiredoxin (Prx), an antioxidant enzyme family, has been identified as immune modulating damage-associated molecular patterns (DAMPs) in mammals but not in shrimp. Acute non-lethal heat shock (NLHS) that enhances shrimp Penaeus vannamei resistance to Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (VPAHPND). Among the five P. vannamei Prxs (LvPrx) isoforms, LvPrx4, the most abundant in unchallenged shrimp hemocytes that was upregulated in hemocytes following NLHS treatment, is of great interest. The escalation of the LvPrx4 monomer in hemolymph of NLHS treated shrimp indicates that it probably acts as DAMP. This study revealed that pre-challenge with rLvPrx4 could prolong VPAHPND-infected shrimp survival, increase prophenoloxidase (proPO) activity and promote Toll pathway-related genes expression mediated by Toll-like receptor (TLR) 1 and 2. The presented findings elucidated the molecular mechanism of LvPrx4 monomer as DAMP in NLHS-induced VPAHPND resistance by inducing the TLR1/2 signaling pathway and the proPO activating system.
Collapse
Affiliation(s)
- Supitcha Wanvimonsuk
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phattarunda Jaree
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Corresponding author
| |
Collapse
|
4
|
Commercial Vaccines Do Not Confer Protection against Two Genogroups of Piscirickettsia salmonis, LF-89 and EM-90, in Atlantic Salmon. BIOLOGY 2022; 11:biology11070993. [PMID: 36101374 PMCID: PMC9312220 DOI: 10.3390/biology11070993] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Vaccination represents one of the most relevant strategies to prevent and control infectious diseases in aquaculture. However, vaccines have failed to control and prevent Piscirickettsia salmonis, a bacterium that causes large economic losses to the industry. Therefore, we evaluated the performance of two commercial vaccines in Atlantic salmon through a cohabitation challenge (healthy fish were challenged by cohabitation with infected fish) of the two most prevalent and ubiquitous Piscirickettsia genetic variants in Chile. We found no evidence that vaccines confer protection against the LF-89 or EM-90 genogroups in Atlantic salmon. Abstract In Atlantic salmon, vaccines have failed to control and prevent Piscirickettsiosis, for reasons that remain elusive. In this study, we report the efficacy of two commercial vaccines developed with the Piscirickettsia salmonis isolates AL100005 and AL 20542 against another two genogroups which are considered highly and ubiquitously prevalent in Chile: LF-89 and EM-90. Two cohabitation trials were performed to mimic field conditions and vaccine performance: (1) post-smolt fish were challenged with a single infection of LF-89, (2) adults were coinfected with EM-90, and a low level coinfection of sea lice. In the first trial, the vaccine delayed smolt mortalities by two days; however, unvaccinated and vaccinated fish did not show significant differences in survival (unvaccinated: 60.3%, vaccinated: 56.7%; p = 0.28). In the second trial, mortality started three days later for vaccinated fish than unvaccinated fish. However, unvaccinated and vaccinated fish did not show significant differences in survival (unvaccinated: 64.6%, vaccinated: 60.2%, p = 0.58). Thus, we found no evidence that the evaluated vaccines confer effective protection against the genogroups LF-89 and EM-90 of P. salmonis with estimated relative survival proportions (RPSs) of −9% and −12%, respectively. More studies are necessary to evaluate whether pathogen heterogeneity is a key determinant of the lack of vaccine efficacy against P. salmonis.
Collapse
|
5
|
Morales-Lange B, Agboola JO, Hansen JØ, Lagos L, Øyås O, Mercado L, Mydland LT, Øverland M. The Spleen as a Target to Characterize Immunomodulatory Effects of Down-Stream Processed Cyberlindnera jadinii Yeasts in Atlantic Salmon Exposed to a Dietary Soybean Meal Challenge. Front Immunol 2021; 12:708747. [PMID: 34489959 PMCID: PMC8417602 DOI: 10.3389/fimmu.2021.708747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Aquaculture feeds have changed dramatically from being largely based on fishmeal (FM) towards increased use of plant protein sources, which could impact the fish's immune response. In order to characterize immunomodulatory properties of novel functional ingredients, this study used four diets, one based on FM, a challenging diet with 40% soybean meal (SBM), and two diets containing 40% SBM with 5% of Cyberlindnera jadinii yeast exposed to different down-stream processing conditions: heat-inactivated (ICJ) or autolysation (ACJ). The immunomodulatory effects of the diets were analyzed in the spleen of Atlantic salmon after 37 days of feeding, using a transcriptomic evaluation by RNA sequencing (RNA-seq) and the detection of specific immunological markers at the protein level through indirect Enzyme-linked Immunosorbent Assay (indirect ELISA). The results showed that SBM (compared to FM) induced a down-regulation of pathways related to ion binding and transport, along with an increase at the protein level of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). On the other hand, while ICJ (compared to FM-group) maintain the inflammatory response associated with SBM, with higher levels of TNFα and IFNγ, and with an upregulation of creatine kinase activity and phosphagen metabolic process, the inclusion of ACJ was able to modulate the response of Atlantic salmon compared to fish fed the SBM-diet by the activation of biological pathways related to endocytosis, Pattern recognition receptor (PPRs)-signal transduction and transporter activity. In addition, ACJ was also able to control the pro-inflammatory profile of SBM, increasing Interleukin 10 (IL-10) levels and decreasing TNFα production, triggering an immune response similar to that of fish fed an FM-based diet. Finally, we suggest that the spleen is a good candidate to characterize the immunomodulatory effects of functional ingredients in Atlantic salmon. Moreover, the inclusion of ACJ in fish diets, with the ability to control inflammatory processes, could be considered in the formulation of sustainable salmon feed.
Collapse
Affiliation(s)
- Byron Morales-Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jeleel Opeyemi Agboola
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jon Øvrum Hansen
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Leidy Lagos
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ove Øyås
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Liv Torunn Mydland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Morales-Lange B, Ramírez-Cepeda F, Schmitt P, Guzmán F, Lagos L, Øverland M, Wong-Benito V, Imarai M, Fuentes D, Boltaña S, Alcaíno J, Soto C, Mercado L. Interferon Gamma Induces the Increase of Cell-Surface Markers (CD80/86, CD83 and MHC-II) in Splenocytes From Atlantic Salmon. Front Immunol 2021; 12:666356. [PMID: 34054836 PMCID: PMC8155612 DOI: 10.3389/fimmu.2021.666356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Type II interferon gamma (IFNγ) is a pleiotropic cytokine capable of modulating the innate and adaptive immune responses which has been widely characterized in several teleost families. In fish, IFNγ stimulates the expression of cytokines and chemokines associated with the pro-inflammatory response and enhances the production of nitrogen and oxygen reactive species in phagocytic cells. This work studied the effect of IFNγ on the expression of cell-surface markers on splenocytes of Atlantic salmon (Salmo salar). In vitro results showed that subpopulations of mononuclear splenocytes cultured for 15 days were capable of increasing gene expression and protein availability of cell-surface markers such as CD80/86, CD83 and MHC II, after being stimulated with recombinant IFNγ. These results were observed for subpopulations with characteristics associated with monocytes (51%), and features that could be related to lymphocytes (46.3%). In addition, a decrease in the expression of zbtb46 was detected in IFNγ-stimulated splenocytes. Finally, the expression of IFNγ and cell-surface markers was assessed in Atlantic salmon under field conditions. In vivo results showed that the expression of ifnγ increased simultaneously with the up-regulation of cd80/86, cd83 and mhcii during a natural outbreak of Piscirickettsia salmonis. Overall, the results obtained in this study allow us to propose IFNγ as a candidate molecule to stimulate the phenotypic progression of a small population of immune cells, which will increase antigen presenting cells markers. Thereby, modulatory strategies using IFNγ may generate a robust and coordinated immune response in fish against pathogens that affect aquaculture.
Collapse
Affiliation(s)
- Byron Morales-Lange
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Felipe Ramírez-Cepeda
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paulina Schmitt
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Fanny Guzmán
- Laboratorio de Síntesis de Péptidos, Núcleo Biotecnología de Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Leidy Lagos
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Valentina Wong-Benito
- Laboratorio de Inmunología, Departamento de Biología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Laboratorio de Inmunología, Departamento de Biología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Derie Fuentes
- Aquaculture and Marine Ecosystems, Center for Systems Biotechnology, Fraunhofer Chile Research, Santiago, Chile
| | - Sebastián Boltaña
- Department of Oceanography, University of Concepción, Concepción, Chile
| | | | | | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
7
|
Agboola JO, Schiavone M, Øverland M, Morales-Lange B, Lagos L, Arntzen MØ, Lapeña D, Eijsink VGH, Horn SJ, Mydland LT, François JM, Mercado L, Hansen JØ. Impact of down-stream processing on functional properties of yeasts and the implications on gut health of Atlantic salmon (Salmo salar). Sci Rep 2021; 11:4496. [PMID: 33627754 PMCID: PMC7904851 DOI: 10.1038/s41598-021-83764-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Yeasts are becoming popular as novel ingredients in fish feeds because of their potential to support better growth and concomitantly ensure good fish health. Here, three species of yeasts (Cyberlindnera jadinii, Blastobotrys adeninivorans and Wickerhamomyces anomalus), grown on wood sugars and hydrolysates of chicken were subjected to two down-stream processes, either direct heat-inactivation or autolysis, and the feed potential of the resulting yeast preparations was assessed through a feeding trial with Atlantic salmon fry. Histological examination of distal intestine based on widening of lamina propria, showed that autolyzed W. anomalus was effective in alleviating mild intestinal enteritis, while only limited effects were observed for other yeasts. Our results showed that the functionality of yeast in counteracting intestinal enteritis in Atlantic salmon was dependent on both the type of yeast and the down-stream processing method, and demonstrated that C. jadinii and W. anomalus have promising effects on gut health of Atlantic salmon.
Collapse
Affiliation(s)
- Jeleel Opeyemi Agboola
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Marion Schiavone
- grid.432671.5Lallemand SAS, 19 rue des Briquetiers, BP59, 31702 Blagnac, France ,grid.461574.50000 0001 2286 8343TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France ,grid.462430.70000 0001 2188 216XLAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Margareth Øverland
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Byron Morales-Lange
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Leidy Lagos
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Magnus Øverlie Arntzen
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - David Lapeña
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Vincent G. H. Eijsink
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Svein Jarle Horn
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Liv Torunn Mydland
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Jean Marie François
- grid.461574.50000 0001 2286 8343TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Luis Mercado
- grid.8170.e0000 0001 1537 5962Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso, Chile
| | - Jon Øvrum Hansen
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
8
|
Djordjevic B, Morales-Lange B, McLean Press C, Olson J, Lagos L, Mercado L, Øverland M. Comparison of Circulating Markers and Mucosal Immune Parameters from Skin and Distal Intestine of Atlantic Salmon in Two Models of Acute Stress. Int J Mol Sci 2021; 22:ijms22031028. [PMID: 33494146 PMCID: PMC7864346 DOI: 10.3390/ijms22031028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/13/2023] Open
Abstract
Ensuring salmon health and welfare is crucial to maximize production in recirculation aquaculture systems. Healthy and robust mucosal surfaces of the skin and intestine are essential to achieve this goal because they are the first immunological defenses and are constantly exposed to multistressor conditions, such as infectious diseases, suboptimal nutrition, and environmental and handling stress. In this work, Atlantic salmon, split from a single cohort, were subjected to acute hypoxia stress or 15-min crowding stress and observed over a 24-h recovery period. Samples were collected from fish at 0, 1, 3, 6, 12 and 24 h post-stress to analyze plasma-circulating markers of endocrine function (cortisol), oxidative stress (glutathione peroxidase) and immune function (interleukin 10 (IL-10), annexin A1). In addition, mucosal barrier function parameters were measured in the skin mucus (Muc-like protein and lysozyme) and distal intestine (simple folds, goblet cell size and goblet cell area). The results showed that both acute stress models induced increases of circulating cortisol in plasma (1 h post-stress), which then returned to baseline values (initial control) at 24 h post-stress. Moreover, the hypoxia stress was mostly related to increased oxidative stress and IL-10 production, whereas the crowding stress was associated with a higher production of Muc-like protein and lysozyme in the skin mucus. Interestingly, in the distal intestine, smaller goblet cells were detected immediately and one hour after post-hypoxia stress, which could be related to rapid release of the cellular content to protect this organ. Finally, the correlation of different markers in the hypoxic stress model showed that the circulating levels of cortisol and IL-10 were directly proportional, while the availability of Muc-like proteins was inversely proportional to the size of the goblet cells. On the other hand, in the crowding stress model, a proportional relationship was established between plasma cortisol levels and skin mucus lysozyme. Our results suggest key differences in energy partitioning between the two acute stress models and support the need for further investigation into the interplay of multistressor conditions and strategies to modulate immunological aspects of mucosal surfaces.
Collapse
Affiliation(s)
- Brankica Djordjevic
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway; (L.L.); (M.Ø.)
- Correspondence: (B.D.); (B.M-L.)
| | - Byron Morales-Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway; (L.L.); (M.Ø.)
- Correspondence: (B.D.); (B.M-L.)
| | - Charles McLean Press
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1430 Ås, Norway;
| | - Jake Olson
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - Leidy Lagos
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway; (L.L.); (M.Ø.)
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Pontificia Universidad Católica de Valparaíso, 2950 Valparaíso, Chile;
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway; (L.L.); (M.Ø.)
| |
Collapse
|