1
|
Langeloh H, Hakvåg S, Bakke I, Øverjordet IB, Ribičić D, Brakstad OG. Depletion of crude oil and fuel in the Arctic. Summer and winter field studies with immobilized oil in seawater at Svalbard. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179043. [PMID: 40073774 DOI: 10.1016/j.scitotenv.2025.179043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/23/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Seasonal dynamics can vastly influence the natural depletion of oil spilled into the ocean and the Arctic regions are characterized by large seasonal changes, especially in temperature and daylight. To determine the influences of seasonal variation on natural oil depletion processes like dissolution, photooxidation and biodegradation, we deployed thin films of three oils in natural seawater during the Arctic summer and winter in Svalbard, Norway. The extent of oil depletion varied with season and the type of the oil, however, considerable depletion of n-alkanes and polycyclic aromatic compounds were observed during both summer and winter. The influence of temperature on depletion of components was not consistent between the three oils and only small effects of photooxidation were found during the summer. We further found variations in the composition of bacterial communities associated with the oil films between the seasons with an apparently delayed succession during the winter. The bacterial communities generally contained high abundances of previously reported oil degrading taxa which displayed distinct seasonal patterns in their relative abundance. Oleispira and Oleibacter were dominantly found during the summer and Colwellia during the winter, while Cycloclasticus and C1-B045 were highly abundant during both seasons. While the environmental factors were likely the cause for variations in oil depletion between the seasons and oils, the seasonal differences in the bacterial community composition did not seem to affect their biodegradation potential.
Collapse
Affiliation(s)
- Hendrik Langeloh
- The Norwegian University of Science and Technology (NTNU), Dept. of Biotechnology and Food Science, Trondheim, Norway.
| | - Sigrid Hakvåg
- SINTEF Ocean AS, Dept. Climate and Environment, Trondheim, Norway
| | - Ingrid Bakke
- The Norwegian University of Science and Technology (NTNU), Dept. of Biotechnology and Food Science, Trondheim, Norway
| | | | - Deni Ribičić
- SINTEF Ocean AS, Dept. Aquaculture, Trondheim, Norway
| | - Odd G Brakstad
- SINTEF Ocean AS, Dept. Climate and Environment, Trondheim, Norway
| |
Collapse
|
2
|
Ottaviani M, Bonciani N, Strange MV, Bohr EH, Skjolding LM, Feilberg KL. Quantification and ecotoxicological contribution of volatile compounds in produced water effluents. CHEMOSPHERE 2024; 367:143659. [PMID: 39491683 DOI: 10.1016/j.chemosphere.2024.143659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Produced water (PW) is a significant byproduct of offshore oil and gas production, constituting a major waste stream in the North Sea. Existing regulations address only the dispersed aliphatic hydrocarbon content in PW, and limited attention is given to other potentially hazardous compounds, including benzene, toluene, ethyl benzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), phenols, water-soluble petroleum constituents as well as production-related chemicals. In this study, Danish oil production PW samples were subjected to purge and trap extraction on granular activated carbon for volatile compounds identification and quantification by GC-MS analysis. The obtained analytical data correlate with toxicity assessments conducted on three trophic levels, bacteria (Aliivibrio fischeri), algae (Skeletonema costatum) and copepods (Acartia tonsa) on the whole effluent as well as on treated samples. The removal of the PW volatile fraction by purging experiments resulted in a decrease in toxicity response from 37% ± 23-65% ± 16 across the tested species. The chemicals identified in this study and their toxicity response enhance the comprehension of the PW effluent composition and inform the development of strategies for offshore reservoir wastewater.
Collapse
Affiliation(s)
- Matteo Ottaviani
- Technical University of Denmark, DTU Offshore, 2800 Lyngby, Denmark.
| | - Neri Bonciani
- Technical University of Denmark, DTU Offshore, 2800 Lyngby, Denmark.
| | - Markus Varlund Strange
- Technical University of Denmark, DTU Aqua, Department of Aquatic Resources, 2800 Kgs. Lyngby, Denmark.
| | - Emil Hoffmann Bohr
- Technical University of Denmark, DTU Aqua, Department of Aquatic Resources, 2800 Kgs. Lyngby, Denmark.
| | - Lars Michael Skjolding
- Technical University of Denmark, DTU Sustain, Department of Environmental and Resource Engineering, 2800 Kgs. Lyngby, Denmark.
| | | |
Collapse
|
3
|
Langeloh H, Hakvåg S, Øverjordet IB, Bakke I, Sørensen L, Brakstad OG. A seawater field study of crude and fuel oil depletion in Northern Norway at two different seasons - Chemistry and bacterial communities. MARINE POLLUTION BULLETIN 2024; 207:116851. [PMID: 39216254 DOI: 10.1016/j.marpolbul.2024.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
After marine oil spills, natural processes like photooxidation and biodegradation can remove the oil from the environment. However, these processes are strongly influenced by environmental conditions. To achieve a greater understanding of how seasonal variations in temperature, light exposure and the bacterial community affect oil depletion in the marine environment, we performed two field experiments during the spring and autumn. Field systems equipped with a thin oil film of Statfjord, Grane or ULSFO were deployed in northern Norway. Depletion of the total extractable matter was faster during the spring than during the autumn. Statfjord showed faster depletion of n-alkanes during spring, while depletion of polycyclic aromatic hydrocarbons varied between the seasons based on the degree of alkyl-substitutions. ULSFO displayed the overall slowest depletion. Biodegradation of the oils was associated with high abundances of unassigned bacteria during the spring but was governed by Alcanivorax, Cycloclasticus, Oleibacter and Oleispira during the autumn.
Collapse
Affiliation(s)
- Hendrik Langeloh
- The Norwegian University of Science and Technology (NTNU), Dept. of Biotechnology and Food Science, Sem Sælandsvei 6/8, 7491 Trondheim, Norway.
| | - Sigrid Hakvåg
- SINTEF Ocean, Dept. Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Ida B Øverjordet
- SINTEF Ocean, Dept. Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Ingrid Bakke
- The Norwegian University of Science and Technology (NTNU), Dept. of Biotechnology and Food Science, Sem Sælandsvei 6/8, 7491 Trondheim, Norway.
| | - Lisbet Sørensen
- SINTEF Ocean, Dept. Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Odd G Brakstad
- SINTEF Ocean, Dept. Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| |
Collapse
|
4
|
Langeloh H, Greer CW, Vergeynst L, Hakvåg S, Øverjordet IB, Bakke I, Sørensen L, Brakstad OG. Comparison of two field systems for determination of crude oil biodegradation in cold seawater. MARINE POLLUTION BULLETIN 2024; 199:115919. [PMID: 38134872 DOI: 10.1016/j.marpolbul.2023.115919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Marine oil spills have devastating environmental impacts and extrapolation of experimental fate and impact data from the lab to the field remains challenging due to the lack of comparable field data. In this work we compared two field systems used to study in situ oil depletion with emphasis on biodegradation and associated microbial communities. The systems were based on (i) oil impregnated clay beads and (ii) hydrophobic Fluortex adsorbents coated with thin oil films. The bacterial communities associated with the two systems displayed similar compositions of dominant bacterial taxa. Initial abundances of Oceanospirillales were observed in both systems with later emergences of Flavobacteriales, Alteromonadales and Rhodobacterales. Depletion of oil compounds was significantly faster in the Fluortex system and most likely related to the greater bioavailability of oil compounds as compared to the clay bead system.
Collapse
Affiliation(s)
- Hendrik Langeloh
- The Norwegian University of Science and Technology (NTNU), Dept. of Biotechnology and Food Science, Sem Sælandsvei 6/8, 7491 Trondheim, Norway.
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, 75 Bd de Mortagne, Boucherville, QC J4B 6Y4, Montreal, Canada; McGill University, Natural Resource Sciences, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X 3V9 Montreal, Quebec, Canada.
| | - Leendert Vergeynst
- Arctic Research Centre, Department of Biology, Aarhus University, Ny Munkegade 114, 8000 Aarhus, Denmark; Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds vej 10 D, 8000 Aarhus, Denmark.
| | - Sigrid Hakvåg
- SINTEF Ocean, Department of Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Ida B Øverjordet
- SINTEF Ocean, Department of Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Ingrid Bakke
- SINTEF Ocean, Department of Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Lisbet Sørensen
- SINTEF Ocean, Department of Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Odd G Brakstad
- SINTEF Ocean, Department of Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| |
Collapse
|
5
|
Castro-Nallar E, Berríos-Farías V, Díez B, Guajardo-Leiva S. Spatially and Temporally Explicit Metagenomes and Metagenome-Assembled Genomes from the Comau Fjord (42°S), Patagonia. Microbiol Resour Announc 2023:e0005923. [PMID: 37184380 DOI: 10.1128/mra.00059-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Microbes play an important role in coastal and estuarine waters. We present 93 metagenomes and 677 metagenome-assembled genomes (MAGs) from Comau Fjord, Patagonia (42°S), to further understand the microbial dynamics and their response to anthropogenic disturbances. These data represent a spatially (35-km transect) and temporally (2016 to 2019) explicit data set.
Collapse
Affiliation(s)
- Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
| | - Valentín Berríos-Farías
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago, Chile
| | - Sergio Guajardo-Leiva
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
| |
Collapse
|
6
|
Tonteri O, Reunamo A, Nousiainen A, Koskinen L, Nuutinen J, Truu J, Jørgensen KS. Effects of Dispersant on the Petroleum Hydrocarbon Biodegradation and Microbial Communities in Seawater from the Baltic Sea and Norwegian Sea. Microorganisms 2023; 11:microorganisms11040882. [PMID: 37110305 PMCID: PMC10142239 DOI: 10.3390/microorganisms11040882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Dispersants have been used in several oil spill accidents, but little information is available on their effectiveness in Baltic Sea conditions with low salinity and cold seawater. This study investigated the effects of dispersant use on petroleum hydrocarbon biodegradation rates and bacterial community structures. Microcosm experiments were conducted at 5 °C for 12 days with North Sea crude oil and dispersant Finasol 51 with open sea Gulf of Bothnia and coastal Gulf of Finland and Norwegian Sea seawater. Petroleum hydrocarbon concentrations were analysed with GC-FID. Bacterial community structures were studied using 16S rDNA gene amplicon sequencing, and the abundance of genes involved in hydrocarbon degradation with quantitative PCR. The highest oil degradation gene abundances and oil removal were observed in microcosms with coastal seawater from the Gulf of Bothnia and Gulf of Finland, respectively, and the lowest in the seawater from the Norwegian Sea. Dispersant usage caused apparent effects on bacterial communities in all treatments; however, the dispersant’s effect on the biodegradation rate was unclear due to uncertainties with chemical analysis and variation in oil concentrations used in the experiments.
Collapse
Affiliation(s)
- Ossi Tonteri
- Marine Research Centre, Finnish Environmental Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
- Correspondence:
| | - Anna Reunamo
- Marine Research Centre, Finnish Environmental Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Aura Nousiainen
- Marine Research Centre, Finnish Environmental Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Laura Koskinen
- Laboratory Centre, Finnish Environmental Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Jari Nuutinen
- Laboratory Centre, Finnish Environmental Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Jaak Truu
- Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Kirsten S. Jørgensen
- Marine Research Centre, Finnish Environmental Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| |
Collapse
|
7
|
Pyke R, Fortin N, Wasserscheid J, Tremblay J, Schreiber L, Levesque MJ, Messina-Pacheco S, Whyte L, Wang F, Lee K, Cooper D, Greer CW. Biodegradation potential of residue generated during the in-situ burning of oil in the marine environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130439. [PMID: 36437193 DOI: 10.1016/j.jhazmat.2022.130439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The biodegradability of residues derived from in-situ burning, an oil spill response strategy which involves burning an oil slick on the sea surface, has not yet been fully studied. With a growing risk of oil spills, the fate of the persistent burn residue containing potentially toxic substances must be better understood. Microcosms were used to study the microbial community response and potential biodegradability of in-situ burn residues generated from Ultra Low Sulphur (ULS) marine diesel. Microcosm studies were conducted using residues originating from the burning of unweathered and weathered diesel, with the addition of a fertilizer and a dispersant. Burn residues were incubated for 6 weeks at 7 °C in natural seawater with continual agitation in the dark. Samples were subsequently sacrificed for chemistry as well as 16S rRNA gene amplicon and shotgun metagenomic sequencing. Chemistry analyses revealed a reduction in hydrocarbon concentrations. Medium chain-length n-alkanes (nC16-nC24) decreased by 8% in unweathered burn residue microcosms and up to 26% in weathered burn residue microcosms. A significant decrease in polycyclic aromatic hydrocarbon (PAH) concentrations was observed only for naphthalene, fluorene and their alkylated homologs, in the microcosms amended with residue produced from burning weathered diesel. Decreases of 2-24%, were identified depending on the compound. Microcosms amended with burn residues had distinct microbial communities marked by an increase in relative abundance of putative hydrocarbon degraders as well as an increase of known hydrocarbon-degradation genes. These novel results suggest that if in-situ burning is performed on ULS marine diesel, some of the indigenous bacteria would respond to the newly available carbon source and some of the residual compounds would be biodegraded. Future studies involving longer incubation periods could give a better understanding of the fate of burn residues by shedding light on the potential biodegradability of the more recalcitrant residual compounds.
Collapse
Affiliation(s)
- Ruby Pyke
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, QC, Canada
| | - Nathalie Fortin
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montréal, QC, Canada
| | - Jessica Wasserscheid
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montréal, QC, Canada
| | - Julien Tremblay
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montréal, QC, Canada
| | - Lars Schreiber
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montréal, QC, Canada
| | - Marie-Josee Levesque
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montréal, QC, Canada
| | | | - Lyle Whyte
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, QC, Canada
| | - Feiyue Wang
- Centre for Earth Observation Science and Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - David Cooper
- SL Ross Environmental Research Ltd., Ottawa, ON, Canada
| | - Charles W Greer
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, QC, Canada; National Research Council Canada, Energy, Mining and Environment Research Centre, Montréal, QC, Canada.
| |
Collapse
|
8
|
Davis CW, Camenzuli L, Redman AD. Predicting Primary Biodegradation of Petroleum Hydrocarbons in Aquatic Systems: Integrating System and Molecular Structure Parameters using a Novel Machine-Learning Framework. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1359-1369. [PMID: 35262215 PMCID: PMC9320815 DOI: 10.1002/etc.5328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Quantitative structure-property relationship (QSPR) models for predicting primary biodegradation of petroleum hydrocarbons have been previously developed. These models use experimental data generated under widely varied conditions, the effects of which are not captured adequately within model formalisms. As a result, they exhibit variable predictive performance and are unable to incorporate the role of study design and test conditions on the assessment of environmental persistence. To address these limitations, a novel machine-learning System-Integrated Model (HC-BioSIM) is presented, which integrates chemical structure and test system variability, leading to improved prediction of primary disappearance time (DT50) values for petroleum hydrocarbons in fresh and marine water. An expanded, highly curated database of 728 experimental DT50 values (181 unique hydrocarbon structures compiled from 13 primary sources) was used to develop and validate a supervised model tree machine-learning model. Using relatively few parameters (6 system and 25 structural parameters), the model demonstrated significant improvement in predictive performance (root mean square error = 0.26, R2 = 0.67) over existing QSPR models. The model also demonstrated improved accuracy of persistence (P) categorization (i.e., "Not P/P/vP"), with an accuracy of 96.8%, and false-positive and -negative categorization rates of 0.4% and 2.7%, respectively. This significant improvement in DT50 prediction, and subsequent persistence categorization, validates the need for models that integrate experimental design and environmental system parameters into biodegradation and persistence assessment. Environ Toxicol Chem 2022;41:1359-1369. © 2022 ExxonMobil Biomedical Sciences, Inc. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
9
|
Assessment of Hydrocarbon Degradation Potential in Microbial Communities in Arctic Sea Ice. Microorganisms 2022; 10:microorganisms10020328. [PMID: 35208784 PMCID: PMC8879337 DOI: 10.3390/microorganisms10020328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
The anthropogenic release of oil hydrocarbons into the cold marine environment is an increasing concern due to the elevated usage of sea routes and the exploration of new oil drilling sites in Arctic areas. The aim of this study was to evaluate prokaryotic community structures and the genetic potential of hydrocarbon degradation in the metagenomes of seawater, sea ice, and crude oil encapsulating the sea ice of the Norwegian fjord, Ofotfjorden. Although the results indicated substantial differences between the structure of prokaryotic communities in seawater and sea ice, the crude oil encapsulating sea ice (SIO) showed increased abundances of many genera-containing hydrocarbon-degrading organisms, including Bermanella, Colwellia, and Glaciecola. Although the metagenome of seawater was rich in a variety of hydrocarbon degradation-related functional genes (HDGs) associated with the metabolism of n-alkanes, and mono- and polyaromatic hydrocarbons, most of the normalized gene counts were highest in the clean sea ice metagenome, whereas in SIO, these counts were the lowest. The long-chain alkane degradation gene almA was detected from all the studied metagenomes and its counts exceeded ladA and alkB counts in both sea ice metagenomes. In addition, almA was related to the most diverse group of prokaryotic genera. Almost all 18 good- and high-quality metagenome-assembled genomes (MAGs) had diverse HDGs profiles. The MAGs recovered from the SIO metagenome belonged to the abundant taxa, such as Glaciecola, Bermanella, and Rhodobacteracea, in this environment. The genera associated with HDGs were often previously known as hydrocarbon-degrading genera. However, a substantial number of new associations, either between already known hydrocarbon-degrading genera and new HDGs or between genera not known to contain hydrocarbon degraders and multiple HDGs, were found. The superimposition of the results of comparing HDG associations with taxonomy, the HDG profiles of MAGs, and the full genomes of organisms in the KEGG database suggest that the found relationships need further investigation and verification.
Collapse
|
10
|
Gomes A, Christensen JH, Gründger F, Kjeldsen KU, Rysgaard S, Vergeynst L. Biodegradation of water-accommodated aromatic oil compounds in Arctic seawater at 0 °C. CHEMOSPHERE 2022; 286:131751. [PMID: 34399257 DOI: 10.1016/j.chemosphere.2021.131751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Oil spills in Arctic marine environments are expected to increase concurrently with the expansion of shipping routes and petroleum exploitation into previously inaccessible ice-dominated regions. Most research on oil biodegradation focusses on the bulk oil, but the fate of the water-accommodated fraction (WAF), mainly composed of toxic aromatic compounds, is largely underexplored. To evaluate the bacterial degradation capacity of such dissolved aromatics in Greenlandic seawater, microcosms consisting of 0 °C seawater polluted with WAF were investigated over a 3-month period. With a half-life (t1/2) of 26 days, m-xylene was the fastest degraded compound, as measured by gas chromatography - mass spectrometry. Substantial slower degradation was observed for ethylbenzene, naphthalenes, phenanthrene, acenaphthylene, acenaphthene and fluorenes with t1/2 of 40-105 days. Colwellia, identified by 16S rRNA gene sequencing, was the main potential degrader of m-xylene. This genus occupied up to 47 % of the bacterial community until day 10 in the microcosms. Cycloclasticus and Zhongshania aliphaticivorans, potentially utilizing one-to three-ringed aromatics, replaced Colwellia between day 10 and 96 and occupied up to 6 % and 23 % of the community, respectively. Although most of the WAF can ultimately be eliminated in microcosms, our results suggest that the restoration of an oil-impacted Arctic environment may be slow as most analysed compounds had t1/2 of over 2-3 months and the detrimental effects of a spill towards the marine ecosystem likely persist during this time.
Collapse
Affiliation(s)
- Ana Gomes
- Arctic Research Centre, Department of Biology, Aarhus University, Aarhus, Denmark; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Friederike Gründger
- Arctic Research Centre, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Kasper Urup Kjeldsen
- Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Søren Rysgaard
- Arctic Research Centre, Department of Biology, Aarhus University, Aarhus, Denmark; Centre for Earth Observation Science, CHR Faculty of Environment Earth and Resources, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Leendert Vergeynst
- Arctic Research Centre, Department of Biology, Aarhus University, Aarhus, Denmark; Aarhus University Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
11
|
Microbial Community Dynamics during Biodegradation of Crude Oil and Its Response to Biostimulation in Svalbard Seawater at Low Temperature. Microorganisms 2021; 9:microorganisms9122425. [PMID: 34946026 PMCID: PMC8707851 DOI: 10.3390/microorganisms9122425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
The development of oil exploration activities and an increase in shipping in Arctic areas have increased the risk of oil spills in this cold marine environment. The objective of this experimental study was to assess the effect of biostimulation on microbial community abundance, structure, dynamics, and metabolic potential for oil hydrocarbon degradation in oil-contaminated Arctic seawater. The combination of amplicon-based and shotgun sequencing, together with the integration of genome-resolved metagenomics and omics data, was applied to assess microbial community structure and metabolic properties in naphthenic crude oil-amended microcosms. The comparison of estimates for oil-degrading microbial taxa obtained with different sequencing and taxonomic assignment methods showed substantial discrepancies between applied methods. Consequently, the data acquired with different methods was integrated for the analysis of microbial community structure, and amended with quantitative PCR, producing a more objective description of microbial community dynamics and evaluation of the effect of biostimulation on particular microbial taxa. Implementing biostimulation of the seawater microbial community with the addition of nutrients resulted in substantially elevated prokaryotic community abundance (103-fold), a distinctly different bacterial community structure from that in the initial seawater, 1.3-fold elevation in the normalized abundance of hydrocarbon degradation genes, and 12% enhancement of crude oil biodegradation. The bacterial communities in biostimulated microcosms after four months of incubation were dominated by Gammaproteobacterial genera Pseudomonas, Marinomonas, and Oleispira, which were succeeded by Cycloclasticus and Paraperlucidibaca after eight months of incubation. The majority of 195 compiled good-quality metagenome-assembled genomes (MAGs) exhibited diverse hydrocarbon degradation gene profiles. The results reveal that biostimulation with nutrients promotes naphthenic oil degradation in Arctic seawater, but this strategy alone might not be sufficient to effectively achieve bioremediation goals within a reasonable timeframe.
Collapse
|
12
|
Lofthus S, Bakke I, Greer CW, Brakstad OG. Biodegradation of weathered crude oil by microbial communities in solid and melted sea ice. MARINE POLLUTION BULLETIN 2021; 172:112823. [PMID: 34454387 DOI: 10.1016/j.marpolbul.2021.112823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Oil spilled in the Arctic may drift into ice-covered areas and become trapped until the ice melts. To determine if exposure to oil during freezing may have a priming effect on degradation of the oil, weathered dispersed oil (2-3 mg/L) was frozen into solid ice for 200 days at -10 °C, then melted and incubated for 64 days at 4 °C. No degradation was measured in oil frozen into ice prior to melting. Both total amount of oil and target compounds were biotransformed by the microbial community from the melted ice. However, oil released from melted ice was degraded at a slower rate than oil incubated in fresh seawater at the same temperature (4 °C), and by a different microbial community. These data suggest negligible biodegradation of oil frozen in sea ice, while oil-degrading bacteria surviving in the ice may contribute to biodegradation when the ice melts.
Collapse
Affiliation(s)
- Synnøve Lofthus
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, Trondheim, Norway; SINTEF Ocean AS, Climate and Environment, Trondheim, Norway.
| | - Ingrid Bakke
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, Trondheim, Norway
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Centre, Montreal, Quebec, Canada
| | | |
Collapse
|
13
|
Dang NP, Petrich C, O'Sadnick M, Toske L. Biotransformation of chemically dispersed diesel at sub-zero temperatures using artificial brines. ENVIRONMENTAL TECHNOLOGY 2021; 42:2624-2630. [PMID: 31893964 DOI: 10.1080/09593330.2019.1708976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The biotransformation of hydrocarbon compounds in seawater at sub-zero temperature has gained research interest in recent years with the most focus placed on temperatures around 0°C. In this study, biotransformation of dispersed diesel at sub-zero temperatures (-2°C to -6°C) in artificial brines, prepared by adding Instant Ocean salt to natural seawater to increase salinity, is examined. The oil was pre-mixed with dispersant Finasol 51 to prepare the dispersed oil at 2 mg l-1. The native microorganisms in sub-arctic seawater were able to adapt to high salinity and lower temperature in the sea ice brine at tested temperatures and were capable of biotransforming hydrocarbon compounds. Complete depletion of low and middle-range molecular weight n-alkanes, 2/3 ring PAHs and their alkylated compounds was observed after 123 days at -2°C. The depletion extents of hydrocarbon compounds were reduced at -6°C in comparison with -2°C, especially for PAHs and alkylated hydrocarbons. This study suggests that: there is a potential for biodegradation of dispersed oil in sea ice brine at temperatures between -2°C and -6°C. However, for oil with high pour point, the biodegradation process will be more affected by low temperature. Therefore, to predict the fate of dispersed oil at low temperature, the biodegradation rate should be established for each individual oil type and at a specific temperature.
Collapse
Affiliation(s)
- Nga Phuong Dang
- Department of Cold Climate Technology, SINTEF Narvik AS, Narvik, Norway
| | - Chris Petrich
- Department of Cold Climate Technology, SINTEF Narvik AS, Narvik, Norway
| | - Megan O'Sadnick
- Department of Cold Climate Technology, SINTEF Narvik AS, Narvik, Norway
| | | |
Collapse
|
14
|
Nikolova C, Gutierrez T. Biosurfactants and Their Applications in the Oil and Gas Industry: Current State of Knowledge and Future Perspectives. Front Bioeng Biotechnol 2021; 9:626639. [PMID: 33659240 PMCID: PMC7917263 DOI: 10.3389/fbioe.2021.626639] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Surfactants are a group of amphiphilic chemical compounds (i.e., having both hydrophobic and hydrophilic domains) that form an indispensable component in almost every sector of modern industry. Their significance is evidenced from the enormous volumes that are used and wide diversity of applications they are used in, ranging from food and beverage, agriculture, public health, healthcare/medicine, textiles, and bioremediation. A major drive in recent decades has been toward the discovery of surfactants from biological/natural sources-namely bio-surfactants-as most surfactants that are used today for industrial applications are synthetically-manufactured via organo-chemical synthesis using petrochemicals as precursors. This is problematic, not only because they are derived from non-renewable resources, but also because of their environmental incompatibility and potential toxicological effects to humans and other organisms. This is timely as one of today's key challenges is to reduce our reliance on fossil fuels (oil, coal, gas) and to move toward using renewable and sustainable sources. Considering the enormous genetic diversity that microorganisms possess, they offer considerable promise in producing novel types of biosurfactants for replacing those that are produced from organo-chemical synthesis, and the marine environment offers enormous potential in this respect. In this review, we begin with an overview of the different types of microbial-produced biosurfactants and their applications. The remainder of this review discusses the current state of knowledge and trends in the usage of biosurfactants by the Oil and Gas industry for enhancing oil recovery from exhausted oil fields and as dispersants for combatting oil spills.
Collapse
Affiliation(s)
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Brown KE, King CK, Harrison PL. Impacts of Petroleum Fuels on Fertilization and Development of the Antarctic Sea Urchin Sterechinus neumayeri. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2527-2539. [PMID: 32946126 DOI: 10.1002/etc.4878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Antarctic marine environments are at risk from petroleum fuel spills as shipping activities in the Southern Ocean increase. Knowledge of the sensitivity of Antarctic species to fuels under environmentally realistic exposure conditions is lacking. We determined the toxicity of 3 fuels, Special Antarctic Blend diesel (SAB), marine gas oil (MGO), and intermediate fuel oil (IFO 180) to a common Antarctic sea urchin, Sterechinus neumayeri. Sensitivity was estimated for early developmental stages from fertilization to the early 4-arm pluteus in toxicity tests of up to 24 d duration. The effects of the water accommodated fractions (WAFs) of fuels were investigated under different exposure scenarios to determine the relative sensitivity of stages and of different exposure regimes. Sensitivity to fuel WAFs increased through development. Both MGO and IFO 180 were more toxic than SAB, with median effect concentration values for the most sensitive pluteus stage of 3.5, 6.5, and 252 µg/L total hydrocarbon content, respectively. Exposure to a single pulse during fertilization and early embryonic development showed toxicity patterns similar to those observed from continuous exposure. The results show that exposure to fuel WAFs during critical early life stages affects the subsequent viability of larvae, with consequent implications for reproductive success. The sensitivity estimates for S. neumayeri that we generated can be utilized in risk assessments for the management of Antarctic marine ecosystems. Environ Toxicol Chem 2020;39:2527-2539. © 2020 SETAC.
Collapse
Affiliation(s)
- Kathryn E Brown
- Australian Antarctic Division, Environmental Protection, Kingston, Tasmania, Australia
- Marine Ecology Research Centre, Southern Cross University, Lismore, New South Wales, Australia
| | - Catherine K King
- Australian Antarctic Division, Environmental Protection, Kingston, Tasmania, Australia
| | - Peter L Harrison
- Marine Ecology Research Centre, Southern Cross University, Lismore, New South Wales, Australia
| |
Collapse
|
16
|
Beyer J, Goksøyr A, Hjermann DØ, Klungsøyr J. Environmental effects of offshore produced water discharges: A review focused on the Norwegian continental shelf. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105155. [PMID: 32992224 DOI: 10.1016/j.marenvres.2020.105155] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Produced water (PW), a large byproduct of offshore oil and gas extraction, is reinjected to formations or discharged to the sea after treatment. The discharges contain dispersed crude oil, polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), metals, and many other constituents of environmental relevance. Risk-based regulation, greener offshore chemicals and improved cleaning systems have reduced environmental risks of PW discharges, but PW is still the largest operational source of oil pollution to the sea from the offshore petroleum industry. Monitoring surveys find detectable exposures in caged mussel and fish several km downstream from PW outfalls, but biomarkers indicate only mild acute effects in these sentinels. On the other hand, increased concentrations of DNA adducts are found repeatedly in benthic fish populations, especially in haddock. It is uncertain whether increased adducts could be a long-term effect of sediment contamination due to ongoing PW discharges, or earlier discharges of oil-containing drilling waste. Another concern is uncertainty regarding the possible effect of PW discharges in the sub-Arctic Southern Barents Sea. So far, research suggests that sub-arctic species are largely comparable to temperate species in their sensitivity to PW exposure. Larval deformities and cardiac toxicity in fish early life stages are among the biomarkers and adverse outcome pathways that currently receive much attention in PW effect research. Herein, we summarize the accumulated ecotoxicological knowledge of offshore PW discharges and highlight some key remaining knowledge needs.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Norway; Institute of Marine Research (IMR), Bergen, Norway
| | | | | |
Collapse
|
17
|
The Interactive Effects of Crude Oil and Corexit 9500 on Their Biodegradation in Arctic Seawater. Appl Environ Microbiol 2020; 86:AEM.01194-20. [PMID: 32826215 PMCID: PMC7580538 DOI: 10.1128/aem.01194-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022] Open
Abstract
Chemical dispersants such as Corexit 9500 are commonly used in oil spill response and are currently under consideration for use in the Arctic, where their fate and effects have not been well studied. This research was performed to determine the interactive effects of the copresence of crude oil and Corexit 9500 on the degradation of components from each mixture and the associated microbial community structure over time in Arctic seawater. These findings will help yield a better understanding of the biodegradability of dispersant components applied to an oil spill, the temporal microbial community response to dispersed oil, and the fundamental microbial ecology of organic contaminant biodegradation processes in the Arctic marine environment. The risk of petroleum spills coupled with the potential application of chemical dispersants as a spill response strategy necessitates further understanding of the fate of oil and dispersants and their interactive effects during biodegradation. Using Arctic seawater mesocosms amended with either crude oil, Corexit 9500, or both together, we quantified the chemical losses of crude oil and Corexit 9500 and identified microbial taxa implicated in their biodegradation based on shifts in the microbial community structure over a 30-day time course. Chemical analyses included total petroleum hydrocarbons (TPH), n-alkanes, branched alkanes, and polycyclic aromatic hydrocarbons (PAHs) for oil loss and the surfactant components dioctyl sodium sulfosuccinate (DOSS), Span 80, Tween 80, Tween 85, and the DOSS metabolite ethylhexyl sulfosuccinate (EHSS) for Corexit loss. Changes to the microbial communities and identification of key taxa were determined by 16S rRNA gene amplicon sequencing. The nonionic surfactants of Corexit 9500 (Span 80 and Tweens 80 and 85) biodegraded rapidly, dropping to below the limits of detection within 5 days and prior to any detectable initiation of oil biodegradation. This resulted in no observable suppression of petroleum biodegradation in the presence of Corexit compared to that of oil alone. In contrast, biodegradation of DOSS was delayed in the presence of oil, based on the prolonged presence of DOSS and accumulation of the degradation intermediate EHSS that did not occur in the absence of oil. Microbial analyses revealed that oil and Corexit enriched different overall microbial communities, with the presence of both resulting in a community composition that shifted from one more similar to that of Corexit only to one reflecting the oil-only community over time, in parallel with the degradation of predominantly Corexit and then oil components. Some microbial taxa (Oleispira, Pseudofulvibacter, and Roseobacter) responded to either oil or Corexit, suggesting that some organisms may be capable of utilizing both substrates. Together, these findings reveal interactive effects of crude oil and Corexit 9500 on chemical losses and microbial communities as they biodegrade, providing further insight into their fate when copresent in the environment. IMPORTANCE Chemical dispersants such as Corexit 9500 are commonly used in oil spill response and are currently under consideration for use in the Arctic, where their fate and effects have not been well studied. This research was performed to determine the interactive effects of the copresence of crude oil and Corexit 9500 on the degradation of components from each mixture and the associated microbial community structure over time in Arctic seawater. These findings will help yield a better understanding of the biodegradability of dispersant components applied to an oil spill, the temporal microbial community response to dispersed oil, and the fundamental microbial ecology of organic contaminant biodegradation processes in the Arctic marine environment.
Collapse
|
18
|
Pinto M, Polania Zenner P, Langer TM, Harrison J, Simon M, Varela MM, Herndl GJ. Putative degraders of low-density polyethylene-derived compounds are ubiquitous members of plastic-associated bacterial communities in the marine environment. Environ Microbiol 2020; 22:4779-4793. [PMID: 32935476 PMCID: PMC7702132 DOI: 10.1111/1462-2920.15232] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
It remains unknown whether and to what extent marine prokaryotic communities are capable of degrading plastic in the ocean. To address this knowledge gap, we combined enrichment experiments employing low‐density polyethylene (LDPE) as the sole carbon source with a comparison of bacterial communities on plastic debris in the Pacific, the North Atlantic and the northern Adriatic Sea. A total of 35 operational taxonomic units (OTUs) were enriched in the LDPE‐laboratory incubations after 1 year, of which 20 were present with relative abundances > 0.5% in at least one plastic sample collected from the environment. From these, OTUs classified as Cognatiyoonia, Psychrobacter, Roseovarius and Roseobacter were found in the communities of plastics collected at all oceanic sites. Additionally, OTUs classified as Roseobacter, Pseudophaeobacter, Phaeobacter, Marinovum and Cognatiyoonia, also enriched in the LDPE‐laboratory incubations, were enriched on LDPE communities compared to the ones associated to glass and polypropylene in in‐situ incubations in the northern Adriatic Sea after 1 month of incubation. Some of these enriched OTUs were also related to known alkane and hydrocarbon degraders. Collectively, these results demonstrate that there are prokaryotes capable of surviving with LDPE as the sole carbon source living on plastics in relatively high abundances in different water masses of the global ocean.
Collapse
Affiliation(s)
- Maria Pinto
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Research Platform 'Plastics in the Environment and Society', University of Vienna, Vienna, Austria
| | - Paula Polania Zenner
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Teresa M Langer
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Jesse Harrison
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Marta M Varela
- IEO, Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, A Coruña, Spain
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Research Platform 'Plastics in the Environment and Society', University of Vienna, Vienna, Austria.,NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| |
Collapse
|
19
|
Lofthus S, Bakke I, Tremblay J, Greer CW, Brakstad OG. Biodegradation of weathered crude oil in seawater with frazil ice. MARINE POLLUTION BULLETIN 2020; 154:111090. [PMID: 32319919 DOI: 10.1016/j.marpolbul.2020.111090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
As ice extent in the Arctic is declining, oil and gas activities will increase, with higher risk of oil spills to the marine environment. To determine biotransformation of dispersed weathered oil in newly formed ice, oil dispersions (2-3 ppm) were incubated in a mixture of natural seawater and frazil ice for 125 days at -2 °C. Dispersed oil in seawater without frazil ice were included in the experimental setup. Presence or absence of frazil ice was a strong driver for microbial community structures and affected the rate of oil degradation. n-alkanes were degraded faster in the presence of frazil ice, the opposite was the case for naphthalenes and 2-3 ring PAHs. No degradation of 4-6 ring PAHs was observed in any of the treatments. The total petroleum oil was not degraded to any significant degree, suggesting that oil will freeze into the ice matrix and persist throughout the icy season.
Collapse
Affiliation(s)
- Synnøve Lofthus
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, Trondheim, Norway; SINTEF Ocean AS, Environment and New Resources, Trondheim, Norway.
| | - Ingrid Bakke
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, Trondheim, Norway
| | - Julien Tremblay
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, Quebec, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, Quebec, Canada
| | | |
Collapse
|
20
|
Krolicka A, Boccadoro C, Nilsen MM, Demir-Hilton E, Birch J, Preston C, Scholin C, Baussant T. Identification of microbial key-indicators of oil contamination at sea through tracking of oil biotransformation: An Arctic field and laboratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133715. [PMID: 31470316 DOI: 10.1016/j.scitotenv.2019.133715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a molecular analytical approach for detecting hydrocarbonoclastic bacteria in water is suggested as a proxy measurement for tracking petroleum discharges in industrialized or pristine aquatic environments. This approach is tested for general application in cold marine regions (freezing to 5 °C). We used amplicon sequencing and qPCR to quantify 16S rRNA and GyrB genes from oleophilic bacteria in seawater samples from two different crude oil enrichments. The first experiment was conducted in a controlled environment using laboratory conditions and natural North Sea fjord seawater (NSC) at a constant temperature of 5 °C. The second was performed in the field with natural Arctic seawater (ARC) and outdoor temperature conditions from -7 °C to around 4 °C. Although the experimental conditions for NSC and ARC differed, the temporal changes in bacterial communities were comparable and reflected oil biotransformation processes. The common bacterial OTUs for NSC and ARC had the highest identity to Colwellia rossensis and Oleispira antarctica rRNA sequences and were enriched within a few days in both conditions. Other typical oil degrading bacteria such as Alcanivorax (n-alkane degrader) and Cycloclasticus (polycyclic aromatic hydrocarbons degrader) were rapidly enriched only in NSC conditions. Both the strong correlation between Oleispira SSU gene copies and oil concentration, and the specificity of the Oleispira assay suggest that this organism is a robust bioindicator for seawater contaminated by petroleum in cold water environments. Further optimization for automation of the Oleispira assay for in situ analysis with a genosensing device is underway. The assay for Colwellia quantification requires more specificity to fewer Colwellia OTUs and a well-established dose-response relationship before those taxa are used for oil tracking purposes.
Collapse
Affiliation(s)
- Adriana Krolicka
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway.
| | - Catherine Boccadoro
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| | - Mari Mæland Nilsen
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| | - Elif Demir-Hilton
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Jim Birch
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Christina Preston
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Chris Scholin
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Thierry Baussant
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| |
Collapse
|
21
|
Vergeynst L, Greer CW, Mosbech A, Gustavson K, Meire L, Poulsen KG, Christensen JH. Biodegradation, Photo-oxidation, and Dissolution of Petroleum Compounds in an Arctic Fjord during Summer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12197-12206. [PMID: 31566367 DOI: 10.1021/acs.est.9b03336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increased economic activity in the Arctic may increase the risk of oil spills. Yet, little is known about the degradation of oil spills by solar radiation and the impact of nutrient limitation on oil biodegradation under Arctic conditions. We deployed adsorbents coated with thin oil films for up to 4 months in a fjord in SW Greenland to simulate and investigate in situ biodegradation and photo-oxidation of dispersed oil droplets. Oil compound depletion by dissolution, biodegradation, and photo-oxidation was untangled by gas chromatography-mass spectrometry-based oil fingerprinting. Biodegradation was limited by low nutrient concentrations, reaching 97% removal of nC13-26-alkanes only after 112 days. Sequencing of bacterial DNA showed the slow development of a bacterial biofilm on the oil films predominated by the known oil degrading bacteria Oleispira, Alkanindiges and Cycloclasticus. These taxa could be related to biodegradation of shorter-chain (≤C26) alkanes, longer-chain (≥C16) and branched alkanes, and polycyclic aromatic compounds (PACs), respectively. The combination of biodegradation, dissolution, and photo-oxidation depleted most PACs at substantially faster rates than the biodegradation of alkanes. In Arctic fjords during summer, nutrient limitation may severely delay oil biodegradation, but in the photic zone, photolytic transformation of PACs may play an important role.
Collapse
Affiliation(s)
| | - Charles W Greer
- National Research Council Canada , Montreal H4P 2R2 , Quebec , Canada
| | | | | | - Lorenz Meire
- Greenland Climate Research Centre , Greenland Institute of Natural Resources , Nuuk 3900 , Greenland
- Department of Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research , Utrecht University , Yerseke 4401 NT , The Netherlands
| | - Kristoffer G Poulsen
- Department of Plant and Environmental Sciences, Faculty of Science , University of Copenhagen , Copenhagen 1871 , Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, Faculty of Science , University of Copenhagen , Copenhagen 1871 , Denmark
| |
Collapse
|
22
|
Vergeynst L, Christensen JH, Kjeldsen KU, Meire L, Boone W, Malmquist LMV, Rysgaard S. In situ biodegradation, photooxidation and dissolution of petroleum compounds in Arctic seawater and sea ice. WATER RESEARCH 2019; 148:459-468. [PMID: 30408732 DOI: 10.1016/j.watres.2018.10.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
In pristine sea ice-covered Arctic waters the potential of natural attenuation of oil spills has yet to be uncovered, but increasing shipping and oil exploitation may bring along unprecedented risks of oil spills. We deployed adsorbents coated with thin oil films for up to 2.5 month in ice-covered seawater and sea ice in Godthaab Fjord, SW Greenland, to simulate and investigate in situ biodegradation and photooxidation of dispersed oil. GC-MS-based chemometric methods for oil fingerprinting were used to identify characteristic signatures for dissolution, biodegradation and photooxidation. In sub-zero temperature seawater, fast degradation of n-alkanes was observed with estimated half-life times of ∼7 days. PCR amplicon sequencing and qPCR quantification of bacterial genes showed that a biofilm with a diverse microbial community colonised the oil films, yet a population related to the psychrophilic hydrocarbonoclastic gammaproteobacterium Oleispira antarctica seemed to play a key role in n-alkane degradation. Although Oleispira populations were also present in sea ice, we found that biofilms in sea ice had 25 to 100 times lower bacterial densities than in seawater, which explained the non-detectable n-alkane degradation in sea ice. Fingerprinting revealed that photooxidation, but not biodegradation, transformed polycyclic aromatic compounds through 50 cm-thick sea ice and in the upper water column with removal rates up to ∼1% per day. Overall, our results showed a fast biodegradation of n-alkanes in sea ice-covered seawater, but suggested that oils spills will expose the Arctic ecosystem to bio-recalcitrant PACs over prolonged periods of time.
Collapse
Affiliation(s)
- Leendert Vergeynst
- Arctic Research Centre, Aarhus University, Aarhus, Denmark; Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Urup Kjeldsen
- Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lorenz Meire
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland; Department of Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research, Utrecht University, Yerseke, Netherlands
| | - Wieter Boone
- Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada
| | - Linus M V Malmquist
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Søren Rysgaard
- Arctic Research Centre, Aarhus University, Aarhus, Denmark; Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
23
|
Netzer R, Henry IA, Ribicic D, Wibberg D, Brönner U, Brakstad OG. Petroleum hydrocarbon and microbial community structure successions in marine oil-related aggregates associated with diatoms relevant for Arctic conditions. MARINE POLLUTION BULLETIN 2018; 135:759-768. [PMID: 30301095 DOI: 10.1016/j.marpolbul.2018.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Oil-related aggregates (ORAs) may contribute to the fate of oil spilled offshore. However, our understanding about the impact of diatoms and associated bacteria involved in the formation of ORAs and the fate of oil compounds in these aggregates is still limited. We investigated these processes in microcosm experiments with defined oil dispersions in seawater at 5 °C, employing the Arctic diatom Fragilariopsis cylindrus and its associated bacterial assemblage to promote ORA formation. Accumulation of oil compounds, as well as biodegradation of naphthalenes in ORAs and corresponding water phases, was enhanced in the presence of diatoms. Interestingly, the genus Nonlabens was predominating the bacterial communities in diatom-supplemented microcosms, while this genus was not abundant in other samples. This work elucidates the relevance of diatom biomass for the formation of ORAs, microbial community structures and biodegradation processes in chemically dispersed oil at low temperatures relevant for Arctic conditions.
Collapse
Affiliation(s)
- Roman Netzer
- SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway.
| | | | - Deni Ribicic
- SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Ute Brönner
- SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | | |
Collapse
|